Association of Maternal Erythrocyte PUFA during Pregnancy with Offspring Allergy in the Chinese Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Laboratory Analysis
2.3. Fatty Acids Calculations
2.4. Ascertainment of Offspring Allergic Disease
2.5. Assessment of Covariates
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. Maternal Erythrocyte Fatty Acids
3.3. Associations of Maternal Erythrocyte Fatty Acids with Offspring Allergic Disease
3.4. Stratified Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansen, T.E.; Evjenth, B.; Holt, J. Increasing prevalence of asthma, allergic rhinoconjunctivitis and eczema among schoolchildren: Three surveys during the period 1985–2008. Acta Paediatr. 2013, 102, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Shuo, W.; Jingxiong, J.; Yan, W.; Zihuan, W.; Ting, W.; Huishan, W. survey on prevalence of allergic symptoms among 0 to 24 months old children in Chinese cities. Chin. J. Child Health Care 2016, 24, 119–122. [Google Scholar]
- Williams, H.; Stewart, A.; Von Mutius, E.; Cookson, W.; Anderson, H.R. Is eczema really on the increase worldwide? J. Allergy Clin. Immunol. 2008, 121, 947–954. [Google Scholar] [CrossRef]
- Barker, D.J. The fetal and infant origins of adult disease. BMJ 1990, 301, 1111. [Google Scholar] [CrossRef] [Green Version]
- Devereux, G. The increase in the prevalence of asthma and allergy: Food for thought. Nat. Rev. Immunol. 2006, 6, 869–874. [Google Scholar] [CrossRef]
- Larson-Nath, C.; Goday, P. Malnutrition in Children With Chronic Disease. Nutr. Clin. Pract. 2019, 34, 349–358. [Google Scholar] [CrossRef]
- Wells, J.C.; Sawaya, A.L.; Wibaek, R.; Mwangome, M.; Poullas, M.S.; Yajnik, C.S.; Demaio, A. The double burden of malnutrition: Aetiological pathways and consequences for health. Lancet 2020, 395, 75–88. [Google Scholar] [CrossRef]
- Black, P.N.; Sharpe, S. Dietary fat and asthma: Is there a connection? Eur. Respir. J. 1997, 10, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Hodge, L.; Peat, J.K.; Salome, C. Increased consumption of polyunsaturated oils may be a cause of increased prevalence of childhood asthma. Aust. N. Z. J. Med. 1994, 24, 727. [Google Scholar] [CrossRef]
- Haggarty, P. Fatty acid supply to the human fetus. Annu. Rev. Nutr. 2010, 30, 237–255. [Google Scholar] [CrossRef]
- Rosenlund, H.; Fagerstedt, S.; Alm, J.; Mie, A. Breastmilk fatty acids in relation to sensitization—The ALADDIN birth cohort. Allergy 2016, 71, 1444–1452. [Google Scholar] [CrossRef]
- Yu, Y.M.; Chan, Y.H.; Calder, P.C.; Hardjojo, A.; Soh, S.E.; Lim, A.L.; Fisk, H.L.; Teoh, O.H.; Goh, A.; Saw, S.M.; et al. Maternal PUFA status and offspring allergic diseases up to the age of 18 months. Br. J. Nutr. 2015, 113, 975–983. [Google Scholar] [CrossRef] [Green Version]
- Rucci, E.; Den Dekker, H.T.; De Jongste, J.C.; Steenweg-de-Graaff, J.; Gaillard, R.; Pasmans, S.G.; Hofman, A.; Tiemeier, H.; Jaddoe, V.W.; Duijts, L. Maternal fatty acid levels during pregnancy, childhood lung function and atopic diseases. The Generation R Study. Clin. Exp. Allergy 2016, 46, 461–471. [Google Scholar] [CrossRef]
- Standl, M.; Demmelmair, H.; Koletzko, B.; Heinrich, J. Cord blood LC-PUFA composition and allergic diseases during the first 10 yr. Results from the LISAplus study. Pediatr. Allergy Immunol. 2014, 25, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.Q.; Liu, B.; Li, J.; Luo, C.Q.; Zhang, Q.; Chen, J.L.; Sinha, A.; Li, Z.Y. Fish intake during pregnancy or infancy and allergic outcomes in children: A systematic review and meta-analysis. Pediatr. Allergy Immunol. 2017, 28, 152–161. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Zhang, Y.; Zhu, X.; Wang, D.; Dai, J. Effects of supplementation with omega-3 fatty acids during pregnancy on asthma or wheeze of children: A systematic review and meta-analysis. J. Matern. Fetal Neonatal Med. 2020, 33, 1792–1801. [Google Scholar] [CrossRef]
- Noakes, P.S.; Vlachava, M.; Kremmyda, L.S.; Diaper, N.D.; Miles, E.A.; Erlewyn-Lajeunesse, M.; Williams, A.P.; Godfrey, K.M.; Calder, P.C. Increased intake of oily fish in pregnancy: Effects on neonatal immune responses and on clinical outcomes in infants at 6 mo. Am. J. Clin. Nutr. 2012, 95, 395–404. [Google Scholar] [CrossRef]
- Stoodley, I.; Garg, M.; Scott, H.; Macdonald-Wicks, L.; Berthon, B.; Wood, L. Higher Omega-3 Index Is Associated with Better Asthma Control and Lower Medication Dose: A Cross-Sectional Study. Nutrients 2019, 12, 74. [Google Scholar] [CrossRef] [Green Version]
- Onyiaodike, C.C.; Murray, H.M.; Zhang, R.; Meyer, B.J.; Jordan, F.; Brown, E.A.; Nibbs, R.J.B.; Lyall, H.; Sattar, N.; Nelson, S.M.; et al. Pre-conception maternal erythrocyte saturated to unsaturated fatty acid ratio predicts pregnancy after natural cycle frozen embryo transfer. Sci. Rep. 2018, 8, 1216. [Google Scholar] [CrossRef] [Green Version]
- Hodson, L.; Skeaff, C.M.; Fielding, B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 2008, 47, 348–380. [Google Scholar] [CrossRef]
- Li, G.; Sinclair, A.J.; Li, D. Comparison of lipid content and Fatty Acid composition in the edible meat of wild and cultured freshwater and marine fish and shrimps from china. J. Agric. Food Chem. 2011, 59, 1871–1881. [Google Scholar] [CrossRef]
- Harris, W.S.; Von Schacky, C. The Omega-3 Index: A new risk factor for death from coronary heart disease? Prev. Med. 2004, 39, 212–220. [Google Scholar] [CrossRef]
- Mallol, J.; Crane, J.; Von Mutius, E.; Odhiambo, J.; Keil, U.; Stewart, A. The International Study of Asthma and Allergies in Childhood (ISAAC) Phase Three: A global synthesis. Allergol. Immunopathol. 2013, 41, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Hahn, E.L.; Bacharier, L.B. The atopic march: The pattern of allergic disease development in childhood. Immunol. Allergy Clin. North Am. 2005, 25, 231–246. [Google Scholar] [CrossRef]
- Rosa, M.J.; Hartman, T.J.; Adgent, M.; Gardner, K.; Gebretsadik, T.; Moore, P.E.; Davis, R.L.; LeWinn, K.Z.; Bush, N.R.; Tylavsky, F.; et al. Prenatal polyunsaturated fatty acids and child asthma: Effect modification by maternal asthma and child sex. J. Allergy Clin. Immunol. 2020, 145, 800–807. [Google Scholar] [CrossRef]
- Barman, M.; Rabe, H.; Hesselmar, B.; Johansen, S.; Sandberg, A.S.; Wold, A.E. Cord Blood Levels of EPA, a Marker of Fish Intake, Correlate with Infants’ T- and B-Lymphocyte Phenotypes and Risk for Allergic Disease. Nutrients 2020, 12, 3000. [Google Scholar] [CrossRef]
- Maslova, E.; Rifas-Shiman, S.L.; Oken, E.; Platts-Mills, T.A.E.; Gold, D.R. Fatty acids in pregnancy and risk of allergic sensitization and respiratory outcomes in childhood. Ann. Allergy Asthma Immunol. 2019, 122, 120–122. [Google Scholar] [CrossRef]
- Shaikh, S.R.; Kinnun, J.J.; Leng, X.; Williams, J.A.; Wassail, S.R. How polyunsaturated fatty acids modify molecular organization in membranes: Insight from NMR studies of model systems. Biochim. Biophys. Acta 2015, 1848, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zu, L.; Cai, W.; Cheng, Q.; Hua, T.; Peng, L.; Li, G.; Zhang, X. Metabolomics revealed decreased level of omega-3 PUFA-derived protective eicosanoids in pregnant women with pre-eclampsia. Clin. Exp. Pharmacol. Physiol. 2019, 46, 705–710. [Google Scholar] [CrossRef]
- Kamat, S.G.; Roy, R. Evaluation of the effect of n-3 PUFA-rich dietary fish oils on lipid profile and membrane fluidity in alloxan-induced diabetic mice (Mus musculus). Mol. Cell Biochem. 2016, 416, 117–129. [Google Scholar] [CrossRef]
- Wang, T.; Yang, B.; Ji, R.; Xu, W.; Mai, K.; Ai, Q. Omega-3 polyunsaturated fatty acids alleviate hepatic steatosis-induced inflammation through Sirt1-mediated nuclear translocation of NF-κB p65 subunit in hepatocytes of large yellow croaker (Larmichthys crocea). Fish Shellfish Immunol. 2017, 71, 76–82. [Google Scholar]
- Panda, L.; Gheware, A.; Rehman, R.; Yadav, M.K.; Jayaraj, B.S.; Madhunapantula, S.V.; Mahesh, P.A.; Ghosh, B.; Agrawal, A.; Mabalirajan, U. Linoleic acid metabolite leads to steroid resistant asthma features partially through NF-κB. Sci. Rep. 2017, 7, 9565. [Google Scholar] [CrossRef] [Green Version]
- Bisgaard, H.; Stokholm, J.; Chawes, B.L.; Vissing, N.H.; Bjarnadóttir, E.; Schoos, A.M.; Wolsk, H.M.; Pedersen, T.M.; Vinding, R.K.; Thorsteinsdóttir, S.; et al. Fish Oil-Derived Fatty Acids in Pregnancy and Wheeze and Asthma in Offspring. N. Engl. J. Med. 2016, 375, 2530–2539. [Google Scholar] [CrossRef]
- Leermakers, E.T.; Sonnenschein-Van Der Voort, A.M.; Heppe, D.H.; de Jongste, J.C.; Moll, H.A.; Franco, O.H.; Hofman, A.; Jaddoe, V.W.; Duijts, L. Maternal fish consumption during pregnancy and risks of wheezing and eczema in childhood: The Generation R Study. Eur. J. Clin. Nutr. 2013, 67, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Notenboom, M.L.; Mommers, M.; Jansen, E.H.; Penders, J.; Thijs, C. Maternal fatty acid status in pregnancy and childhood atopic manifestations: KOALA Birth Cohort Study. Clin. Exp. Allergy 2011, 41, 407–416. [Google Scholar] [CrossRef]
- Elinder, F.; Liin, S.I. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels. Front. Physiol. 2017, 8, 43. [Google Scholar]
- Horimoto, N.; Nabekura, J.; Ogawa, T. Arachidonic acid activation of potassium channels in rat visual cortex neurons. Neuroscience 1997, 77, 661–671. [Google Scholar] [CrossRef]
- Calder, P.C.; Kremmyda, L.S.; Vlachava, M.; Noakes, P.S.; Miles, E.A. Is there a role for fatty acids in early life programming of the immune system? Proc. Nutr. Soc. 2010, 69, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Tallima, H.; El Ridi, R. Arachidonic acid: Physiological roles and potential health benefits—A review. J. Adv. Res. 2018, 11, 33–41. [Google Scholar]
- Calder, P.C. N-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 2006, 83 (Suppl. S6), 1505s–1519s. [Google Scholar] [CrossRef] [PubMed]
- Lumia, M.; Luukkainen, P.; Tapanainen, H.; Kaila, M.; Erkkola, M.; Uusitalo, L.; Niinistö, S.; Kenward, M.G.; llonen, J.; Simell, O.; et al. Dietary fatty acid composition during pregnancy and the risk of asthma in the offspring. Pediatr. Allergy Immunol. 2011, 22, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Steffen, B.T.; Steffen, L.M.; Tracy, R.; Siscovick, D.; Jacobs, D.; Liu, K.; He, K.; Hanson, N.Q.; Nettleton, J.A.; Tsai, M.Y. Ethnicity, plasma phospholipid fatty acid composition and inflammatory/endothelial activation biomarkers in the Multi-Ethnic Study of Atherosclerosis (MESA). Eur. J. Clin. Nutr. 2012, 66, 600–605. [Google Scholar] [CrossRef] [Green Version]
- Demmelmair, H.; Koletzko, B. Importance of fatty acids in the perinatal period. World Rev. Nutr. Diet 2015, 112, 31–47. [Google Scholar] [PubMed]
- Liu, X.; Agerbo, E.; Schlunssen, V.; Wright, R.J.; Li, J.; Munk-Olsen, T. Maternal asthma severity and control during pregnancy and risk of offspring asthma. J. Allergy Clin. Immunol. 2018, 141, 886–892. [Google Scholar] [CrossRef] [Green Version]
- Miyata, J.; Arita, M. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. Allergol. Int. 2015, 64, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yin, H.; Bibus, D.M.; Byelashov, O.A. The role of Omega-3 docosapentaenoic acid in pregnancy and early development. Eur. J. Lipid Sci. Technol. 2016, 118, 1692–1701. [Google Scholar] [CrossRef]
- Kaur, G.; Cameron-Smith, D.; Garg, M.; Sinclair, A.J. Docosapentaenoic acid (22:5n-3): A review of its biological effects. Prog. Lipid Res. 2011, 50, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Venter, C.; Meyer, R.W.; Nwaru, B.I.; Roduit, C.; Untersmayr, E.; Adel-Patient, K.; Agache, I.; Agostoni, C.; Akdis, C.A.; Bischoff, S.C.; et al. EAACI position paper: Influence of dietary fatty acids on asthma, food allergy, and atopic dermatitis. Allergy 2019, 74, 1429–1444. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Total | No Allergic Disease | Any Allergic Disease | p Value |
---|---|---|---|---|
N = 573 | N = 336 | N = 237 | ||
Maternal general characteristics | ||||
Maternal age (>35 years) | 109 (19.02) | 63 (18.75) | 46 (19.41) | 0.928 |
BMI (kg/m2) | 0.595 | |||
Normal or thin | 504 (87.96) | 293 (87.20) | 211 (89.03) | |
Overweight or obese | 69 (12.04) | 43 (12.80) | 26 (10.97) | |
Educational level | 0.151 | |||
Senior high school or below | 198 (34.55) | 125 (37.20) | 73 (30.80) | |
Junior college | 176 (30.72) | 103 (30.65) | 73 (30.80) | |
College or above | 182 (31.76) | 97 (28.87) | 85 (35.86) | |
Occupation | 0.660 | |||
Administrators and clerks | 123 (21.47) | 75 (22.32) | 48 (20.25) | |
Commerce and services | 160 (27.92) | 97 (28.87) | 63 (26.58) | |
Housewives | 139 (24.26) | 83 (24.70) | 56 (23.63) | |
Others | 129 (22.51) | 70 (20.83) | 59 (24.89) | |
Monthly household income (RMB) | 0.165 | |||
<4000 (about USD 626) | 109 (19.02) | 70 (20.83) | 39 (16.46) | |
4000–10,000(about USD 626–1567) | 263 (45.90) | 157 (46.73) | 106 (44.73) | |
>10,000 (about USD 1567) | 180 (31.41) | 96 (28.57) | 84 (35.44) | |
Frequency of passive smoking | 0.037 | |||
0 day | 418 (72.95) | 254 (75.60) | 164 (69.20) | |
1–2 days a week | 67 (11.69) | 38 (11.31) | 29 (12.24) | |
3–5 days a week | 24 (4.19) | 8 (2.38) | 16 (6.75) | |
Almost every day | 29 (5.06) | 16 (4.76) | 13 (5.49) | |
Unclear | 16 (2.79) | 6 (1.79) | 10 (4.22) | |
Regular drinking | 0.052 | |||
No | 546 (95.29) | 325 (96.73) | 221 (93.25) | |
Yes | 22 (3.84) | 8 (2.38) | 14 (5.91) | |
Maternal allergy history | 0.004 | |||
No | 506 (88.31) | 308 (91.67) | 198 (83.54) | |
Yes | 67 (11.69) | 28 (8.33) | 39 (16.46) | |
Offspring’s general characteristics | ||||
Gender of infant | 0.520 | |||
Male | 267 (46.60) | 150 (44.64) | 117 (42.86) | |
Female | 263 (45.90) | 156 (46.43) | 107 (45.15) | |
Breastfeeding duration (months) | 0.034 | |||
<4 | 239 (41.71) | 130 (38.69) | 109 (45.99) | |
4–6 | 99 (17.28) | 54 (16.07) | 45 (18.99) | |
≥6 | 186 (32.46) | 123 (36.61) | 63 (26.58) | |
Complementary feeding (months) | 0.971 | |||
<6 | 462 (80.63) | 269 (80.06) | 193 (81.43) | |
≥6 | 76 (13.26) | 45 (13.39) | 31 (13.08) |
Erythrocyte Fatty Acids (%) | No Allergic Disease | Any Allergic Disease | p Value |
---|---|---|---|
N = 336 | N = 237 | ||
Total PUFA | 45.92 (43.06, 48.54) | 45.42 (42.49, 47.77) | 0.044 |
n-6-PUFA | 36.27 (33.54, 38.31) | 36.24 (33.20, 38.07) | 0.534 |
AA | 17.58 (15.12, 19.11) | 17.07 (14.33, 18.72) | 0.042 |
LA | 15.29 (13.91, 16.68) | 15.50 (13.79, 17.06) | 0.268 |
GLA | 0.22 (0.14, 0.31) | 0.24 (0.15, 0.32) | 0.131 |
DGLA | 2.45 (2.09, 2.77) | 2.41 (2.05, 2.81) | 0.673 |
n-3-PUFA | 10.01 (7.86, 12.08) | 9.43 (7.75, 10.91) | 0.011 |
ALA | 0.24 (0.18, 0.33) | 0.24 (0.18, 0.35) | 0.739 |
EPA | 0.96 (0.66, 1.36) | 0.87 (0.63, 1.37) | 0.459 |
DHA | 7.24 (5.42, 9.10) | 6.91 (5.07, 8.75) | 0.319 |
DPA | 1.25 (1.00, 1.53) | 1.23 (1.02, 1.51) | 0.519 |
Omega-3 Index | 8.18 (6.51, 10.19) | 8.11 (6.02, 9.68) | 0.276 |
n-6/n-3 | 3.59 (3.08, 4.21) | 3.68 (3.15, 4.22) | 0.259 |
AA/EPA | 17.66 (11.67, 25.80) | 18.65 (11.04, 26.17) | 0.959 |
Erythrocyte Fatty Acids (N = 573) | MODEL1 | MODEL2 | ||
---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | |
Total PUFA | 0.87 (0.75, 0.99) | 0.040 | 0.80 (0.68, 0.94) | 0.008 |
n-6-PUFA | 0.95 (0.83, 1.09) | 0.487 | 0.88 (0.75, 1.04) | 0.126 |
AA | 0.87 (0.73, 1.03) | 0.106 | 0.79 (0.65, 0.97) | 0.025 |
LA | 1.06 (0.91, 1.24) | 0.425 | 1.02 (0.84, 1.23) | 0.840 |
GLA | 1.02 (0.96, 1.09) | 0.540 | 1.02 (0.95, 1.10) | 0.563 |
DGLA | 0.98 (0.83, 1.15) | 0.796 | 0.88 (0.73, 1.07) | 0.201 |
n-3-PUFA | 0.78 (0.65, 0.94) | 0.010 | 0.77 (0.62, 0.97) | 0.024 |
ALA | 0.99 (0.96, 1.03) | 0.746 | 0.99 (0.95, 1.03) | 0.751 |
EPA | 0.94 (0.79, 1.13) | 0.538 | 0.95 (0.76, 1.18) | 0.629 |
DHA | 0.92 (0.77, 1.10) | 0.376 | 0.81 (0.65, 1.01) | 0.059 |
DPA | 0.96 (0.86, 1.06) | 0.376 | 1.00 (0.89, 1.12) | 0.995 |
Omega-3 Index | 0.92 (0.77, 1.09) | 0.343 | 0.82 (0.67, 1.01) | 0.064 |
n-6/n-3 | 1.06 (0.91, 1.23) | 0.473 | 1.09 (0.91, 1.31) | 0.323 |
AA/EPA | 1.02 (0.85, 1.22) | 0.863 | 0.99 (0.79, 1.24) | 0.933 |
Erythrocyte Fatty Acids (N = 573) | Maternal Allergy History [HR (95% CI)] | Maternal Age [HR (95% CI)] | ||||
---|---|---|---|---|---|---|
NO | YES | pb | ≤35 Years | >35 Years | pb | |
Total PUFA | 0.80 (0.67, 0.96) | 0.39 (0.21, 0.72) | 0.028 | 0.75 (0.63, 0.89) | 1.09 (0.64, 1.84) | 0.190 |
n-6-PUFA | 0.91 (0.76, 1.08) | 0.41 (0.23, 0.75) | 0.013 | 0.83 (0.70, 0.98) | 1.07 (0.70, 1.65) | 0.273 |
AA | 0.80 (0.64, 0,99) | 0.55 (0.25, 1.18) | 0.357 | 0.79 (0.63, 0.98) | 0.78 (0.46, 1.34) | 0.975 |
LA | 1.09 (0.88, 1.34) | 0.45 (0.25, 0.81) | 0.006 | 0.90 (0.73, 1.11) | 1.30 (0.88, 1.91) | 0.107 |
GLA | 1.05 (0.98, 1.13) | 0.81 (0.59, 1.13) | 0.135 | 1.03 (0.95, 1.11) | 1.11 (0.73, 1.68) | 0.726 |
DGLA | 0.88 (0.72, 1.09) | 0.50 (0.24, 1.04) | 0.139 | 0.79 (0.64, 0.98) | 1.03 (0.62, 1.71) | 0.349 |
n-3-PUFA | 0.74 (0.58, 0.94) | 0.85 (0.37, 1.93) | 0.760 | 0.72 (0.56, 0.93) | 0.98 (0.57, 1.70) | 0.313 |
ALA | 0.99 (0.95, 1.03) | 0.99 (0.83, 1.17) | 0.954 | 0.99 (0.95, 1.04) | 1.11 (0.92, 1.34) | 0.248 |
EPA | 0.95 (0.75, 1.21) | 0.87 (0.37, 2.00) | 0.827 | 0.94 (0.74, 1.19) | 1.10 (0.68, 1.78) | 0.554 |
DHA | 0.81 (0.65, 1.03) | 0.77 (0.37, 1.59) | 0.879 | 0.79 (0.62, 1.01) | 0.83 (0.49, 1.42) | 0.870 |
DPA | 0.97 (0.85, 1.10) | 1.50 (1.08, 2.08) | 0.015 | 1.01 (0.89, 1.15) | 0.94 (0.68, 1.31) | 0.682 |
Omega-3 Index | 0.83 (0.66, 1.03) | 0.77 (0.38, 1.55) | 0.850 | 0.80 (0.64, 1.01) | 0.87 (0.53, 1.43) | 0.782 |
n-6/n-3 | 1.16 (0.94, 1.43) | 0.71 (0.43, 1.18) | 0.079 | 1.08 (0.88, 1.32) | 1.15 (0.76, 1.74) | 0.779 |
AA/EPA | 0.99 (0.77, 1.26) | 0.98 (0.45, 2.14) | 0.996 | 0.98 (0.76, 1.25) | 0.82 (0.46, 1.46) | 0.586 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, S.; Du, Z.; He, Y.; Zhao, F.; Chen, Y.; Wu, S.; Hao, Y.; Cai, L. Association of Maternal Erythrocyte PUFA during Pregnancy with Offspring Allergy in the Chinese Population. Nutrients 2022, 14, 2312. https://doi.org/10.3390/nu14112312
Peng S, Du Z, He Y, Zhao F, Chen Y, Wu S, Hao Y, Cai L. Association of Maternal Erythrocyte PUFA during Pregnancy with Offspring Allergy in the Chinese Population. Nutrients. 2022; 14(11):2312. https://doi.org/10.3390/nu14112312
Chicago/Turabian StylePeng, Shanshan, Zhicheng Du, Yannan He, Feng Zhao, Yujing Chen, Shengchi Wu, Yuantao Hao, and Li Cai. 2022. "Association of Maternal Erythrocyte PUFA during Pregnancy with Offspring Allergy in the Chinese Population" Nutrients 14, no. 11: 2312. https://doi.org/10.3390/nu14112312
APA StylePeng, S., Du, Z., He, Y., Zhao, F., Chen, Y., Wu, S., Hao, Y., & Cai, L. (2022). Association of Maternal Erythrocyte PUFA during Pregnancy with Offspring Allergy in the Chinese Population. Nutrients, 14(11), 2312. https://doi.org/10.3390/nu14112312