Effects of Dietary Protein Source and Quantity on Bone Morphology and Body Composition Following a High-Protein Weight-Loss Diet in a Rat Model for Postmenopausal Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Weight Loss Dietary Intervention
2.3. Diet Formulation
2.3.1. Tissue Collection
2.3.2. Body Composition
2.3.3. Dual-Energy X-ray Absorptiometry (DXA)
2.3.4. Micro-Computed Tomography (µCT)
2.3.5. Mechanical Testing
2.3.6. Histological Processing
2.3.7. Statistical Analysis
3. Results
3.1. Body Weight and Composition
3.2. Areal BMD and BMC of Femur and Lumbar Spine
3.3. Microarchitecture of Femur and 5th Lumbar Vertebrae
3.4. Femoral Strength and Histomorphometry
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Flegal, K.M.; Carroll, M.D.; Ogden, C.L.; Curtin, L.R. Prevalence and Trends in Obesity Among US Adults, 1999–2008. JAMA-J. Am. Med. Assoc. 2010, 303, 235–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Obesity and Overweight. Available online: http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed on 13 January 2017).
- Lavie, C.J.; Milani, R.V.; Ventura, H.O. Obesity and Cardiovascular Disease Risk Factor, Paradox, and Impact of Weight Loss. J. Am. Coll. Cardiol. 2009, 53, 1925–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, C.S.; Tjonn, S.L.; Swan, P.D. High-protein, low-fat diets are effective for weight loss and favorably alter biomarkers in healthy adults. J. Nutr. 2004, 134, 586–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerterp-Plantenga, M.S.; Rolland, V.; Wilson, S.A.J.; Westerterp, K.R. Satiety related to 24 h diet-induced thermogenesis during high protein carbohydrate vs high fat diets measured in a respiration chamber. Eur. J. Clin. Nutr. 1999, 53, 495–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Layman, D.K.; Boileau, R.A.; Erickson, D.J.; Painter, J.E.; Shiue, H.; Sather, C.; Christou, D.D. A reduced ratio of dietary carbohydrate to protein improves body composition and blood lipid profiles during weight loss in adult women. J. Nutr. 2003, 133, 411–417. [Google Scholar] [CrossRef]
- Leidy, H.J.; Carnell, N.S.; Mattes, R.D.; Campbell, W.W. Higher protein intake preserves lean mass and satiety with weight loss in pre-obese and obese women. Obesity 2007, 15, 421–429. [Google Scholar] [CrossRef]
- Hudson, J.L.; Wang, Y.; Bergia Iii, R.E.; Campbell, W.W. Protein Intake Greater than the RDA Differentially Influences Whole-Body Lean Mass Responses to Purposeful Catabolic and Anabolic Stressors: A Systematic Review and Meta-analysis. Adv. Nutr. 2020, 11, 548–558. [Google Scholar] [CrossRef]
- Villareal, D.T.; Apovian, C.M.; Kushner, R.F.; Klein, S. Obesity in older adults: Technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society. Am. J. Clin. Nutr. 2005, 82, 923–934. [Google Scholar] [CrossRef]
- Reid, I.R. Relationships among body mass, its components, and bone. Bone 2002, 31, 547–555. [Google Scholar] [CrossRef]
- Jensen, L.B.; Quaade, F.; Sorensen, O.H. Bone Loss Accompanying Voluntary Weight-Loss in Obese Humans. J. Bone Miner. Res. 1994, 9, 459–463. [Google Scholar] [CrossRef]
- Pritchard, J.E.; Nowson, C.A.; Wark, J.D. Bone loss accompanying diet-induced or exercise-induced weight loss: A randomised controlled study. Int. J. Obes. 1996, 20, 513–520. [Google Scholar]
- Ricci, T.A.; Chowdhury, H.A.; Heymsfield, S.B.; Stahl, T.; Pierson, R.N., Jr.; Shapses, S.A. Calcium supplementation suppresses bone turnover during weight reduction in postmenopausal women. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 1998, 13, 1045–1050. [Google Scholar] [CrossRef] [PubMed]
- Compston, J.E.; Laskey, M.A.; Croucher, P.I.; Coxon, A.; Kreitzman, S. Effect of diet-induced weight loss on total body bone mass. Clin. Sci. 1992, 82, 429–432. [Google Scholar] [CrossRef] [Green Version]
- Zibellini, J.; Seimon, R.V.; Lee, C.M.Y.; Gibson, A.A.; Hsu, M.S.H.; Shapses, S.A.; Nguyen, T.V.; Sainsbury, A. Does Diet-Induced Weight Loss Lead to Bone Loss in Overweight or Obese Adults? A Systematic Review and Meta-Analysis of Clinical Trials. J. Bone Miner. Res 2015, 30, 2168–2178. [Google Scholar] [CrossRef] [PubMed]
- Fenton, T.R.; Lyon, A.W.; Eliasziw, M.; Tough, S.C.; Hanley, D.A. Meta-analysis of the effect of the acid-ash hypothesis of osteoporosis on calcium balance. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2009, 24, 1835–1840. [Google Scholar] [CrossRef]
- Barzel, U.S.; Massey, L.K. Excess dietary protein can adversely affect bone. J. Nutr. 1998, 128, 1051–1053. [Google Scholar] [CrossRef] [Green Version]
- New, S.A. Intake of fruit and vegetables: Implications for bone health. Proc. Nutr. Soc. 2003, 62, 889–899. [Google Scholar] [CrossRef]
- Pannemans, D.L.E.; Schaafsma, G.; Westerterp, K.R. Calcium excretion, apparent calcium absorption and calcium balance in young and elderly subjects: Influence of protein intake. Br. J. Nutr. 1997, 77, 721–729. [Google Scholar] [CrossRef] [Green Version]
- Trilok, G.; Draper, H.H. Sources of Protein-Induced Endogenous Acid Production and Excretion by Human Adults. Calcif. Tissue Int. 1989, 44, 335–338. [Google Scholar] [CrossRef]
- Wagner, E.A.; Falciglia, G.A.; Amlal, H.; Levin, L.; Soleimani, M. Short-term exposure to a high-protein diet differentially affects glomerular filtration rate but not acid-base balance in older compared to younger adults. J. Am. Diet. Assoc. 2007, 107, 1404–1408. [Google Scholar] [CrossRef]
- Reddy, S.T.; Wang, C.Y.; Sakhaee, K.; Brinkley, L.; Pak, C.Y. Effect of low-carbohydrate high-protein diets on acid-base balance, stone-forming propensity, and calcium metabolism. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2002, 40, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Kerstetter, J.E.; O’Brien, K.O.; Caseria, D.M.; Wall, D.E.; Insogna, K.L. The impact of dietary protein on calcium absorption and kinetic measures of bone turnover in women. J. Clin. Endocrinol. Metabol. 2005, 90, 26–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerstetter, J.E.; O’Brien, K.O.; Insogna, K.L. Dietary protein affects intestinal calcium absorption. Am. J. Clin. Nutr. 1998, 68, 859–865. [Google Scholar] [CrossRef]
- Civitelli, R.; Villareal, D.T.; Agnusdei, D.; Nardi, P.; Avioli, L.V.; Gennari, C. Dietary L-lysine and calcium metabolism in humans. Nutrition 1992, 8, 400–405. [Google Scholar] [PubMed]
- Bihuniak, J.D.; Simpson, C.A.; Sullivan, R.R.; Caseria, D.M.; Kerstetter, J.E.; Insogna, K.L. Dietary Protein-Induced Increases in Urinary Calcium Are Accompanied by Similar Increases in Urinary Nitrogen and Urinary Urea: A Controlled Clinical Trial. J. Acad. Nutr. Diet. 2013, 113, 447–451. [Google Scholar] [CrossRef] [Green Version]
- Jesudason, D.; Nordin, B.C.; Keogh, J.; Clifton, P. Comparison of 2 weight-loss diets of different protein content on bone health: A randomized trial. Am. J. Clin. Nutr. 2013, 98, 1343–1352. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.J.; Johnson, L.K.; Hunt, J.R. A Diet High in Meat Protein and Potential Renal Acid Load Increases Fractional Calcium Absorption and Urinary Calcium Excretion without Affecting Markers of Bone Resorption or Formation in Postmenopausal Women. J. Nutr. 2011, 141, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Sukumar, D.; Ambia-Sobhan, H.; Zurfluh, R.; Schlussel, Y.; Stahl, T.J.; Gordon, C.L.; Shapses, S.A. Areal and Volumetric Bone Mineral Density and Geometry at Two Levels of Protein Intake During Caloric Restriction: A Randomized, Controlled Trial. J. Bone Miner. Res. 2011, 26, 1339–1348. [Google Scholar] [CrossRef] [Green Version]
- Clemmons, D.R. Role of IGF-I in skeletal muscle mass maintenance. Trends Endocrinol. Metabol. 2009, 20, 349–356. [Google Scholar] [CrossRef]
- Bowen, J.; Noakes, M.; Clifton, P. High dairy-protein versus high mixed-protein energy restricted diets—The effect on bone turnover and calcium excretion in overweight adults. Asia Pac. J. Clin. Nutr. 2003, 12, S52. [Google Scholar]
- Bowen, J.; Noakes, M.; Clifton, P.M. Effect of calcium and dairy foods in high protein, energy-restricted diets on weight loss and metabolic parameters in overweight adults. Int. J. Obes. 2005, 29, 957–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorpe, M.P.; Jacobson, E.H.; Layman, D.K.; He, X.M.; Kris-Etherton, P.M.; Evans, E.M. A diet high in protein, dairy, and calcium attenuates bone loss over twelve months.s of weight loss and maintenance relative to a conventional high-carbohydrate diet in adults. J. Nutr. 2008, 138, 1096–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labouesse, M.A.; Gertz, E.R.; Piccolo, B.D.; Souza, E.C.; Schuster, G.U.; Witbracht, M.G.; Woodhouse, L.R.; Adams, S.H.; Keim, N.L.; Van Loan, M.D. Associations among endocrine, inflammatory, and bone markers, body composition and weight loss induced bone loss. Bone 2014, 64, 138–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowen, J.; Noakes, M.; Clifton, P.M. A high dairy protein, high-calcium diet minimizes bone turnover in overweight adults during weight loss. J. Nutr. 2004, 134, 568–573. [Google Scholar] [CrossRef]
- Skov, A.R.; Haulrik, N.; Toubro, S.; Molgaard, C.; Astrup, A. Effect of protein intake on bone mineralization during weight loss: A 6-month trial. Obes. Res. 2002, 10, 432–438. [Google Scholar] [CrossRef] [Green Version]
- Wright, C.S.; Li, J.; Campbell, W.W. Effects of Dietary Protein Quantity on Bone Quantity following Weight Loss: A Systematic Review and Meta-analysis. Adv. Nutr. 2019, 10, 1089–1107. [Google Scholar] [CrossRef]
- Josse, A.R.; Atkinson, S.A.; Tarnopolsky, M.A.; Phillips, S.M. Diets Higher in Dairy Foods and Dietary Protein Support Bone Health during Diet-and Exercise-Induced Weight Loss in Overweight and Obese Premenopausal Women. J. Clin. Endocr. Metab. 2012, 97, 251–260. [Google Scholar] [CrossRef]
- Campbell, W.W.; Tang, M. Protein intake, weight loss, and bone mineral density in postmenopausal women. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 1115–1122. [Google Scholar] [CrossRef] [Green Version]
- Noakes, M.; Keogh, J.B.; Foster, P.R.; Clifton, P.M. Effect of an energy-restricted, high-protein, low-fat diet relative to a conventional high-carbohydrate, low-fat diet on weight loss, body composition, nutritional status, and markers of cardiovascular health in obese women. Am. J. Clin. Nutr. 2005, 81, 1298–1306. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.P.; Treyzon, L.; Chen, S.; Yan, E.; Thames, G.; Carpenter, C.L. Protein-enriched meal replacements do not adversely affect liver, kidney or bone density: An outpatient randomized controlled trial. Nutr. J. 2010, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Heaney, R.P.; Layman, D.K. Amount and type of protein influences bone health. Am. J. Clin. Nutr. 2008, 87, 1567S–1570S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenton, T.R.; Lyon, A.W.; Eliasziw, M.; Tough, S.C.; Hanley, D.A. Phosphate decreases urine calcium and increases calcium balance: A meta-analysis of the osteoporosis acid-ash diet hypothesis. Nutr. J. 2009, 8, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonjour, J.P. Calcium and phosphate: A duet of ions playing for bone health. J. Am. Coll. Nutr. 2011, 30, 438S–448S. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; O’Connor, L.E.; Campbell, W.W. Diet-induced weight loss: The effect of dietary protein on bone. J. Acad. Nutr. Diet. 2014, 114, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, M.P.; Evans, E.M. Dietary protein and bone health: Harmonizing conflicting theories. Nutr. Rev. 2011, 69, 215–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerstetter, J.E.; Kenny, A.M.; Insogna, K.L. Dietary protein and skeletal health: A review of recent human research. Curr. Opin. Lipidol. 2011, 22, 16–20. [Google Scholar] [CrossRef]
- Rizzoli, R.; Bonjour, J.P. Dietary protein and bone health. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2004, 19, 527–531. [Google Scholar] [CrossRef]
- Roughead, Z.K. Dietary protein and bone health. Aust. J. Dairy Technol. 2005, 60, 61–65. [Google Scholar]
- Dawson-Hughes, B. Interaction of dietary calcium and protein in bone health in humans. J. Nutr. 2003, 133, 852S–854S. [Google Scholar] [CrossRef] [Green Version]
- Dawson-Hughes, B.; Harris, S.S. Calcium intake influences the association of protein intake with rates of bone loss in elderly men and women. Am. J. Clin. Nutr. 2002, 75, 773–779. [Google Scholar] [CrossRef] [Green Version]
- Heaney, R.P. Protein intake and bone health: The influence of belief systems on the conduct of nutritional science. Am. J. Clin. Nutr. 2001, 73, 5–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heaney, R.P. Protein and calcium: Antagonists or synergists? Am. J. Clin. Nutr. 2002, 75, 609–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schurch, M.A.; Rizzoli, R.; Slosman, D.; Vadas, L.; Vergnaud, P.; Bonjour, J.P. Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture—A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 1998, 128, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Ceglia, L.; Harris, S.S.; Abrams, S.A.; Rasmussen, H.M.; Dallal, G.E.; Dawson-Hughes, B. Potassium Bicarbonate Attenuates the Urinary Nitrogen Excretion That Accompanies an Increase in Dietary Protein and May Promote Calcium Absorption. J. Clin. Endocr. Metab. 2009, 94, 645–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, J.R.; Johnson, L.K.; Roughead, Z.K.F. Dietary protein and calcium interact to influence calcium retention: A controlled feeding study. Am. J. Clin. Nutr. 2009, 89, 1357–1365. [Google Scholar] [CrossRef] [Green Version]
- Heaney, R.P.; McCarron, D.A.; Dawson-Hughes, B.; Oparil, S.; Berga, S.L.; Stern, J.S.; Barr, S.I.; Rosen, C.J. Dietary changes favorably affect bone remodeling in older adults. J. Am. Diet. Assoc. 1999, 99, 1228–1233. [Google Scholar] [CrossRef]
- Hunt, J.R.; Gallagher, S.K.; Johnson, L.K.; Lykken, G.I. High-Meat Versus Low-Meat Diets—Effects on Zinc-Absorption, Iron Status, and Calcium, Copper, Iron, Magnesium, Manganese, Nitrogen, Phosphorus, and Zinc Balance in Postmenopausal Women. Am. J. Clin. Nutr. 1995, 62, 621–632. [Google Scholar] [CrossRef]
- Takata, Y.; Maskarinec, G.; Rinaldi, S.; Kaaks, R.; Nagata, C. Serum insulin-like growth factor-I levels among women in Hawaii and Japan with different levels of tofu intake. Nutr. Cancer 2006, 56, 136–142. [Google Scholar] [CrossRef]
- Gaffney-Stomberg, E.; Cao, J.J.; Lin, G.G.; Wulff, C.R.; Murphy, N.E.; Young, A.J.; McClung, J.P.; Pasiakos, S.M. Dietary protein level and source differentially affect bone metabolism, strength, and intestinal calcium transporter expression during ad libitum and food-restricted conditions in male rats. J. Nutr. 2014, 144, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; Leidy, H.J.; Campbell, W.W. Regional, but not total, body composition changes in overweight and obese adults consuming a higher protein, energy-restricted diet are sex specific. Nutr. Res. 2013, 33, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Fried, A.; Manske, S.L.; Eller, L.K.; Lorincz, C.; Reimer, R.A.; Zernicke, R.F. Skim milk powder enhances trabecular bone architecture compared with casein or whey in diet-induced obese rats. Nutrition 2012, 28, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Academies, N. Dietary Reference Intakes for Energy, Carbohydrate. Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar]
- Kim, J.E.; O’Connor, L.E.; Sands, L.P.; Slebodnik, M.B.; Campbell, W.W. Effects of dietary protein intake on body composition changes after weight loss in older adults: A systematic review and meta-analysis. Nutr. Rev. 2016, 74, 210–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helms, E.R.; Zinn, C.; Rowlands, D.S.; Brown, S.R. A systematic review of dietary protein during caloric restriction in resistance trained lean athletes: A case for higher intakes. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 127–138. [Google Scholar] [CrossRef]
- Lynch, M.E.; Main, R.P.; Xu, Q.; Schmicker, T.L.; Schaffler, M.B.; Wright, T.M.; van der Meulen, M.C.H. Tibial compression is anabolic in the adult mouse skeleton despite reduced responsiveness with aging. Bone 2011, 49, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Luu, Y.K.; Lublinsky, S.; Ozcivici, E.; Capilla, E.; Pessin, J.E.; Rubin, C.T.; Judex, S. In vivo quantification of subcutaneous and visceral adiposity by micro-computed tomography in a small animal model. Med. Eng. Phys. 2009, 31, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.S.; Butz, K.D.; Duffy, D.; Niebur, G.L.; Nauman, E.A.; Main, R.P. Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis. Bone 2014, 66, 131–139. [Google Scholar] [CrossRef]
- Melville, K.M.; Kelly, N.H.; Khan, S.A.; Schimenti, J.C.; Ross, F.P.; Main, R.P.; van der Meulen, M.C.H. Female Mice Lacking Estrogen Receptor-Alpha in Osteoblasts Have Compromised Bone Mass and Strength. J. Bone Miner. Res. 2014, 29, 370–379. [Google Scholar] [CrossRef]
- Main, R.P.; Lynch, M.E.; van der Meulen, M.C.H. Load-induced changes in bone stiffness and cancellous and cortical bone mass following tibial compression diminish with age in female mice. J. Exp. Biol. 2014, 217, 1775–1783. [Google Scholar] [CrossRef] [Green Version]
- Bouxsein, M.L.; Boyd, S.K.; Christiansen, B.A.; Guldberg, R.E.; Jepsen, K.J.; Muller, R. Guidelines for Assessment of Bone Microstructure in Rodents Using Micro-Computed Tomography. J. Bone Miner. Res 2010, 25, 1468–1486. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Niziolek, P.J.; MacDonald, B.T.; Zylstra, C.R.; Alenina, N.; Robinson, D.R.; Zhong, Z.; Matthes, S.; Jacobsen, C.M.; Conlon, R.A.; et al. Lrp5 functions in bone to regulate bone mass. Nat. Med. 2011, 17, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.H.; Burr, D.B. Basic biomechanical measurements of bone: A tutorial. Bone 1993, 14, 595–608. [Google Scholar] [CrossRef]
- Williams, J.N.; Kambrath, A.V.; Patel, R.B.; Kang, K.S.; Mevel, E.; Li, Y.; Cheng, Y.H.; Pucylowski, A.J.; Hassert, M.A.; Voor, M.J.; et al. Inhibition of CaMKK2 Enhances Fracture Healing by Stimulating Indian Hedgehog Signaling and Accelerating Endochondral Ossification. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2018, 33, 930–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schenk, R.K. Preparation of calcified tissues for light microscopy. In Methods of Calcified Tissue Preparation; Dickson, G., Ed.; Elsevier: Amsterdam, The Netherland, 1984; pp. 1–56. [Google Scholar]
- Erlebacher, A.; Derynck, R. Increased expression of TGF-beta 2 in osteoblasts results in an osteoporosis-like phenotype. J. Cell Biol. 1996, 132, 195–210. [Google Scholar] [CrossRef] [Green Version]
- Dempster, D.W.; Compston, J.E.; Drezner, M.K.; Glorieux, F.H.; Kanis, J.A.; Malluche, H.; Meunier, P.J.; Ott, S.M.; Recker, R.R.; Parfitt, A.M. Standardized nomenclature, symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2013, 28, 2–17. [Google Scholar] [CrossRef] [Green Version]
- Hoaglin, D.C.; Iglewicz, B. Fine-Tuning Some Resistant Rules for Outlier Labeling. J. Am. Stat. Assoc. 1987, 82, 1147–1149. [Google Scholar] [CrossRef]
- Shen, C.L.; Zhu, W.; Gao, W.; Wang, S.; Chen, L.; Chyu, M.C. Energy-restricted diet benefits body composition but degrades bone integrity in middle-aged obese female rats. Nutr. Res. 2013, 33, 668–676. [Google Scholar] [CrossRef]
- Clarke, B. Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol. 2008, 3 (Suppl. 3), S131–S139. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Lee, S.K.; Chun, O.K. Soy Isoflavones and Osteoporotic Bone Loss: A Review with an Emphasis on Modulation of Bone Remodeling. J. Med. Food 2016, 19, 1–14. [Google Scholar] [CrossRef]
- Kuiper, G.G.; Lemmen, J.G.; Carlsson, B.; Corton, J.C.; Safe, S.H.; van der Saag, P.T.; van der Burg, B.; Gustafsson, J.A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 1998, 139, 4252–4263. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.F.; Qin, L.Q.; Wang, P.Y.; Katoh, R. Soy isoflavone intake inhibits bone resorption and stimulates bone formation in menopausal women: Meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2008, 62, 155–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ming, L.G.; Chen, K.M.; Xian, C.J. Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J. Cell Physiol. 2013, 228, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Gautam, J.; Choudhary, D.; Khedgikar, V.; Kushwaha, P.; Singh, R.S.; Singh, D.; Tiwari, S.; Trivedi, R. Micro-architectural changes in cancellous bone differ in female and male C57BL/6 mice with high-fat diet-induced low bone mineral density. Br. J. Nutr. 2014, 111, 1811–1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Zhou, X.; Fujita, H.; Onozuka, M.; Kubo, K.Y. Age-related changes in trabecular and cortical bone microstructure. Int. J. Endocrinol. 2013, 2013, 213234. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.J.; Gregoire, B.R.; Gao, H. High-fat diet decreases cancellous bone mass but has no effect on cortical bone mass in the tibia in mice. Bone 2009, 44, 1097–1104. [Google Scholar] [CrossRef]
- Hamrick, M.W.; Ding, K.H.; Ponnala, S.; Ferrari, S.L.; Isales, C.M. Caloric restriction decreases cortical bone mass but spares trabecular bone in the mouse skeleton: Implications for the regulation of bone mass by body weight. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2008, 23, 870–878. [Google Scholar] [CrossRef]
- Ott, S.M. Cortical or Trabecular Bone: What’s the Difference? Am. J. Nephrol. 2018, 47, 373–375. [Google Scholar] [CrossRef]
- Martin-Millan, M.; Almeida, M.; Ambrogini, E.; Han, L.; Zhao, H.; Weinstein, R.S.; Jilka, R.L.; O’Brien, C.A.; Manolagas, S.C. The estrogen receptor-alpha in osteoclasts mediates the protective effects of estrogens on cancellous but not cortical bone. Mol. Endocrinol. 2010, 24, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Zemel, M.B. Role of calcium and dairy products in energy partitioning and weight management. Am. J. Clin. Nutr. 2004, 79, 907S–912S. [Google Scholar] [CrossRef] [Green Version]
- Rice, B.H.; Cifelli, C.J.; Pikosky, M.A.; Miller, G.D. Dairy Components and Risk Factors for Cardiometabolic Syndrome: Recent Evidence and Opportunities for Future Research. Adv. Nutr. 2011, 2, 396–407. [Google Scholar] [CrossRef] [PubMed]
- Zemel, M.B. Calcium modulation of hypertension and obesity: Mechanisms and implications. J. Am. Coll. Nutr. 2001, 20, 428s–435s. [Google Scholar] [CrossRef] [PubMed]
- Christensen, R.; Lorenzen, J.K.; Svith, C.R.; Bartels, E.M.; Melanson, E.L.; Saris, W.H.; Tremblay, A.; Astrup, A. Effect of calcium from dairy and dietary supplements on faecal fat excretion: A meta-analysis of randomized controlled trials. Obes. Rev. 2009, 10, 475–486. [Google Scholar] [CrossRef] [PubMed]
Ingredient (g) | NP-Control (g) | HP-Beef (g) | HP-Milk (g) | HP-Soy (g) |
---|---|---|---|---|
Protein Source | ||||
Freeze-dried lean beef powder | 0 | 264.8 | 0 | 0 |
SUPRO ® 661 soy protein isolate | 0 | 0 | 0 | 218 |
IdaPro milk protein isolate | 0 | 0 | 230 | 0 |
Casein | 140 | 140 | 140 | 140 |
DL-Methionine | 0 | 0 | 0 | 3 |
L-Cystein | 1.8 | 1.8 | 3 | 1.8 |
Carbohydrates | ||||
Corn Starch | 495.7 | 272 | 264 | 274.5 |
Maltodextrin 10 | 125 | 125 | 125 | 125 |
Sucrose | 100 | 100 | 100 | 100 |
Cellulose | 50 | 50 | 50 | 50 |
Fat | ||||
Soybean Oil | 40 | 0 | 37.5 | 40 |
TBHQ | 0.008 | 0.008 | 0.008 | 0.008 |
Micronutrients | ||||
Mineral Mix S10022M | 59 | 59 | 59 | 59 |
Vitamin Mix V10037 | 17 | 17 | 17 | 17 |
Choline Bitartrate | 4.2 | 4.2 | 4.2 | 4.2 |
Total | 1032.7 | 1033.8 | 1029.7 | 1032.5 |
NP-Control | HP-Beef | HP-Milk | HP-Soy | |
---|---|---|---|---|
Energy, kcal/g | 3.7 | 3.6 | 3.6 | 3.6 |
Protein, %kcal | 15 | 35 | 35 | 35 |
Carbohydrate, %Kcal | 75 | 55 | 56 | 56 |
Fat, %kcal | 10 | 11 | 10 | 10 |
Protein, g/kg | 124 | 323 | 323 | 323 |
Carbohydrate, g/kg | 731 | 516 | 515 | 516 |
Fat, g/kg | 40 | 45 | 40 | 40 |
Fiber, g/kg | ||||
Calcium, g/kg | 8.2 | 8.2 | 12.9 | 9.1 |
Phosphate, g/kg | 4.3 | 4.3 | 6.7 | 6.0 |
Potassium, g/kg | 5.9 | 5.9 | 6.7 | 6.3 |
Sulfur, g/kg | 1.5 | 1.5 | 1.5 | 1.5 |
Magnesium, g/kg | 0.8 | 0.8 | 0.8 | 0.8 |
Sodium, g/kg | 1.6 | 1.6 | 1.9 | 1.6 |
Chloride, g/kg | 2.7 | 2.7 | 2.8 | 2.7 |
Vitamin A, IU/kg | 6610 | 6610 | 6620 | 6612 |
Vitamin D3, IU/kg | 1646 | 1646 | 1693 | 1646 |
Vitamin E, IU/kg | 123 | 123 | 123 | 123 |
Total isoflavones, mg/kg | n.d. | n.d. | n.a | 371 |
NP-Control | HP-Beef | HP-Milk | HP-Soy | Significance 2 | ||
---|---|---|---|---|---|---|
Weight Loss | Diet | |||||
Body Weight, g | ||||||
Baseline | 520 ± 28 | 505 ± 38 | 514 ± 23 | 518 ± 33 | ||
Post | 369 ± 27 | 385 ± 34 | 372.5 ± 18 | 397 ± 28 | ||
Change | −124 ± 6 | −103 ± 6 | −112 ± 5 | −98 ± 5 | <0.0001 | 0.003 |
Fat Mass, mm2 | ||||||
Baseline | 2463 ± 198 | 2330 ± 255 | 2503 ± 161 | 2496 ± 262 | ||
Post | 1040 ± 210 | 1038 ± 268 | 1049 ± 164 | 1291 ± 269 | ||
Change | −1415 ± 74 | −1286 ± 62 | −1447 ± 54 | −1179 ± 47 | <0.0001 | 0.042 |
Muscle Mass, mm2 | ||||||
Baseline | 392 ± 7 | 359 ± 14 | 366 ± 8 | 360 ± 11 | ||
Post | 357 ± 15 | 346 ± 20 | 355 ± 12 | 350 ± 17 | ||
Change | −34 ± 11 | −13 ± 13 | −11 ± 12 | −5 ± 10 | 0.012 | 0.501 |
Muscle Density, g/cm2 | ||||||
Baseline | 80.6 ± 0.5 | 80.4 ± 0.5 | 80.4 ± 0.4 | 80.6 ± 0.7 | ||
Post | 83.0 ± 0.6 | 83.0 ± 0.5 | 83.3 ± 0.5 | 82.2 ± 0.7 | ||
Change | 2.5 ± 0.5 | 2.8 ± 0.3 | 3.0 ± 0.4 | 1.8 ± 0.5 | <0.0001 | 0.235 |
IMAT, mm2 | ||||||
Baseline | 109 ± 5 | 105 ± 8 | 104 ± 5 | 105 ± 5 | ||
Post | 93 ± 8 | 90 ± 8 | 95 ± 6 | 96 ± 6 | ||
Change | −16 ± 4 | −15 ± 2 | −9 ± 3 | −9 ± 4 | <0.0001 | 0.415 |
NP-Control | HP-Beef | HP-Milk | HP-Soy | Significance 2 | ||
---|---|---|---|---|---|---|
Weight Loss | Diet | |||||
Spine a BMD, g/cm2 | ||||||
Baseline | 0.1617 ± 0.0056 | 0.1639 ± 0.0065 | 0.1603 ± 0.0049 | 0.1567 ± 0.0041 | ||
Post | 0.1464 ± 0.0072 | 0.1393 ± 0.0059 | 0.1441 ± 0.0065 | 0.1372 ± 0.0062 | ||
Change | −0.0153 ± 0.0042 | −0.0246 ± 0.0061 | −0.0162 ± 0.0056 | −0.0195 ± 0.0068 | <0.0001 | 0.625 |
Femur aBMD, g/cm2 | ||||||
Baseline | 0.2207 ± 0.0075 | 0.2362 ± 0.0056 | 0.2216 ± 0.0062 | 0.2278 ± 0.0079 | ||
Post | 0.2121 ± 0.0043 | 0.2097 ± 0.0046 | 0.2046 ± 0.0059 | 0.2168 ± 0.0028 | ||
Change | −0.0109 ± 0.0066 | −0.0264 ± 0.0027 | −0.0171 ± 0.054 | −0.0120 ± 0.0084 | <0.0001 | 0.372 |
Spine aBMC, g | ||||||
Baseline | 0.4579 ± 0.0236 | 0.4523 ± 0.0204 | 0.4650 ± 0.0136 | 0.4478 ± 0.0142 | ||
Post | 0.4076 ± 0.0320 | 0.3687 ± 0.0271 | 0.3760 ± 0.0218 | 0.3788 ± 0.0212 | ||
Change | −0.0503 ± 0.0205 | −0.0837 ± 0.0234 | −0.0891 ± 0.0167 | −0.0690 ± 0.0217 | <0.0001 | 0.657 |
Femur aBMC, g | ||||||
Baseline | 0.45988 ± 0.0173 | 0.48905 ± 0.0166 | 0.4728 ± 0.0113 | 0.4709 ± 0.0231 | ||
Post | 0.4734 ± 0.0095 | 0.4635 ± 0.0164 | 0.4663 ± 0.0077 | 0.4765 ± 0.0044 | ||
Change | 0.0042 ± 0.0125 | −0.0256 ± 0.0066 | −0.0066 ± 0.0101 | 0.0052 ± 0.0194 | 0.504 | 0.404 |
NP-Control | HP-Beef | HP-Milk | HP-Soy | Diet Effect 2 | |
---|---|---|---|---|---|
Distal Metaphysis | |||||
VcaBMD (mg HA/ccm) | 821 ± 6 | 818 ± 9 | 818 ± 5 | 813 ± 6 | 0.869 |
Tb BMC (mg HA × 102) | 0.82 ± 0.05 | 0.62 ± 0.06 | 0.88 ± 0.10 | 0.96 ± 0.05 | 0.012 |
BV/TV × 102 | 9.80 ± 1.22 | 7.09 ± 1.11 | 10.00 ± 1.22 | 11.56 ± 0.06 | 0.044 |
Tb.N (mm−1) | 1.05 ± 0.10 | 1.07 ± 0.20 | 1.14 ± 0.10 | 1.29 ± 0.14 | 0.639 |
Tb.Th (mm) | 0.110 ± 0.004 | 0.105 ± 0.006 | 0.106 ± 0.002 | 0.110 ± 0.004 | 0.772 |
Tb.Sp (mm) | 0.86 ± 0.02 | 1.19 ± 0.20 | 0.87 ± 0.05 | 0.83 ± 0.08 | 0.128 |
SMI | 2.16 ± 0.14 | 2.42 ± 0.09 | 2.15 ± 0.10 | 1.96 ± 0.05 | 0.042 |
Conn.D (mm3)−1 | 14.80 ± 2.24 | 10.98 ± 2.95 | 14.51 ± 2.76 | 16.20 ± 1.43 | 0.482 |
Midshaft Diaphysis | |||||
VctBMD (mg HA/ccm) | 1301 ± 4 | 1298 ± 2 | 1302 ± 4 | 1290 ± 3 | 0.061 |
Tt.Ar (mm2) | 10.71 ± 0.30 | 10.92 ± 0.35 | 10.58 ± 0.29 | 11.25 ± 0.32 | 0.479 |
Ct.Ar (mm2) | 6.41 ± 0.22 | 6.57 ± 0.09 | 6.49 ± 0.15 | 6.50 ± 0.14 | 0.931 |
Ct.Ar/Tt.Ar | 0.60 ± 0.013 | 0.606 ± 0.020 | 0.615 ± 0.015 | 0.581 ± 0.021 | 0.590 |
Ma.Ar (mm2) | 4.29 ± 0.20 | 4.35 ± 0.38 | 4.10 ± 0.25 | 4.75 ± 0.34 | 0.457 |
Ct.Th (mm) | 0.599 ± 0.015 | 0.640 ± 0.017 | 0.637 ± 0.015 | 0.599 ± 0.030 | 0.323 |
pMOI (mm4) | 16.83 ± 1.18 | 16.82 ± 0.80 | 17.24 ± 0.61 | 17.74 ± 0.69 | 0.850 |
Vertebral Body | |||||
VcaBMD (mg HA/ccm) | 911 ± 10 | 912 ± 12 | 916 ± 10 | 917 ± 9 | 0.961 |
Tb BMC (mg HA × 102) | 0.89 ± 0.06 | 0.79 ±0.11 | 0.92 ± 0.04 | 0.91 ± 0.08 | 0.590 |
BV/TV × 102 | 30.33 ± 1.93 | 28.13 ± 2.99 | 32.18 ± 1.53 | 31.05 ± 2.33 | 0.639 |
Tb.N (mm−1) | 2.93 ± 0.09 | 2.77 ± 0.27 | 2.94 ± 0.14 | 2.95 ± 0.21 | 0.906 |
Tb.Th (mm) | 0.102 ± 0.003 | 0.097 ± 0.004 | 0.104 ± 0.003 | 0.102 ± 0.003 | 0.463 |
Tb.Sp (mm) | 0.338 ± 0.022 | 0.381 ± 0.048 | 0.332 ± 0.021 | 0.337 ± 0.033 | 0.696 |
SMI | 0.31 ± 0.09 | 0.67 ± 0.11 | 0.30 ± 0.10 | 0.48 ± 0.14 | 0.111 |
Conn.D (mm3)−1 | 40.52 ± 3.95 | 38.73 ± 4.91 | 36.13 ± 2.99 | 35.63 ± 3.09 | 0.782 |
Baseline | NP-Control | HP-Beef | HP-Milk | HP-Soy | Significance 2 | ||
---|---|---|---|---|---|---|---|
Weight Loss | Diet | ||||||
Dynamic Histomorphometry | |||||||
Periosteal MS/BS (%) | 52.3 ± 6.7 | 40.1 ± 8.0 | 53.9 ± 4.2 | 59.5 ± 7.5 | 46.9 ± 7.7 | 0.381 | 0.279 |
PerioSteal MAR (μm/day) | 0.396 ± 0.012 | 0.423 ± 0.015 | 0.385 ± 0.018 | 0.372 ± 0.040 | 0.419 ± 0.047 | 0.732 | 0.687 |
Periosteal BFR/BS (μm3/μm2/day) | 75.4 ± 9.1 | 101.6 ± 8.6 | 86.5 ± 10.5 | 73.2 ± 12.0 | 87.8 ± 22.0 | 0.691 | 0.675 |
Endocortical MS/BS (%) | 13.2 ± 2.2 | 29.4 ± 3.9 | 29.6 ± 5.6 | 19.4 ± 4.2 | 15.5 ± 1.9 | 0.019 | 0.047 |
Endocortical MAR (μm/day) | 0.332 ± 0.061 | 0.403 ± 0.043 | 0.414 ± 0.055 | 0.397 ± 0.051 | 0.387 ± 0.048 | 0.901 | 0.924 |
Endocortical BFR/BS (μm3/μm2/day) | 14.5 ± 5.8 | 36.8 ± 14.0 | 52.5 ± 11.9 | 30.4 ± 8.2 | 21.3 ± 3.1 | 0.016 | 0.226 |
Static Histomorphometry | |||||||
BS (cm) | 4361 ± 381 | 2423 ± 362 | 2362 ± 482 | 2898 ± 359 | 3305 ± 97 | 0.018 | 0.370 |
O.S (mm) | 1480 ± 266 | 1173 ± 285 | 1056 ± 205 | 1206 ± 181 | 1657 ± 162 | 0.308 | 0.237 |
O.Th (mm2) | 2.36 ± 0.04 | 2.17 ± 0.07 | 2.21 ± 0.07 | 2.33 ± 0.09 | 2.24 ± 0.08 | 0.347 | 0.474 |
O.S/BS (%) | 2.8 ± 0.1 | 4.6 ± 0.7 | 4.8 ± 0.6 | 4.6 ± 1.0 | 5.0 ± 3.7 | 0.431 | 0.237 |
E.Pm (mm) | 6.6 ± 2.2 | 2.7 ± 0.7 | 2.6 ± 0.7 | 3.0 ± 0.5 | 3.6 ± 0.4 | 0.041 | 0.601 |
ES/BS (%) | 13.0 ± 1.6 | 12.8 ± 1.9 | 14.7 ± 1.6 | 12.1 ± 1.7 | 11.7 ± 1.4 | 0.509 | 0.647 |
N.Oc | 182 ± 65 | 99 ± 10 | 59 ± 17 | 64 ± 16 | 87 ± 4 | 0.017 | 0.202 |
Oc.S/BS (%) | 4.8 ± 0.5 | 5.1 ± 0.5 | 5.5 ± 0.8 | 3.5 ± 0.4 | 4.9 ± 0.7 | 0.213 | 0.152 |
N.Oc/E.Pm (Ratio) | 27.3 ± 0.6 | 31.4 ± 6.1 | 23.7 ± 1.2 | 21.2 ± 3.4 | 27.2 ± 2.2 | 0.405 | 0.381 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wright, C.S.; Hill, E.R.; Reyes Fernandez, P.C.; Thompson, W.R.; Gallant, M.A.; Campbell, W.W.; Main, R.P. Effects of Dietary Protein Source and Quantity on Bone Morphology and Body Composition Following a High-Protein Weight-Loss Diet in a Rat Model for Postmenopausal Obesity. Nutrients 2022, 14, 2262. https://doi.org/10.3390/nu14112262
Wright CS, Hill ER, Reyes Fernandez PC, Thompson WR, Gallant MA, Campbell WW, Main RP. Effects of Dietary Protein Source and Quantity on Bone Morphology and Body Composition Following a High-Protein Weight-Loss Diet in a Rat Model for Postmenopausal Obesity. Nutrients. 2022; 14(11):2262. https://doi.org/10.3390/nu14112262
Chicago/Turabian StyleWright, Christian S., Erica R. Hill, Perla C. Reyes Fernandez, William R. Thompson, Maxime A. Gallant, Wayne W. Campbell, and Russell P. Main. 2022. "Effects of Dietary Protein Source and Quantity on Bone Morphology and Body Composition Following a High-Protein Weight-Loss Diet in a Rat Model for Postmenopausal Obesity" Nutrients 14, no. 11: 2262. https://doi.org/10.3390/nu14112262
APA StyleWright, C. S., Hill, E. R., Reyes Fernandez, P. C., Thompson, W. R., Gallant, M. A., Campbell, W. W., & Main, R. P. (2022). Effects of Dietary Protein Source and Quantity on Bone Morphology and Body Composition Following a High-Protein Weight-Loss Diet in a Rat Model for Postmenopausal Obesity. Nutrients, 14(11), 2262. https://doi.org/10.3390/nu14112262