Identification of Human Brain Proteins for Bitter-Sweet Taste Perception: A Joint Proteome-Wide and Transcriptome-Wide Association Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. GWAS Dataset of Bitter and Sweet Beverage
2.2. PWAS Analysis of Bitter and Sweet Beverage
2.3. TWAS Analysis of Bitter and Sweet Beverage
2.4. Brain-Related Phenotype Analysis
3. Results
3.1. PWAS Results of Bitter and Sweet Beverage
3.2. TWAS Results of Bitter and Sweet Beverage
3.3. Brain-Related Phenotype Analysis
3.4. Exploration of Other Brain Regions
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Di Salle, F.; Cantone, E.; Savarese, M.F.; Aragri, A.; Prinster, A.; Nicolai, E.; Sarnelli, G.; Iengo, M.; Buyckx, M.; Cuomo, R. Effect of carbonation on brain processing of sweet stimuli in humans. Gastroenterology 2013, 145, 537–539.e533. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, G.K. Why do we like sweet taste: A bitter tale? Physiol. Behav. 2016, 164, 432–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drewnowski, A. The science and complexity of bitter taste. Nutr. Rev. 2001, 59, 163–169. [Google Scholar] [CrossRef]
- Garcia-Bailo, B.; Toguri, C.; Eny, K.M.; El-Sohemy, A. Genetic variation in taste and its influence on food selection. OMICS A J. Integr. Biol. 2009, 13, 69–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, V.W.; Kuang, A.; Danning, R.D.; Kraft, P.; van Dam, R.M.; Chasman, D.I.; Cornelis, M.C. A genome-wide association study of bitter and sweet beverage consumption. Hum. Mol. Genet. 2019, 28, 2449–2457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szajer, J.; Jacobson, A.; Green, E.; Murphy, C. Reduced brain response to a sweet taste in Hispanic young adults. Brain Res. 2017, 1674, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Sethi, S.; Bouret, S.G. Non-nutritive sweeteners induce hypothalamic ER stress causing abnormal axon outgrowth. Front. Endocrinol. 2019, 10, 876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ano, Y.; Hoshi, A.; Ayabe, T.; Ohya, R.; Uchida, S.; Yamada, K.; Kondo, K.; Kitaoka, S.; Furuyashiki, T. Iso-alpha-acids, the bitter components of beer, improve hippocampus-dependent memory through vagus nerve activation. FASEB J. 2019, 33, 4987–4995. [Google Scholar] [CrossRef] [Green Version]
- Ayabe, T.; Fukuda, T.; Ano, Y. Improving effects of hop-derived bitter acids in beer on cognitive functions: A new strategy for vagus nerve stimulation. Biomolecules 2020, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Wainberg, M.; Sinnott-Armstrong, N.; Mancuso, N.; Barbeira, A.N.; Knowles, D.A.; Golan, D.; Ermel, R.; Ruusalepp, A.; Quertermous, T.; Hao, K.; et al. Opportunities and challenges for transcriptome-wide association studies. Nat. Genet. 2019, 51, 592–599. [Google Scholar] [CrossRef]
- Brandes, N.; Linial, N.; Linial, M. PWAS: Proteome—Wide association study-linking genes and phenotypes by functional variation in proteins. Genome Biol. 2020, 21, 173. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xie, S.; Gonzales, S.; Liu, J.; Wang, X. A fast and powerful eQTL weighted method to detect genes associated with complex trait using GWAS summary data. Genet. Epidemiol. 2020, 44, 550–563. [Google Scholar] [CrossRef] [PubMed]
- Gusev, A.; Ko, A.; Shi, H.; Bhatia, G.; Chung, W.; Penninx, B.W.; Jansen, R.; de Geus, E.J.; Boomsma, D.I.; Wright, F.A.; et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 2016, 48, 245–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wingo, A.P.; Fan, W.; Duong, D.M.; Gerasimov, E.S.; Dammer, E.B.; Liu, Y.; Harerimana, N.V.; White, B.; Thambisetty, M.; Troncoso, J.C.; et al. Shared proteomic effects of cerebral atherosclerosis and Alzheimer’s disease on the human brain. Nat. Neurosci. 2020, 23, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Wingo, A.P.; Liu, Y.; Gerasimov, E.S.; Gockley, J.; Logsdon, B.A.; Duong, D.M.; Dammer, E.B.; Robins, C.; Beach, T.G.; Reiman, E.M.; et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis. Nat. Genet. 2021, 53, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Blandina, P.; Provensi, G.; Passsani, M.B.; Capasso, C.; Supuran, C.T. Carbonic anhydrase modulation of emotional memory. Implications for the treatment of cognitive disorders. J. Enzym. Inhib. Med. Chem. 2020, 35, 1206–1214. [Google Scholar] [CrossRef]
- Membrane Associated Carbonic Anhydrase IV (CA IV): A Personal and Historical Perspective; Subcellular Biochemistry; Springer: Dordrecht, The Netherlands, 2014.
- Chesler, M. Regulation and modulation of pH in the brain. Physiol. Rev. 2003, 83, 1183–1221. [Google Scholar] [CrossRef]
- Chandrashekar, J.; Yarmolinsky, D.; von Buchholtz, L.; Oka, Y.; Sly, W.; Ryba, N.J.; Zuker, C.S. The taste of carbonation. Science 2009, 326, 443–445. [Google Scholar] [CrossRef] [Green Version]
- Hevezi, P.; Moyer, B.D.; Lu, M.; Gao, N.; White, E.; Echeverri, F.; Kalabat, D.; Soto, H.; Laita, B.; Li, C.; et al. Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes. PLoS ONE 2009, 4, e6395. [Google Scholar] [CrossRef]
- Lossow, K.; Hermans-Borgmeyer, I.; Behrens, M.; Meyerhof, W. Genetic labeling of car4-expressing cells reveals subpopulations of type III taste cells. Chem. Senses 2017, 42, 747–758. [Google Scholar] [CrossRef]
- Gan, K.J.; Sudhof, T.C. Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. Proc. Natl. Acad. Sci. USA 2019, 116, 12524–12533. [Google Scholar] [CrossRef] [Green Version]
- Caceres, M.; Suwyn, C.; Maddox, M.; Thomas, J.W.; Preuss, T.M. Increased cortical expression of two synaptogenic thrombospondins in human brain evolution. Cereb. Cortex 2007, 17, 2312–2321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, T.; Wang, Z.; Zhu, T.; Xie, R.; Zhu, J. Downregulation of Thbs4 caused by neurogenic niche changes promotes neuronal regeneration after traumatic brain injury. Neurol. Res. 2020, 42, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Cagliani, R.; Guerini, F.R.; Rubio-Acero, R.; Baglio, F.; Forni, D.; Agliardi, C.; Griffanti, L.; Fumagalli, M.; Pozzoli, U.; Riva, S.; et al. Long-standing balancing selection in the THBS 4 gene: Influence on sex-specific brain expression and gray matter volumes in Alzheimer disease. Hum. Mutat. 2013, 34, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Li, S. Dose-response meta-analysis on coffee, tea and caffeine consumption with risk of Parkinson’s disease. Geriatr. Gerontol. Int. 2014, 14, 430–439. [Google Scholar] [CrossRef]
- Grosso, G.; Micek, A.; Castellano, S.; Pajak, A.; Galvano, F. Coffee, tea, caffeine and risk of depression: A systematic review and dose-response meta-analysis of observational studies. Mol. Nutr. Food Res. 2016, 60, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.P.; Wu, Y.F.; Cheng, H.Y.; Xia, T.; Ding, H.; Wang, H.; Wang, Z.M.; Xu, Y. Habitual coffee consumption and risk of cognitive decline/dementia: A systematic review and meta-analysis of prospective cohort studies. Nutrition 2016, 32, 628–636. [Google Scholar] [CrossRef]
- Poole, R.; Kennedy, O.J.; Roderick, P.; Fallowfield, J.A.; Hayes, P.C.; Parkes, J. Coffee consumption and health: Umbrella review of meta-analyses of multiple health outcomes. BMJ 2017, 359, j5024. [Google Scholar] [CrossRef] [Green Version]
- Ishiyama, A.; Sakai, C.; Matsushima, Y.; Noguchi, S.; Mitsuhashi, S.; Endo, Y.; Hayashi, Y.K.; Saito, Y.; Nakagawa, E.; Komaki, H.; et al. IBA57 mutations abrogate iron-sulfur cluster assembly leading to cavitating leukoencephalopathy. Neurol. Genet. 2017, 3, e184. [Google Scholar] [CrossRef] [Green Version]
- Tancheva, L.P.; Lazarova, M.I.; Alexandrova, A.V.; Dragomanova, S.T.; Nicoletti, F.; Tzvetanova, E.R.; Hodzhev, Y.K.; Kalfin, R.E.; Miteva, S.A.; Mazzon, E.; et al. Neuroprotective mechanisms of three natural antioxidants on a rat model of parkinson’s disease: A comparative study. Antioxidants 2020, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Toth, F.; Cseh, E.K.; Vecsei, L. Natural molecules and neuroprotection: Kynurenic acid, pantethine and alpha-lipoic acid. Int. J. Mol. Sci. 2021, 22, 403. [Google Scholar] [CrossRef] [PubMed]
- Karalis, D.T.; Karalis, T.; Karalis, S.; Kleisiari, A.S.; Malakoudi, F.; Maimari, K.E.V. The effect of alpha-lipoic acid on diabetic peripheral neuropathy and the upcoming depressive disorders of type II diabetics. Cureus 2021, 13, e12773. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.J.; Frei, B. Alpha-lipoic acid inhibits TNF-alpha-induced NF-kappaB activation and adhesion molecule expression in human aortic endothelial cells. FASEB J 2001, 15, 2423–2432. [Google Scholar] [CrossRef] [PubMed]
- Robakis, N.K. Molecular neuropathology of alzheimer dementia and therapeutic approaches. Adv. Exp. Med. Biol. 2015, 822, 1. [Google Scholar] [PubMed]
- Andreassen, O.A.; Ferrante, R.J.; Dedeoglu, A.; Beal, M.F. Lipoic acid improves survival in transgenic mouse models of Huntington’s disease. Neuroreport 2001, 12, 3371–3373. [Google Scholar] [CrossRef]
- Hirose, F.; Takai, S.; Takahashi, I.; Shigemura, N. Expression of protocadherin-20 in mouse taste buds. Sci. Rep. 2020, 10, 2051. [Google Scholar] [CrossRef]
- Kishi, M.; Sadachi, H.; Nakamura, J.; Tonoike, M. Functional magnetic resonance imaging investigation of brain regions associated with astringency. Neurosci. Res. 2017, 122, 9–16. [Google Scholar] [CrossRef]
- Spagnuolo, M.S.; Iossa, S.; Cigliano, L. Sweet but bitter: Focus on fructose impact on brain function in rodent models. Nutrients 2020, 13, 1. [Google Scholar] [CrossRef]
- Murray, S.; Tulloch, A.; Criscitelli, K.; Avena, N.M. Recent studies of the effects of sugars on brain systems involved in energy balance and reward: Relevance to low calorie sweeteners. Physiol. Behav. 2016, 164, 504–508. [Google Scholar] [CrossRef] [Green Version]
Beverage Type | Proteins/Genes | Chromosome | Permutation p Value | ||||
---|---|---|---|---|---|---|---|
Symbol | EnsemblID | Name | |||||
PWAS | Bitter beverages | ROS/MAP | Banner | ||||
Total bitter beverages | ABCG2 | ENSG00000118777 | ATP binding cassette subfamily G member 2 | 4 | 2.99 × 10−3 | 3.05 × 10−3 | |
Total bitter beverages | CPNE1 | ENSG00000214078 | copine 1 | 20 | 4.96 × 10−3 | 1.34 × 10−3 | |
Alcoholic bitter beverages | FLOT2 | ENSG00000132589 | flotillin 2 | 17 | 2.68 × 10−2 | 1.76 × 10−5 | |
Tea | ABCG2 | ENSG00000118777 | ATP binding cassette subfamily G member 2 | 4 | 7.65 × 10−3 | 8.79 × 10−3 | |
Sweet beverages | |||||||
Total sweet beverages | FLOT2 | ENSG00000132589 | flotillin 2 | 17 | 5.04 × 10−3 | 4.04 × 10−7 | |
Artificially sweetened beverages | ACTR1B | ENSG00000115073 | actin related protein 1B | 2 | 9.62 × 10−3 | 1.59 × 10−2 | |
TWAS | Bitter beverages | CBR | CBRS | ||||
Total bitter beverages | PIGG | ENSG00000174227 | phosphatidylinositol glycan anchor biosynthesis class G | 4 | 3.97 × 10−3 | 4.51 × 10−3 | |
Total bitter beverages | C3orf18 | ENSG00000088543 | chromosome 3 open reading frame 18 | 3 | 6.12 × 10−5 | 2.17 × 10−3 | |
Alcoholic bitter beverages | ZSWIM7 | ENSG00000214941 | zinc finger SWIM-type containing 7 | 17 | 4.62 × 10−2 | 4.39 × 10−2 | |
Non-alcoholic bitter beverages | PIGG | ENSG00000174227 | phosphatidylinositol glycan anchor biosynthesis class G | 4 | 2.06 × 10−3 | 2.35 × 10−3 | |
Coffee | PEX7 | ENSG00000112357 | peroxisomal biogenesis factor 7 | 6 | 3.41 × 10−3 | 4.43 × 10−3 | |
Tea | PKP4 | ENSG00000144283 | plakophilin 4 | 2 | 7.65 × 10−3 | 4.81 × 10−3 | |
Grape juice | RPLP2 | ENSG00000177600 | ribosomal protein lateral stalk subunit P2 | 11 | 7.67 × 10−3 | 7.22 × 10−3 |
Beverage Type | Proteins/Genes | Brain-Related Phenotype | p Value | |||
---|---|---|---|---|---|---|
Symbol | EnsemblID | Name | ||||
PWAS | Bitter beverages | |||||
Total bitter beverages | ABCG2 | ENSG00000118777 | ATP binding cassette subfamily G member 2 | Narcolepsy | 7.90 × 10−5 | |
Volume Left-Cerebellum-Cortex | 5.37 × 10−5 | |||||
Volume Right-Thalamus-Proper | 4.79 × 10−5 | |||||
CPNE1 | ENSG00000214078 | copine 1 | Cognitive performance | 1.57 × 10−4 | ||
Intelligence | 1.10 × 10−4 | |||||
Mood swings | 2.70 × 10−4 | |||||
Alcoholic bitter beverages | FLOT2 | ENSG00000132589 | flotillin 2 | Cognitive performance | 8.13 × 10−6 | |
Neuroticism | 3.35 × 10−4 | |||||
Tense/‘highly strung’ | 3.20 × 10−4 | |||||
Tea | ABCG2 | ENSG00000118777 | ATP binding cassette subfamily G member 2 | Narcolepsy | 7.90 × 10−5 | |
Volume Left-Cerebellum-Cortex | 5.37 × 10−5 | |||||
Volume Right-Thalamus-Proper | 4.79 × 10−5 | |||||
Sweet beverages | ||||||
Total sweet beverages | FLOT2 | ENSG00000132589 | flotillin 2 | Cognitive performance | 8.13 × 10−6 | |
Neuroticism | 3.35 × 10−4 | |||||
Tense/‘highly strung’ | 3.20 × 10−4 | |||||
Artificially sweetened beverages | ACTR1B | ENSG00000115073 | actin related protein 1B | Bipolar disorder | 1.40 × 10−4 | |
Schizophrenia | 2.93 × 10−4 | |||||
Ever depressed for a whole week | 2.84 × 10−4 | |||||
TWAS | Bitter beverages | |||||
Total bitter beverages | PIGG | ENSG00000174227 | phosphatidylinositol glycan anchor biosynthesis class G | Not found | / | |
C3orf18 | ENSG00000088543 | chromosome 3 open reading frame 18 | Intelligence | 4.50 × 10−4 | ||
Anxiety, nerves or generalized anxiety disorder | 4.91 × 10−4 | |||||
Mood swings | 7.50 × 10−4 | |||||
Alcoholic bitter beverages | ZSWIM7 | ENSG00000214941 | zinc finger SWIM-type containing 7 | Depressed affect | 8.96 × 10−4 | |
Parkinson’s disease | 3.07 × 10−7 | |||||
Feeling miserable | 2.50 × 10−5 | |||||
Non-alcoholic bitter beverages | PIGG | ENSG00000174227 | phosphatidylinositol glycan anchor biosynthesis class G | Not found | / | |
Coffee | PEX7 | ENSG00000112357 | peroxisomal biogenesis factor 7 | Easily tired during worst period of anxiety | 4.90 × 10−4 | |
IDP T1 FAST ROIs R heschl gyrus | 5.75 × 10−4 | |||||
Tea | PKP4 | ENSG00000144283 | plakophilin 4 | Manic/hyper symptoms | 8.80 × 10−4 | |
Grape juice | RPLP2 | ENSG00000177600 | ribosomal protein lateral stalk subunit P2 | DKTatlas lh paracentral area | 4.17 × 10−4 | |
Manic/hyper symptoms | 1.66 × 10−4 | |||||
IDP SWI T2star left thalamus | 5.89 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Cheng, B.; He, D.; Zhao, Y.; Qin, X.; Cai, Q.; Zhang, N.; Chu, X.; Shi, S.; Zhang, F. Identification of Human Brain Proteins for Bitter-Sweet Taste Perception: A Joint Proteome-Wide and Transcriptome-Wide Association Study. Nutrients 2022, 14, 2177. https://doi.org/10.3390/nu14102177
Wei W, Cheng B, He D, Zhao Y, Qin X, Cai Q, Zhang N, Chu X, Shi S, Zhang F. Identification of Human Brain Proteins for Bitter-Sweet Taste Perception: A Joint Proteome-Wide and Transcriptome-Wide Association Study. Nutrients. 2022; 14(10):2177. https://doi.org/10.3390/nu14102177
Chicago/Turabian StyleWei, Wenming, Bolun Cheng, Dan He, Yijing Zhao, Xiaoyue Qin, Qingqing Cai, Na Zhang, Xiaoge Chu, Sirong Shi, and Feng Zhang. 2022. "Identification of Human Brain Proteins for Bitter-Sweet Taste Perception: A Joint Proteome-Wide and Transcriptome-Wide Association Study" Nutrients 14, no. 10: 2177. https://doi.org/10.3390/nu14102177
APA StyleWei, W., Cheng, B., He, D., Zhao, Y., Qin, X., Cai, Q., Zhang, N., Chu, X., Shi, S., & Zhang, F. (2022). Identification of Human Brain Proteins for Bitter-Sweet Taste Perception: A Joint Proteome-Wide and Transcriptome-Wide Association Study. Nutrients, 14(10), 2177. https://doi.org/10.3390/nu14102177