Vascular–Metabolic Risk Factors and Psychological Stress in Patients with Chronic Tinnitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Blood Index Values
2.2.2. Perceived Stress
2.2.3. Tinnitus-Related Distress
2.3. Statistical Analyses
2.4. Data Preparation
2.5. Descriptive Analyses
2.6. Univariate Regression Analyses
3. Results
3.1. Descriptive Indices
3.2. Associations between Perceived Stress and Blood Parameters
4. Discussion
4.1. Vascular–Metabolic Risk Factors
4.2. Oxidative Stress
4.3. Perceived Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biswas, R.; Hall, D.A. Epidemiology of tinnitus. Otolaryngol. Clin. N. Am. 2020, 36, 239–248. [Google Scholar]
- McCormack, A.; Edmondson-Jones, M.; Somerset, S.; Hall, D. A systematic review of the reporting of tinnitus prevalence and severity. Hear. Res. 2016, 337, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.S.; McFerran, D.J.; Hall, D.A.; Hoare, D.J. The natural history of subjective tinnitus in adults: A systematic review and meta-analysis of no-intervention periods in controlled trials. Laryngoscope 2018, 128, 217–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallhäusser-Franke, E.; D’Amelio, R.; Glauner, A.; Delb, W.; Servais, J.J.; Hörmann, K.; Repik, I. Transition from acute to chronic tinnitus: Predictors for the development of chronic distressing tinnitus. Front. Neurol. 2017, 8, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biehl, R.; Boecking, B.; Brueggemann, P.; Grosse, R.; Mazurek, B. Personality traits, perceived stress, and tinnitus-related distress in patients with chronic tinnitus: Support for a vulnerability-stress model. Front. Psychol. 2020, 10, 3093. [Google Scholar] [CrossRef]
- Hiller, W.; Goebel, G. Co-morbidity of psychological disorders in patients with complex chronic tinnitus. In Tinnitus–Psychosomatic Aspects of Complex Chronic Tinnitus; Quintessence Publishing Co Ltd.: London, UK, 1998; pp. 63–85. [Google Scholar]
- McKenna, L.; Handscomb, L.; Hoare, D.J.; Hall, D.A. A Scientific cognitive-behavioral model of tinnitus: Novel conceptualizations of tinnitus distress. Front. Neurol. 2014, 5, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haider, H.F.; Hoare, D.J.; Ribeiro, S.F.; Ribeiro, D.; Caria, H.; Trigueiros, N.; Borrego, L.M.; Szczepek, A.J.; Papoila, A.L.; Elarbed, A. Evidence for biological markers of tinnitus: A systematic review. Prog. Brain Res. 2021, 262, 345–398. [Google Scholar]
- Haider, H.F. Tinnitus, Biomarkers and Quality of Life in an Older Population; RUN: Lisboa, Portugal, 2019. [Google Scholar]
- Jackson, R.; Vijendren, A.; Phillips, J. Objective Measures of Tinnitus: A Systematic Review. Otol. Neurotol. 2019, 40, 154–163. [Google Scholar] [CrossRef]
- McFerran, D.J.; Stockdale, D.; Holme, R.; Large, C.H.; Baguley, D.M. Why is there no cure for tinnitus? Front. Neurosci. 2019, 13, 802. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.-W.; Kim, S.-S.; Park, D.-C.; Kim, S.-H.; Yeo, S.-G. Objective and measurable biomarkers in chronic subjective tinnitus. Int. J. Mol. Sci. 2021, 22, 6619. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Lee, H.-J.; An, S.-Y.; Sim, S.; Park, B.; Kim, S.W.; Lee, J.S.; Hong, S.K.; Choi, H.G. Analysis of the prevalence and associated risk factors of tinnitus in adults. PLoS ONE 2015, 10, e0127578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulec, J.L.; Pulec, M.B.; Ignacio, M.H. Progressive sensorineural hearing loss, subjective tinnitus and vertigo caused by elevated blood lipids. Ear. Nose. Throat, J. 1997, 76, 716–730. [Google Scholar] [CrossRef]
- Weber, C.; Arck, P.; Mazurek, B.; Klapp, B.F. Impact of a relaxation training on psychometric and immunologic parameters in tinnitus sufferers. J. Psychosom. Res. 2002, 52, 29–33. [Google Scholar] [CrossRef]
- Ulusoy, B.; Bozdemir, K.; Akyol, M.; Mise, H.I.; Kutluhan, A.; Korkmaz, M.H. Investigation of neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio and mean platelet volume in patients with tinnitus. J. Laryngol. Otol. 2018, 132, 129. [Google Scholar] [CrossRef]
- Yildiz, S.; Karaca, H.; Toros, S.Z. Mean platelet volume and neutrophil to lymphocyte ratio in patients with tinnitus: A case-control study. Braz. J. Otorhinolaryngol. 2020, 88, 155–160. [Google Scholar] [CrossRef]
- Ozbay, I.; Kahraman, C.; Balikci, H.H.; Kucur, C.; Kahraman, N.K.; Ozkaya, D.P.; Oghan, F. Neutrophil-to-lymphocyte ratio in patients with severe tinnitus: Prospective, controlled clinical study. J. Laryngol. Otol. 2015, 129, 544–547. [Google Scholar] [CrossRef]
- Bayram, A.; Yaşar, M.; Doğan, M.; Güneri, E.; Özcan, İ. Assessment of neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio and mean platelet volume in patients with tinnitus. ENT Updates 2015, 5, 129–132. [Google Scholar] [CrossRef]
- Yüksel, F.; Karatas, D. Can platelet indices be new biomarkers for subjective tinnitus? J. Craniofac. Surg. 2016, 27, e420–e424. [Google Scholar] [CrossRef]
- Coelho, C.B.; Tyler, R.; Hansen, M. Zinc as a possible treatment for tinnitus. Prog. Brain Res. 2007, 166, 279–285. [Google Scholar]
- Person, O.C.; Puga, M.E.; da Silva, E.M.; Torloni, M.R. Zinc supplementation for tinnitus. Cochrane Database Syst. Rev. 2016, 11, 1465–1858. [Google Scholar] [CrossRef]
- Aldwin, C.M. Stress, Coping, and Development: An Integrative Perspective; Guilford Press: New York, NY, USA, 2007. [Google Scholar]
- Newman, C.W.; Jacobson, G.P.; Spitzer, J.B. Development of the tinnitus handicap inventory. Arch. Otolaryngol. Neck Surg. 1996, 122, 143–148. [Google Scholar] [CrossRef] [PubMed]
- McCombe, A.; Baguley, D.; Coles, R.; McKenna, L.; McKinney, C.; Windle-Taylor, P. Guidelines for the Grading of Tinnitus Severity: The Results of a Working Group Commissioned by the British Association of Otolaryngologists, Head and Neck Surgeons, 1999. Clin. Otolaryngol. Allied Sci. 2001, 26, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Malouff, J.M.; Schutte, N.S.; Zucker, L.A. Tinnitus-related distress: A review of recent findings. Curr. Psychiatry Rep. 2011, 13, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Greimel, K.V.; Leibetseder, M.; Unterrainer, J.; Albegger, K. Can tinnitus be measured? Methods for assessment of tinnitus-specific disability and presentation of the tinnitus disability questionnaire. HNO 1999, 47, 196. [Google Scholar] [CrossRef] [PubMed]
- Hallam, R.S.; Jakes, S.C.; Hinchcliffe, R. Cognitive Variables in Tinnitus Annoyance. Br. J. Clin. Psychol. 1988, 27, 213–222. [Google Scholar] [CrossRef]
- Halford, J.B.; Anderson, S.D. Anxiety and Depression in Tinnitus Sufferers. J. Psychosom. Res. 1991, 35, 383–390. [Google Scholar] [CrossRef]
- Andersson, G.; Lyttkens, L.; Larsen, H.C. Distinguishing Levels of Tinnitus Distress. Clin. Otolaryngol. Allied Sci. 1999, 24, 404–410. [Google Scholar] [CrossRef]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A Global Measure of Perceived Stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef]
- Boecking, B.; von Sass, J.; Sieveking, A.; Schaefer, C.; Brueggemann, P.; Rose, M.; Mazurek, B. Tinnitus-Related Distress and Pain Perceptions in Patients with Chronic Tinnitus–Do Psychological Factors Constitute a Link? PLoS ONE 2020, 15, e0234807. [Google Scholar] [CrossRef]
- Boecking, B.; Rose, M.; Brueggemann, P.; Mazurek, B. Two Birds with One Stone.–Addressing Depressive Symptoms, Emotional Tension and Worry Improves Tinnitus-Related Distress and Affective Pain Perceptions in Patients with Chronic Tinnitus. PLoS ONE 2021, 16, e0246747. [Google Scholar] [CrossRef]
- Schmitt, C.; Patak, M.; Kröner-Herwig, B. Stress and the Onset of Sudden Hearing Loss. Int. Tinnitus J. 2000, 6, 41–49. [Google Scholar] [PubMed]
- Heinecke, K.; Weise, C.; Schwarz, K.; Rief, W. Physiological and Psychological Stress Reactivity in Chronic Tinnitus. J. Behav. Med. 2008, 31, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Budd, R.J.; Pugh, R. The relationship between locus of control, tinnitus severity, and emotional distress in a group of tinnitus sufferers. J. Psychosom. Res. 1995, 39, 1015–1018. [Google Scholar] [CrossRef]
- Van Munster, J.J.; van der Valk, W.H.; Stegeman, I.; Lieftink, A.F.; Smit, A.L. The relationship of tinnitus distress with personality traits: A systematic review. Front. Neurol. 2020, 11, 225. [Google Scholar] [CrossRef]
- Buscemi, V.; Chang, W.-J.; Liston, M.B.; McAuley, J.H.; Schabrun, S.M. The Role of Perceived Stress and Life Stressors in the Development of Chronic Musculoskeletal Pain Disorders: A Systematic Review. J. Pain 2019, 20, 1127–1139. [Google Scholar] [CrossRef]
- Møller, A.R. Similarities between Tinnitus and Pain. In Textbook of Tinnitus; Springer: New York, NY, USA, 2011; pp. 113–120. [Google Scholar]
- Tonndorf, J. The Analogy between Tinnitus and Pain: A Suggestion for a Physiological Basis of Chronic Tinnitus. Hear. Res. 1987, 28, 271–275. [Google Scholar] [CrossRef]
- Jastreboff, P.J.; Gray, W.C.; Gold, S.L. Neurophysiological Approach to Tinnitus Patients. Am. J. Otol. 1996, 17, 236–240. [Google Scholar]
- Scott, B.; Lindberg, P.; Melin, L.; Lyttkens, L. Predictors of Tinnitus Discomfort, Adaptation and Subjective Loudness. Br. J. Audiol. 1990, 24, 51–62. [Google Scholar] [CrossRef]
- Juster, R.-P.; McEwen, B.S.; Lupien, S.J. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci. Biobehav. Rev. 2010, 35, 2–16. [Google Scholar] [CrossRef]
- McEwen, B.S. Mood disorders and allostatic load. Biol. Psychiatry 2003, 54, 200–207. [Google Scholar] [CrossRef]
- Ng, F.; Berk, M.; Dean, O.; Bush, A.I. Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications. Int. J. Neuropsychopharmacol. 2008, 11, 851–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartz, D.; Chitnis, T.; Kaiser, U.B.; Rich-Edwards, J.W.; Rexrode, K.M.; Pennell, P.B.; Goldstein, J.M.; O’Neal, M.A.; LeBoff, M.; Behn, M. Clinical advances in sex-and gender-informed medicine to improve the health of all: A review. JAMA Intern. Med. 2020, 180, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Mauvais-Jarvis, F.; Merz, N.B.; Barnes, P.J.; Brinton, R.D.; Carrero, J.-J.; DeMeo, D.L.; De Vries, G.J.; Epperson, C.N.; Govindan, R.; Klein, S.L. Sex and Gender: Modifiers of Health, Disease, and Medicine. Lancet 2020, 396, 565–582. [Google Scholar] [CrossRef]
- Fliege, H.; Rose, M.; Arck, P.; Levenstein, S.; Klapp, B.F. Validierung Des “Perceived Stress Questionnaire” (PSQ) an Einer Deutschen Stichprobe. [Validation of the “Perceived Stress Questionnaire” (PSQ) in a German Sample]. Diagnostica 2001, 47, 142–152. [Google Scholar] [CrossRef]
- Fliege, H.; Rose, M.; Arck, P.; Walter, O.B.; Kocalevent, R.-D.; Weber, C.; Klapp, B.F. The Perceived Stress Questionnaire (PSQ) reconsidered: Validation and reference values from different clinical and healthy adult samples. Psychosom. Med. 2005, 67, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Goebel, G.; Hiller, W. Tinnitus-Fragebogen: (TF); Ein Instrument Zur Erfassung von Belastung Und Schweregrad Bei Tinnitus; Handanweisung; Hogrefe, Verlag für Psychologie: Göttingen, Germany, 1998. [Google Scholar]
- Hallam, R.S. Manual of the Tinnitus Questionnaire (TQ); Psychological Corporation: London, UK, 1996. [Google Scholar]
- Gerhards, F.; Brehmer, D.; Etzkorn, M. Dimensionalität Des Tinnitus-Fragebogens. Verhaltenstherapie 2004, 14, 265–271. [Google Scholar] [CrossRef]
- Jacquemin, L.; Mertens, G.; Van de Heyning, P.; Vanderveken, O.M.; Topsakal, V.; De Hertogh, W.; Michiels, S.; Van Rompaey, V.; Gilles, A. Sensitivity to Change and Convergent Validity of the Tinnitus Functional Index (TFI) and the Tinnitus Questionnaire (TQ): Clinical and Research Perspectives. Hear. Res. 2019, 382, 107796. [Google Scholar] [CrossRef]
- Biesinger, E.; Heiden, C.; Greimel, V.; Lendle, T.; Höing, R.; Albegger, K. Strategien in Der Ambulanten Behandlung Des Tinnitus. HNO 1998, 46, 157–169. [Google Scholar] [CrossRef]
- Hiller, W.; Goebel, G.; Rief, W. Reliability of self-rated tinnitus distress and association with psychological symptom patterns. Br. J. Clin. Psychol. 1994, 33, 231–239. [Google Scholar] [CrossRef]
- Armstrong, R.A. When to use the bonferroni correction. Ophthalmic Physiol. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef]
- Drezner, Z.; Drezner, T.D. A Remedy for the overzealous bonferroni technique for multiple statistical tests. Bull. Ecol. Soc. Am. 2016, 97, 91–98. [Google Scholar] [CrossRef]
- Jalali, M.M.; Azgomi, M.N. Metabolic Syndrome Components and Sudden Sensorineural Hearing Loss: A Case–Control Study. Eur. Arch. Otorhinolaryngol. 2020, 277, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ye, Q.; Pan, Y. Serum non-high-density lipoprotein cholesterol is associated with the risk of sudden sensorineural hearing loss. Medicine 2020, 99, e19175. [Google Scholar] [CrossRef] [PubMed]
- Doo, J.G.; Kim, D.; Kim, Y.; Yoo, M.C.; Kim, S.S.; Ryu, J.; Yeo, S.G. Biomarkers suggesting favorable prognostic outcomes in sudden sensorineural hearing loss. Int. J. Mol. Sci. 2020, 21, 7248. [Google Scholar] [CrossRef] [PubMed]
- Rudack, C.; Langer, C.; Stoll, W.; Rust, S.; Walter, M. Vascular risk factors in sudden hearing loss. Thromb. Haemost. 2006, 95, 454–461. [Google Scholar] [CrossRef]
- Forsyth, A.; Deane, F.P.; Williams, P. A Lifestyle intervention for primary care patients with depression and anxiety: A randomised controlled trial. Psychiatry Res. 2015, 230, 537–544. [Google Scholar] [CrossRef]
- Klatzkin, R.R.; Baldassaro, A.; Rashid, S. Physiological responses to acute stress and the drive to eat: The impact of perceived life stress. Appetite 2019, 133, 393–399. [Google Scholar] [CrossRef]
- Stubbs, B.; Vancampfort, D.; Firth, J.; Schuch, F.B.; Hallgren, M.; Smith, L.; Gardner, B.; Kahl, K.G.; Veronese, N.; Solmi, M. Relationship between sedentary behavior and depression: A mediation analysis of influential factors across the lifespan among 42,469 people in low-and middle-income countries. J. Affect. Disord. 2018, 229, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Teasdale, S.B.; Ward, P.B.; Rosenbaum, S.; Samaras, K.; Stubbs, B. Solving a Weighty Problem: Systematic review and meta-analysis of nutrition interventions in severe mental illness. Br. J. Psychiatry 2017, 210, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Epstein, L.H.; Leddy, J.J.; Temple, J.L.; Faith, M.S. Food Reinforcement and Eating: A Multilevel Analysis. Psychol. Bull. 2007, 133, 884–906. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Akbari, A.; Mobini, G.R.; Agah, S.; Morvaridzadeh, M.; Omidi, A.; Potter, E.; Fazelian, S.; Ardehali, S.H.; Daneshzad, E.; Dehghani, S. Coenzyme Q10 supplementation and oxidative stress parameters: A systematic review and meta-analysis of clinical trials. Eur. J. Clin. Pharmacol. 2020, 76, 1483–1499. [Google Scholar] [CrossRef] [PubMed]
- Ciorba, A.; Iannini, V.; Soliani, M.; Tosin, E.; Aimoni, C.; Mazzoli, M.; Pastore, A. Alfa-Lipoic Acid and Superoxide Dismutase for the Treatment of Subjective Chronic Idiopathic Tinnitus: A Pilot Study. Otorinolaringologia 2015, 65, 71–76. [Google Scholar]
- Gold, S.M.; Köhler-Forsberg, O.; Moss-Morris, R.; Mehnert, A.; Miranda, J.J.; Bullinger, M.; Steptoe, A.; Whooley, M.A.; Otte, C. Comorbid Depression in Medical Diseases. Nat. Rev. Dis. Primer 2020, 6, 69. [Google Scholar] [CrossRef]
- Baker, K.; Staecker, H. Low dose oxidative stress induces mitochondrial damage in hair cells. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2012, 295, 1868–1876. [Google Scholar] [CrossRef]
- Ciorba, A.; Bianchini, C.; Pastore, A.; Mazzoli, M. Pathogenesis of tinnitus: Any role for oxidative stress? J. Int. Adv. Otol. 2013, 9, 249. [Google Scholar]
- Ernster, L.; Dallner, G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta BBA Mol. Basis Dis. 1995, 1271, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Nordberg, J.; Arnér, E.S. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 2001, 31, 1287–1312. [Google Scholar] [CrossRef]
- Flatow, J.; Buckley, P.; Miller, B.J. Meta-analysis of oxidative stress in schizophrenia. Biol. Psychiatry 2013, 74, 400–409. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.K.; Keshavan, M.S. Antioxidants, redox signaling, and pathophysiology in schizophrenia: An integrative view. Antioxid. Redox Signal. 2011, 15, 2011–2035. [Google Scholar] [CrossRef]
- Chung, C.P.; Schmidt, D.; Stein, C.M.; Morrow, J.D.; Salomon, R.M. Increased oxidative stress in patients with depression and its relationship to treatment. Psychiatry Res. 2013, 206, 213–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herken, H.; Gurel, A.; Selek, S.; Armutcu, F.; Ozen, M.E.; Bulut, M.; Kap, O.; Yumru, M.; Savas, H.A.; Akyol, O. Adenosine deaminase, nitric oxide, superoxide-dismutase, and xanthine oxidase in patients with major depression: Impact of antidepressant treatment. Arch. Med. Res. 2007, 38, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Galecki, P.; Chang, Y.S.; Berk, M. A Review on the Oxidative and Nitrosative Stress (O&NS) pathways in major depression and their possible contribution to the (neuro) degenerative processes in that illness. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 676–692. [Google Scholar] [PubMed]
- Borovac Štefanović, L.; Kalinić, D.; Mimica, N.; Beer Ljubić, B.; Aladrović, J.; Mandelsamen Perica, M.; Ćurić, M.; Grošić, P.F.; Delaš, I. Oxidative status and the severity of clinical symptoms in patients with post-traumatic stress disorder. Ann. Clin. Biochem. 2015, 52, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Coughlin, J.M.; Ishizuka, K.; Kano, S.I.; Edwards, J.A.; Seifuddin, F.T.; Shimano, M.A.; Daley, E.L.; Zandi, P.P.; Leweke, F.M.; Cascella, N.G. Marked Reduction of Soluble Superoxide Dismutase-1 (SOD1) in cerebrospinal fluid of patients with recent-onset schizophrenia. Mol. Psychiatry 2013, 18, 10–11. [Google Scholar] [CrossRef] [Green Version]
- Bitanihirwe, B.K.; Woo, T.-U.W. Oxidative stress in schizophrenia: An integrated approach. Neurosci. Biobehav. Rev. 2011, 35, 878–893. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, R.; Ferns, G.A.; Sahebkar, A.; Mirshekar, M.A.; Jalali, M. Zinc supplementation is associated with a reduction in serum markers of inflammation and oxidative stress in adults: A systematic review and meta-analysis of randomized controlled trials. Cytokine 2021, 138, 155396. [Google Scholar] [CrossRef]
- Yosaee, S.; Clark, C.C.; Keshtkaran, Z.; Ashourpour, M.; Keshani, P.; Soltani, S. Zinc in depression: From development to treatment: A comparative/dose response meta-analysis of observational studies and randomized controlled trials. Gen. Hosp. Psychiatry 2020, 74, 110–117. [Google Scholar] [CrossRef]
- Daiber, A.; Kröller-Schön, S.; Oelze, M.; Hahad, O.; Li, H.; Schulz, R.; Steven, S.; Münzel, T. Oxidative stress and inflammation contribute to traffic noise-induced vascular and cerebral dysfunction via uncoupling of nitric oxide synthases. Redox Biol. 2020, 34, 101506. [Google Scholar] [CrossRef]
- Kreuzer, P.M.; Vielsmeier, V.; Langguth, B. Chronic tinnitus: An interdisciplinary challenge. Dtsch. Ärztebl. Int. 2013, 110, 278. [Google Scholar]
- Langguth, B.; Kreuzer, P.M.; Kleinjung, T.; De Ridder, D. Tinnitus: Causes and clinical management. Lancet Neurol. 2013, 12, 920–930. [Google Scholar] [CrossRef]
- Nam, E.-C. Is it necessary to differentiate tinnitus from auditory hallucination in schizophrenic patients? J. Laryngol. Otol. 2005, 119, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Sperling, W.; Mueller, H.; Kornhuber, J.; Biermann, T. Is tinnitus an acoasm? Med. Hypotheses 2011, 77, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626. [Google Scholar] [CrossRef]
- Maes, M.; Van Der Planken, M.; Van Gastel, A.; Bruyland, K.; Van Hunsel, F.; Neels, H.; Hendriks, D.; Wauters, A.; Demedts, P.; Janca, A. Influence of academic examination stress on hematological measurements in subjectively healthy volunteers. Psychiatry Res. 1998, 80, 201–212. [Google Scholar] [CrossRef]
- Aschbacher, K.; O’Donovan, A.; Wolkowitz, O.M.; Dhabhar, F.S.; Su, Y.; Epel, E. Good stress, bad stress and oxidative stress: Insights from anticipatory cortisol reactivity. Psychoneuroendocrinology 2013, 38, 1698–1708. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves Mota, M.P.; Santos, Z.; Soares, J.; Pereira, A.; Fonseca, S.; Peixoto, F.; Gaivão, I.; Oliveira, M. Oxidative stress function in women over 40 years of age, considering their lifestyle. Front. Endocrinol. 2017, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Jern, C.; Wadenvik, H.; Mark, H.; Hallgren, J.; Jern, S. Haematological changes during acute mental stress. Br. J. Haematol. 1989, 71, 153–156. [Google Scholar] [CrossRef]
- Segerstrom, S.C.; Miller, G.E. Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychol. Bull. 2004, 130, 601. [Google Scholar] [CrossRef] [Green Version]
- Salihoğlu, M.; Kurt, O.; Altundağ, A.; Çayönü, M. The Biochemical and Hematological Parameters of Patients with Acoustic Trauma Caused by Gunshot Noise. Praxis of ORL. 2014, 2, 18–22. [Google Scholar] [CrossRef] [Green Version]
- Gouin, J.-P.; Glaser, R.; Malarkey, W.B.; Beversdorf, D.; Kiecolt-Glaser, J. Chronic stress, daily stressors, and circulating inflammatory markers. Health Psychol. 2012, 31, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsland, A.L.; Walsh, C.; Lockwood, K.; John-Henderson, N.A. The effects of acute psychological stress on circulating and stimulated inflammatory markers: A systematic review and meta-analysis. Brain. Behav. Immun. 2017, 64, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Mattiasson, I.; Lindgärde, F. The effect of psychosocial stress and risk factors for ischaemic heart disease on the plasma fibrinogen concentration. J. Intern. Med. 1993, 234, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Bekhbat, M.; Neigh, G.N. Sex differences in the neuro-immune consequences of stress: Focus on depression and anxiety. Brain. Behav. Immun. 2018, 67, 1–12. [Google Scholar] [CrossRef]
- Tai, A.M.; Albuquerque, A.; Carmona, N.E.; Subramanieapillai, M.; Cha, D.S.; Sheko, M.; Lee, Y.; Mansur, R.; McIntyre, R.S. Machine learning and big data: Implications for disease modeling and therapeutic discovery in psychiatry. Artif. Intell. Med. 2019, 99, 101704. [Google Scholar] [CrossRef]
- Fava, G.A.; McEwen, B.S.; Guidi, J.; Gostoli, S.; Offidani, E.; Sonino, N. Clinical characterization of allostatic overload. Psychoneuroendocrinology 2019, 108, 94–101. [Google Scholar] [CrossRef]
- Guidi, J.; Lucente, M.; Sonino, N.; Fava, G.A. Allostatic load and its impact on health: A systematic review. Psychother. Psychosom. 2020, 90, 11–27. [Google Scholar] [CrossRef]
- McEwen, B.S. Allostasis and allostatic load: Implications for neuropsychopharmacology. Neuropsychopharmacology 2000, 22, 108–124. [Google Scholar] [CrossRef]
n | % | |
---|---|---|
Nationality | ||
German | 158 | 79.0 |
Other | 11 | 5.5 |
Education | ||
Completed junior apprenticeship | 44 | 22.0 |
Completed senior apprenticeship | 28 | 14.0 |
University degree | 90 | 45.0 |
Employment ‘yes’ | 119 | 59.5 |
Relationship status | ||
Single | 31 | 15.5 |
Married | 114 | 57.0 |
Divorced | 16 | 8.0 |
Widowed | 7 | 3.5 |
Duration of tinnitus | ||
<0.5 year | 21 | 10.5 |
0.5–1 year | 25 | 12.5 |
1–2 years | 12 | 6.0 |
2–5 years | 31 | 15.5 |
>5 years | 66 | 33.0 |
Past psychotherapy ‘yes’ | 86 | 43.0 |
Total (n = 200) | Women (n = 102) | Men (n = 98) | ||||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
PSQ total | 50.27 | 13.19 | 51.44 | 12.16 | 49.07 | 14.16 |
Worries | 13.62 | 9.32 | 13.79 | 10.04 | 13.44 | 8.56 |
Tension | 19.14 | 16.50 | 19.99 | 18.03 | 18.26 | 14.79 |
Joy * | 16.80 | 15.67 | 15.89 | 13.31 | 17.74 | 17.83 |
Demands | 17.08 | 14.55 | 17.46 | 15.33 | 16.70 | 13.76 |
TQ total | 43.80 | 19.01 | 45.29 | 18.27 | 42.26 | 19.72 |
Total | Women | Men | |||||
---|---|---|---|---|---|---|---|
Unit | Mean | SD | Mean | SD | Mean | SD | |
§ Weight | kg | 78.86 | 15.71 | 78.59 | 16.04 | 79.12 | 15.50 |
§ BMI | kg/m2 | 26.32 | 4.44 | 25.94 | 4.70 | 26.70 | 4.17 |
Frequency | % (total) | Frequency | % (women) | Frequency | % (men) | ||
† Current smoking | ‘yes‘ | 59 | 45.4 | 33 | 50.8 | 26 | 40.0 |
†§ Regular drinking | ‘yes‘ | 29 | 22.3 | 14 | 21.5 | 15 | 23.1 |
Unit | Mean | SD | Reference Values | Frequency Decreased | Frequency Increased | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Total | (% Total) | Women | (% Women) | Men | (% Men) | Total | (% Total) | Women | (% Women) | Men | (% Men) | ||||
Total cholesterol | mg/dL | 212.31 | 38.24 | <200 | <200 | - | - | - | - | - | - | 126 | (63.0) | 66 | (64.7) | 60 | (61.2) |
Triglycerides | mg/dL | 124.25 | 62.24 | ≤200 | ≤200 | - | - | - | - | - | - | 23 | (11.5) | 7 | (6.9) | 16 | (16.3) |
HDL-c | mg/dL | 63.23 | 18.34 | ≥35 | ≥45 | 6 | (3) | 3 | (2.9) | 3 | (3.1) | - | - | - | - | - | - |
Non-HDL-c | mg/dL | 149.34 | 39.75 | <150 | <150 | - | - | - | - | - | - | 93 | (46.5) | 44 | (43.1) | 49 | (50.0) |
LDL-c | mg/dL | 137.10 | 34.56 | <130 | <130 | - | - | - | - | - | - | 115 | (57.5) | 57 | (55.9) | 58 | (59.2) |
Lipoprotein_a | nmol/L | 45.83 | 65.34 | <72.0 | <72.0 | - | - | - | - | - | - | 42 | (21.0) | 28 | (27.5) | 14 | (14.3) |
Unit | Mean | SD | Reference Values | Frequency Decreased | Frequency Increased | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Total | % Total | Women | % Women | Men | % Men | Total | % Total | Women | % Women | Men | % Men | ||||
Leukocytes | nL | 6.58 | 1.58 | 3.9–10.5 | 3.9–10.5 | 6 | (3) | 3 | (2.9) | 3 | (3.1) | 2 | (1.0) | - | - | 2 | (2.0) |
Lymphocytes | absolute/nL | 1.96 | 0.56 | 1.10–4.50 | 1.10–4.50 | 8 | (4) | 5 | (4.9) | 3 | (3.1) | 2 | (1.0) | - | - | - | - |
Lymphocytes | % | 30.43 | 7.76 | 20.0–44.0 | 20.0–44.0 | 17 | (8.5) | 9 | (8.8) | 8 | (8.2) | 12 | (6.0) | 9 | (8.8) | 3 | (3.1) |
Monocytes | absolute/nL | 0.52 | 0.16 | 0.10–0.90 | 0.10–0.90 | - | - | - | - | - | - | 6 | (3.0) | 1 | (1.0) | 5 | (5.1) |
Monocytes | % | 7.94 | 1.92 | 2.0–9.5 | 2.0–9.5 | - | - | - | - | - | - | 35 | (17.5) | 11 | (10.8) | 24 | (24.5) |
Neutrophils | absolute/nL | 3.87 | 1.20 | 1.50–7.70 | 1.50–7.70 | 1 | (0.5) | 1 | (1.0) | - | - | - | - | - | - | - | - |
Neutrophils | % | 58.35 | 8.74 | 42.0–77.0 | 42.0–77.0 | 9 | (4.5) | 6 | (5.9) | 3 | (3.1) | 5 | (2.5) | 4 | (3.9) | 1 | (1.0) |
NLR | cells/μL | 2.10 | 0.86 | 1–3 * | 1–3 * | - | - | - | - | - | - | - | - | - | - | - | - |
Immature_granulocytes | absolute/nL | 0.02 | 0.02 | <0.050 | <0.050 | - | - | - | - | - | - | 11 | (5.5) | 1 | (1.0) | 10 | (10.2) |
Immature_granulocytes | % | 0.36 | 0.20 | 0.0–1.0 | 0.0–1.0 | - | - | - | - | - | - | 4 | (2.0) | - | - | 4 | (4.1) |
Eosinophils | absolute/nL | 0.14 | 0.10 | 0.02–0.50 | 0.02–0.50 | 3 | (1.5) | 1 | (1.0) | 2 | (2.0) | 1 | (0.5) | - | - | 1 | (1.0) |
Eosinophils | % | 2.07 | 1.32 | 0.5–5.5 | 0.5–5.5 | 11 | (5.5) | 8 | (7.8) | 3 | (3.1) | 6 | (3.0) | 3 | (2.9) | 3 | (3.1) |
Basophils | absolute/nL | 0.05 | 0.02 | 0.00–0.20 | 0.00–0.20 | - | - | - | - | - | - | - | - | - | - | - | - |
Basophils | % | 0.74 | 0.32 | 0.0–1.8 | 0.0–1.8 | - | - | - | - | - | - | - | - | - | - | - | - |
TNF-α | pg/mL | 0.32 | 0.05 | <8.1 | <8.1 | - | - | - | - | - | - | - | - | - | - | - | - |
IL6 | ng/L | 1.83 | 1.12 | ≤7.0 | ≤7.0 | - | - | - | - | - | - | 3 | (1.5) | 1 | (1.0) | 2 | (2.0) |
CRP | mg/L | 1.61 | 1.72 | <5.0 | <5.0 | - | - | - | - | - | - | 10 | (5.0) | 7 | (6.9) | 3 | (3.1) |
Fibrinogen | g/L | 2.72 | 0.57 | 1.60–4.00 | 1.60–4.00 | 4 | (2) | 4 | (3.9) | - | - | 3 | (1.5) | 2 | (2.0) | 1 | (1.0) |
Ferritin | qg/L | 128.29 | 93.09 | 30.0–400.0 | 13.0–150.0 | 4 | (2.0) | 2 | (2.0) | 2 | (2.0) | 19 | (9.5) | 14 | (13.7) | 5 | (5.1) |
Thrombocytes | nL | 244.33 | 54.29 | 150–370 | 150–370 | 1 | (0.5) | - | - | 1 | (1.0) | 5 | (2.5) | 4 | (3.9) | 1 | (1.0) |
MPV | fl | 10.68 | 1.00 | 7.0–12.0 | 7.0–12.0 | - | - | - | - | - | - | 19 | (9.5) | 7 | (6.9) | 12 | (12.2) |
Hemoglobin | g/dL | 14.40 | 1.24 | 13.5–17.0 | 12.0–15.6 | 5 | (2.5) | 2 | (2.0) | 3 | (3.1) | 5 | (2.5) | - | - | 5 | (5.1) |
Hematocrit | l/L | 0.43 | 0.04 | 0.395–0.505 | 0.355–0.455 | 6 | (3.0) | 3 | (2.9) | 3 | (3.1) | 6 | (3.0) | 3 | (2.9) | 3 | (3.1) |
Erythrocytes | pl | 4.82 | 0.43 | 4.3–5.8 | 3.9–5.2 | 1 | (0.5) | - | - | 1 | (1.0) | 5 | (2.5) | - | - | 5 | (5.1) |
MCV | fl | 88.33 | 3.60 | 80.0–99.0 | 80.0–99.0 | 2 | (1.0) | 1 | (1.0) | 1 | (1.0) | - | - | - | - | - | - |
RDW_CV | % | 12.79 | 0.58 | 11.5–15.0 | 11.5–15.0 | - | - | - | - | - | - | - | - | - | - | - | - |
MCH | pg | 29.89 | 1.27 | 27.0–33.5 | 27.0–33.5 | 3 | (1.5) | 2 | (2.0) | 1 | (1.0) | - | - | - | - | - | - |
MCHC | g/dL | 33.83 | 0.94 | 31.5–36.0 | 31.5–36.0 | 5 | (2.5) | 4 | (3.9) | 1 | (1.0) | 3 | (1.5) | 1 | (1.0) | 2 | (2.0) |
Superoxide–Dismutase 1 | ng/mL | 63.89 | 4.53 | 77–531 | 77–531 | 190 | (95.0) | 100 | (98.0) | 90 | (91.8) | - | - | - | - | - | - |
Superoxide–Dismutase 2 | ng/mL | 58.93 | 15.52 | >40 | >40 | 16 | (8.0) | 16 | (15.7) | - | - | - | - | - | - | - | - |
Lipid_Peroxidase | μmol/L | 64.10 | 79.66 | <200 | <200 | - | - | - | - | - | - | 11 | (5.5) | 10 | (9.8) | 1 | (1.0) |
Q10 (lipid-corrected) | μmol/mmol | 0.23 | 0.07 | >0.2 | >0.2 | 77 | (38.5) | 44 | (43.1) | 33 | (33.7) | - | - | - | - | - | - |
Albumin | g/L | 46.36 | 2.50 | 35.0–52.0 | 35.0–52.0 | - | - | - | - | - | - | 3 | (1.5) | - | - | 3 | (3.1) |
GOT | U/L | 24.84 | 6.46 | <50 | <35 | - | - | - | - | - | - | 4 | (2.0) | 2 | (2.0) | 2 | (2.0) |
GPT | U/L | 27.92 | 12.22 | <41 | <31 | - | - | - | - | - | - | 38 | (19.0) | 15 | (14.7) | 23 | (23.5) |
Gamma_GT | U/L | 24.64 | 13.29 | 8–61 | 5–36 | - | - | - | - | - | - | 12 | (6.0) | 9 | (8.8) | 3 | (3.1) |
GFR | mL/min | 84.43 | 8.46 | >90 | >90 | 101 | (50.5) | 51 | (50.0) | 50 | (51.0) | - | - | - | - | - | - |
Uric acid | mg/dL | 4.93 | 1.23 | 3.6–8.2 | 2.3–6.1 | 1 | (0.5) | - | - | 1 | (1.0) | 5 | (2.5) | 3 | (2.9) | 2 | (2.0) |
Creatinine | mg/dL | 0.85 | 0.15 | 0.70–1.20 | 0.50–0.90 | 1 | (0.5) | 1 | (1.0) | - | - | 1 | (0.5) | 1 | (1.0) | - | - |
Calcium | mmol/L | 2.34 | 0.09 | 2.15–2.50 | 2.15–2.50 | 5 | (2.5) | 3 | (2.9) | 2 | (2.0) | - | - | - | - | - | - |
Magnesium | mmol/L | 0.85 | 0.05 | 0.66–1.07 | 0.66–1.07 | - | - | - | - | - | - | - | - | - | - | - | - |
Zinc | qmol/L | 12.63 | 1.77 | 12.0–26.0 | 9.0–22.0 | 31 | (15.5) | 1 | (1.0) | 30 | (30.6) | - | - | - | - | - | - |
Selenium | qmol/L | 1.00 | 0.21 | 0.60–1.50 | 0.60–1.50 | 4 | (2.0) | 2 | (2.0) | 2 | (2.0) | 4 | (2.0) | 3 | (2.9) | 1 | (1.0) |
Vitamin D3 | nmol/L | 65.30 | 21.02 | 50.0–150.0 | 50.0–150.0 | 46 | (23.0) | 24 | (23.5) | 22 | (22.4) | - | - | - | - | - | - |
Total Sample | PSQ_Total | Worries | Tension | Joy | Demands | ||||||
β | t (3.194) | β | t (3.194) | β | t (3.194) | β | t (3.194) | β | t (3.194) | ||
Vascular risk markers | Lipoprotein_a | 0.14 | 1.99 * | ||||||||
Inflammatory markers | CRP | −0.19 | −2.12 * | −0.15 | −2.10 * | ||||||
Fibrinogen | −0.16 | −2.36 * | |||||||||
Ferritin | −0.19 | −2.11 * | |||||||||
MCV | 0.29 | 4.27 *** | 0.25 | 3.58 *** | 0.25 | 3.40 ** | 0.27 | 3.96 *** | |||
MCHC | −0.23 | −3.27 ** | −0.20 | 2.84 ** | −0.20 | −2.59 * | −0.21 | −2.96 ** | |||
Oxidative stress markers | Ubiquinone(Q10)_lipid-corrected | −0.15 | −2.08 * | −0.22 | −3.14 ** | −0.22 | −3.09 ** | ||||
Selenium | 0.17 | 2.29 * | |||||||||
Magnesium | 0.15 | 2.10 * | |||||||||
Zinc | 0.27 | 3.78 *** | 0.25 | 3.52 ** | 0.22 | 2.85 ** | 0.24 | 3.40 ** | |||
Cellular immune reponse | Basophils (abs) | 0.17 | 2.35 * | ||||||||
Basophils (%) | 0.16 | 2.25 * | 0.18 | 2.52 * | |||||||
Female Patients | PSQ_total | Worries | Tension | Joy | Demands | ||||||
β | t (3.98) | β | t (3.98) | β | t (3.98) | β | t (3.98) | β | t (3.98) | ||
Vascular risk markers | Lipoprotein_a | 0.21 | 1.98 * | ||||||||
Inflammatory markers | Ferritin | 0.25 | 2.50 * | 0.27 | 2.86 ** | 0.21 | 2.18 * | 0.22 | 2.28 * | ||
MCV | 0.26 | 2.06 * | 0.36 | 3.64 *** | 0.29 | 3.01 ** | 0.21 | 2.05 * | 0.34 | 3.57 ** | |
MCHC | −0.24 | −2.30 * | −0.21 | −2.12 * | |||||||
Hematocrit | 0.22 | 2.19 * | 0.28 | 2.91 ** | 0.29 | 2.95 ** | 0.30 | 3.20 ** | |||
Hemoglobin | 0.24 | 2.42 * | 0.24 | 2.43 * | 0.24 | 2.44 * | |||||
RDW_CV | −0.21 | −2.13 * | −0.20 | −1.99 * | |||||||
Oxidative stress markers | Selenium | 0.21 | 2.12 * | ||||||||
Magnesium | 0.22 | 2.23 * | 0.20 | 2.07 * | |||||||
Zinc | 0.34 | 3.35 ** | 0.32 | 3.23 ** | 0.22 | 2.17 * | 0.33 | 3.39 ** | |||
SOD-2 | 0.22 | 2.16 * | 0.21 | 2.19 * | 0.20 | 2.07 * | |||||
Male Patients | PSQ_Total | Worries | Tension | Joy | Demands | ||||||
β | t (3.94) | β | t (3.94) | β | t (3.94) | β | t (3.94) | β | t (3.94) | ||
Inflammatory markers | CRP | −0.31 | −2.35 * | ||||||||
Fibrinogen | −0.34 | −2.63 * | −0.28 | −2.84 ** | −0.26 | −2.60 * | |||||
Ferritin | −0.26 | −2.54 * | |||||||||
MCV | 0.23 | −2.32 * | 0.29 | 2.69 ** | |||||||
MCHC | −0.24 | 2.34 * | −0.23 | −2.32 * | −0.24 | −2.16 * | |||||
IL-6 | 0.31 | 2.87 ** | |||||||||
Uric acid | −0.24 | −2.33 * | −0.28 | 2.74 ** | |||||||
Oxidative stress markers | Ubiquinone(Q10)_lipid-corrected | −0.24 | −2.43 * | −0.24 | −2.71 ** | ||||||
Selenium | 0.30 | 2.23 * | |||||||||
Immunological markers | Basophils (abs) | 0.22 | 2.13 * | 0.20 | 1.98 * | ||||||
Basophils (%) | 0.38 | 2.91 ** | 0.35 | 3.53 ** | 0.27 | 2.77 ** | 0.27 | 2.68 ** | |||
Leukocytes | −0.21 | −2.03 * | |||||||||
Neutrophils (abs) | −0.24 | −2.32 * | |||||||||
Neutrophils (%) | −0.22 | −2.17 * | |||||||||
Liver function | GPT | −0.28 | −2.11 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boecking, B.; Klasing, S.; Walter, M.; Brueggemann, P.; Nyamaa, A.; Rose, M.; Mazurek, B. Vascular–Metabolic Risk Factors and Psychological Stress in Patients with Chronic Tinnitus. Nutrients 2022, 14, 2256. https://doi.org/10.3390/nu14112256
Boecking B, Klasing S, Walter M, Brueggemann P, Nyamaa A, Rose M, Mazurek B. Vascular–Metabolic Risk Factors and Psychological Stress in Patients with Chronic Tinnitus. Nutrients. 2022; 14(11):2256. https://doi.org/10.3390/nu14112256
Chicago/Turabian StyleBoecking, Benjamin, Sven Klasing, Michael Walter, Petra Brueggemann, Amarjargal Nyamaa, Matthias Rose, and Birgit Mazurek. 2022. "Vascular–Metabolic Risk Factors and Psychological Stress in Patients with Chronic Tinnitus" Nutrients 14, no. 11: 2256. https://doi.org/10.3390/nu14112256
APA StyleBoecking, B., Klasing, S., Walter, M., Brueggemann, P., Nyamaa, A., Rose, M., & Mazurek, B. (2022). Vascular–Metabolic Risk Factors and Psychological Stress in Patients with Chronic Tinnitus. Nutrients, 14(11), 2256. https://doi.org/10.3390/nu14112256