Non-Linear Association between Folate/Vitamin B12 Status and Cognitive Function in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Study Population
2.3. Biochemical Methods
2.4. Cognitive Test Battery
2.5. Covariates
2.6. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2016 Dementia Collaborators. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 88–106. [Google Scholar] [CrossRef] [Green Version]
- Ferri, C.P.; Prince, M.; Brayne, C.; Brodaty, H.; Fratiglioni, L.; Ganguli, M.; Hall, K.; Hasegawa, K.; Hendrie, H.; Huang, Y.; et al. Global prevalence of dementia: A Delphi consensus study. Lancet Lond. Engl. 2005, 366, 2112–2117. [Google Scholar] [CrossRef]
- Ford, A.H.; Almeida, O.P. Effect of Vitamin B Supplementation on Cognitive Function in the Elderly: A Systematic Review and Meta-Analysis. Drugs Aging 2019, 36, 419–434. [Google Scholar] [CrossRef]
- Smith, A.D.; Refsum, H. Homocysteine, B Vitamins, and Cognitive Impairment. Annu. Rev. Nutr. 2016, 36, 211–239. [Google Scholar] [CrossRef]
- Reynolds, E. Vitamin B12, folic acid, and the nervous system. Lancet Neurol. 2006, 5, 949–960. [Google Scholar] [CrossRef]
- Reynolds, E.H. Benefits and risks of folic acid to the nervous system. J. Neurol. Neurosurg. Psychiatry 2002, 72, 567–571. [Google Scholar] [CrossRef] [Green Version]
- Wald, D.S.; Kasturiratne, A.; Simmonds, M. Serum homocysteine and dementia: Meta-analysis of eight cohort studies including 8669 participants. Alzheimers Dement. J. Alzheimers Assoc. 2011, 7, 412–417. [Google Scholar] [CrossRef]
- Durga, J.; van Boxtel, M.P.; Schouten, E.G.; Kok, F.J.; Jolles, J.; Katan, M.B.; Verhoef, P. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: A randomised, double blind, controlled trial. Lancet Lond. Engl. 2007, 369, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Scott, T.M.; Rogers, G.; Weiner, D.E.; Livingston, K.; Selhub, J.; Jacques, P.F.; Rosenberg, I.H.; Troen, A.M. B-Vitamin Therapy for Kidney Transplant Recipients Lowers Homocysteine and Improves Selective Cognitive Outcomes in the Randomized FAVORIT Ancillary Cognitive Trial. J. Prev. Alzheimers Dis. 2017, 4, 174–182. [Google Scholar] [CrossRef]
- Douaud, G.; Refsum, H.; de Jager, C.A.; Jacoby, R.; Nichols, T.E.; Smith, S.M.; Smith, A.D. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc. Natl. Acad. Sci. USA 2013, 110, 9523–9528. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.S.; Selhub, J.; Jacques, P.F. Vitamin B-12 and folate status in relation to decline in scores on the mini-mental state examination in the framingham heart study. J. Am. Geriatr. Soc. 2012, 60, 1457–1464. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.L.; Jun, S.; Murphy, L.; Green, R.; Gahche, J.J.; Dwyer, J.T.; Potischman, N.; McCabe, G.P.; Miller, J.W. High folic acid or folate combined with low vitamin B-12 status: Potential but inconsistent association with cognitive function in a nationally representative cross-sectional sample of US older adults participating in the NHANES. Am. J. Clin. Nutr. 2020, 112, 1547–1557. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, D.; Wang, K.; Kwok, T. High Serum Folate Is Associated with Brain Atrophy in Older Diabetic People with Vitamin B12 Deficiency. J. Nutr. Health Aging 2017, 21, 1065–1071. [Google Scholar] [CrossRef]
- Moore, E.M.; Ames, D.; Mander, A.G.; Carne, R.P.; Brodaty, H.; Woodward, M.C.; Boundy, K.; Ellis, K.A.; Bush, A.I.; Faux, N.G.; et al. Among vitamin B12 deficient older people, high folate levels are associated with worse cognitive function: Combined data from three cohorts. J. Alzheimers Dis. JAD 2014, 39, 661–668. [Google Scholar]
- US Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey: Data Files. Available online: https://wwwn.cdc.gov/nchs/nhanes/nhanes3/datafiles.aspx (accessed on 10 June 2022).
- CDC. NHANES 2011–2012 Laboratory Methods; National Center for Health Statistics: Hyattsville, MD, USA. Available online: https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/labmethods.aspx?BeginYear=2011 (accessed on 8 May 2022).
- CDC. NHANES 2013–2014 Laboratory Methods; National Center for Health Statistics: Hyattsville, MD, USA. Available online: https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/labmethods.aspx?BeginYear=2013 (accessed on 8 May 2022).
- Cichosz, S.L.; Jensen, M.H.; Hejlesen, O. Cognitive impairment in elderly people with prediabetes or diabetes: A cross-sectional study of the NHANES population. Prim. Care Diabetes 2020, 14, 455–459. [Google Scholar] [CrossRef]
- Morris, J.C.; Heyman, A.; Mohs, R.C.; Hughes, J.P.; van Belle, G.; Fillenbaum, G.; Mellits, E.D.; Clark, C. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part, I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 1989, 39, 1159–1165. [Google Scholar]
- Clark, L.J.; Gatz, M.; Zheng, L.; Chen, Y.L.; McCleary, C.; Mack, W.J. Longitudinal verbal fluency in normal aging, preclinical, and prevalent Alzheimer’s disease. Am. J. Alzheimers Dis. Other Dement. 2009, 24, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Henry, J.D.; Crawford, J.R.; Phillips, L.H. Verbal fluency performance in dementia of the Alzheimer’s type: A meta-analysis. Neuropsychologia 2004, 42, 1212–1222. [Google Scholar]
- Brody, D.J.; Kramarow, E.A.; Taylor, C.A.; McGuire, L.C. Cognitive Performance in Adults Aged 60 and Over: National Health and Nutrition Examination Survey, 2011–2014. Natl. Health Stat. Rep. 2019, 126, 1–23. [Google Scholar]
- Pfeiffer, C.M.; Sternberg, M.R.; Fazili, Z.; Yetley, E.A.; Lacher, D.A.; Bailey, R.L.; Johnson, C.L. Unmetabolized folic acid is detected in nearly all serum samples from US children, adolescents, and adults. J. Nutr. 2015, 145, 520–531. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.S.; Jacques, P.F.; Rosenberg, I.H.; Selhub, J. Circulating unmetabolized folic acid and 5-methyltetrahydrofolate in relation to anemia, macrocytosis, and cognitive test performance in American seniors. Am. J. Clin. Nutr. 2010, 91, 1733–1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrington, D.J. Laboratory assessment of vitamin B12 status. J. Clin. Pathol. 2017, 70, 168–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahlqvist, E.; Storm, P.; Käräjämäki, A.; Martinell, M.; Dorkhan, M.; Carlsson, A.; Vikman, P.; Prasad, R.B.; Aly, D.M.; Almgren, P.; et al. Novel subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables. Lancet. Diabetes Endocrinol. 2018, 6, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Berg, C.M.; Lappas, G.; Strandhagen, E.; Wolk, A.; Torén, K.; Rosengren, A.; Aires, N.; Thelle, D.S.; Lissner, L. Food patterns and cardiovascular disease risk factors: The Swedish INTERGENE research program. Am. J. Clin. Nutr. 2008, 88, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Ranti, D.; Warburton, A.J.; Hanss, K.; Katz, D.; Poeran, J.; Moucha, C. K-Means Clustering to Elucidate Vulnerable Subpopulations Among Medicare Patients Undergoing Total Joint Arthroplasty. J. Arthroplast. 2020, 35, 3488–3497. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Xiong, H.; Gao, X.; Wu, J.; Wu, S. Understanding and enhancement of internal clustering validation measures. IEEE Trans. Cybern. 2013, 43, 982–994. [Google Scholar]
- Bailey, R.L.; Dodd, K.W.; Gahche, J.J.; Dwyer, J.T.; McDowell, M.A.; Yetley, E.A.; Sempos, C.A.; Burt, V.L.; Radimer, K.L.; Picciano, M.F. Total folate and folic acid intake from foods and dietary supplements in the United States: 2003–2006. Am. J. Clin. Nutr. 2010, 91, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Field, M.S.; Stover, P.J. Safety of folic acid. Ann. New York Acad. Sci. 2018, 1414, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Bailey, L.B.; Stover, P.J.; McNulty, H.; Fenech, M.F.; Gregory, J.F., 3rd; Mills, J.L.; Pfeiffer, C.M.; Fazili, Z.; Zhang, M.; Ueland, P.M.; et al. Biomarkers of Nutrition for Development-Folate Review. J. Nutr. 2015, 145, 1636s–1680s. [Google Scholar] [CrossRef] [Green Version]
- Colapinto, C.K.; O’Connor, D.L.; Sampson, M.; Williams, B.; Tremblay, M.S. Systematic review of adverse health outcomes associated with high serum or red blood cell folate concentrations. J. Public Health Oxf. Engl. 2016, 38, e84–e97. [Google Scholar] [CrossRef] [Green Version]
- Samson, M.E.; Yeung, L.F.; Rose, C.E.; Qi, Y.P.; Taylor, C.A.; Crider, K.S. Vitamin B-12 malabsorption and renal function are critical considerations in studies of folate and vitamin B-12 interactions in cognitive performance: NHANES 2011–2014. Am. J. Clin. Nutr. 2022. [CrossRef] [PubMed]
- Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P.F.; Rosenberg, I.H.; D’Agostino, R.B.; Wilson, P.W.; Wolf, P.A. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med. 2002, 346, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Green, R.; Allen, L.H.; Bjørke-Monsen, A.L.; Brito, A.; Guéant, J.L.; Miller, J.W.; Molloy, A.M.; Nexo, E.; Stabler, S.; Toh, B.H.; et al. Vitamin B(12) deficiency. Nat. Rev. Dis. Primers 2017, 3, 17040. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, F.; Samman, S. Vitamin B12 in health and disease. Nutrients 2010, 2, 299–316. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.D.; Refsum, H. Vitamin B-12 and cognition in the elderly. Am. J. Clin. Nutr. 2009, 89, 707s–711s. [Google Scholar] [CrossRef] [Green Version]
- Vogiatzoglou, A.; Refsum, H.; Johnston, C.; Smith, S.M.; Bradley, K.M.; de Jager, C.; Budge, M.M.; Smith, A.D. Vitamin B12 status and rate of brain volume loss in community-dwelling elderly. Neurology 2008, 71, 826–832. [Google Scholar] [CrossRef]
- Van Overbeek, E.C.; Staals, J.; van Oostenbrugge, R.J. Vitamin B12 and progression of white matter lesions. A 2-year follow-up study in first-ever lacunar stroke patients. PLoS ONE 2013, 8, e78100. [Google Scholar] [CrossRef] [Green Version]
- Pieters, B.; Staals, J.; Knottnerus, I.; Rouhl, R.; Menheere, P.; Kessels, A.; Lodder, J. Periventricular white matter lucencies relate to low vitamin B12 levels in patients with small vessel stroke. Stroke 2009, 40, 1623–1626. [Google Scholar] [CrossRef] [Green Version]
- Kalita, J.; Misra, U.K. Vitamin B12 deficiency neurological syndromes: Correlation of clinical, MRI and cognitive evoked potential. J. Neurol. 2008, 255, 353–359. [Google Scholar] [CrossRef]
- Vry, M.S.; Haerter, K.; Kastrup, O.; Gizewski, E.; Frings, M.; Maschke, M. Vitamine-B12-deficiency causing isolated and partially reversible leukoencephalopathy. J. Neurol. 2005, 252, 980–982. [Google Scholar] [CrossRef]
Characteristics | Participants, No. (%) | p-Value | ||
---|---|---|---|---|
Total Sample (N = 2204) | Vitamin B12 Status | |||
Low 2 (N = 635) | Normal (N = 1569) | |||
Age, y 1 | 69.07 ± 6.70 | 71.09 ± 6.98 | 68.26 ± 6.42 | <0.001 |
Female, n (%) | 1108 (50.3) | 318 (50.1) | 790 (50.4) | 0.945 |
Race/ethnicity 3, n (%) | <0.001 | |||
MA | 202 (9.2) | 50 (7.9) | 152 (9.7) | |
Hispanic | 232 (10.5) | 60 (9.4) | 172 (11.0) | |
NHW | 1101 (50.0) | 401 (63.1) | 700 (44.6) | |
NHB | 480 (21.8) | 89 (14.0) | 391 (24.9) | |
Other | 189 (8.6) | 35 (5.5) | 154 (9.8) | |
Marital status, n (%) | 0.002 | |||
Married | 1259 (57.1) | 327 (51.5) | 932 (59.4) | |
Widowed | 388 (17.6) | 144 (22.7) | 244 (15.6) | |
Divorced | 316 (14.3) | 91 (14.3) | 225 (14.3) | |
Separated | 53 (2.4) | 17 (2.7) | 36 (2.3) | |
Never married | 122 (5.5) | 34 (5.4) | 88 (5.6) | |
Living with partner | 66 (3.0) | 22 (3.5) | 44 (2.8) | |
Education, n (%) | 0.023 | |||
Less than 9th grade | 230 (10.4) | 82 (12.9) | 148 (9.4) | |
9–11th grade | 291 (13.2) | 89 (14.0) | 202 (12.9) | |
High-school graduate/GED | 510 (23.1) | 155 (24.4) | 355 (22.6) | |
A college or AA degree | 636 (28.9) | 177 (27.9) | 459 (29.3) | |
College graduate or above | 537 (24.4) | 132 (20.8) | 405 (25.8) | |
BMI 3 (kg/m2) 1 | 29.03 ± 6.17 | 29.23 ± 6.74 | 28.95 ± 5.93 | 0.329 |
Alcoholic drinks, n (%) | 1542 (70.0) | 445 (70.1) | 1097 (69.9) | 0.799 |
Smoking, n (%) | 1093 (49.6) | 330 (52.0) | 763 (48.6) | 0.253 |
Hypertension, n (%) | 1310 (59.4) | 395 (62.2) | 915 (58.3) | 0.143 |
Hyperlipidemia, n (%) | 1216 (55.2) | 338 (53.2) | 878 (56.0) | 0.228 |
Diabetes, n (%) | 464 (21.1) | 136 (21.4) | 328 (20.9) | 0.481 |
Nutrient Intake | ||||
Total folate (ug) | 379.75 ± 232.47 | 379.17 ± 240.97 | 379.99 ± 229.02 | 0.94 |
Dietary folic acid (ug) | 165.93 ± 162.73 | 172.15 ± 172.88 | 163.42 ± 158.42 | 0.254 |
Food folate (ug) | 213.85 ± 145.66 | 207.06 ± 128.43 | 216.60 ± 152.03 | 0.164 |
Folate, DFE 3 (ug) Vitamin B12 (ug) Cognitive assessment 3,4 | 495.92 ± 329.51 0.94 ± 2.29 | 499.68 ± 350.43 0.84 ± 2.09 | 494.39 ± 320.76 0.97 ± 2.36 | 0.733 0.222 |
WL < 17 and DR < 5, n (%) | 344 (15.6) | 125 (19.7) | 219 (14.0) | 0.001 |
AF < 14, n (%) | 601 (27.3) | 196 (30.9) | 405 (25.8) | 0.018 |
DSST < 34, n (%) | 476 (21.6) | 167 (26.3) | 309 (19.7) | <0.001 |
Marker | Concentrations | p-Value | |||
---|---|---|---|---|---|
Total Sample (N = 2204) | Cluster | ||||
A (N = 654) | B (N = 1493) | C (N = 57) | |||
RBC folate (nmmol/L) | 1353.79 (643.75) | 2076.02 (550.81) | 1016.17 (295.11) | 1910.47 (999.11) | <0.001 |
Serum total folate (nmmol/L) | 54.4 (33.49) | 79.73 (35.01) | 41.87 (20.59) | 92.11 (73.55) | <0.001 |
5MeTHF (nmmol/L) | 49.82 (28.89) | 72.49 (28.22) | 38.70 (18.81) | 81.11 (61.89) | <0.001 |
Vitamin B12 (pmmol/L) | 510.25 (477.27) | 565.37 (280.17) | 403.22 (216.91) | 2681.36 (1285.76) | <0.001 |
MMA (nmmol/L) | 202.16 (162.43) | 200.57 (138.48) | 205.40 (173.89) | 135.39 (61.64) | 0.006 |
UMFA (nmmol/L) | 2.74 (9.49) | 5.08 (14.37) | 1.49 (4.24) | 8.80 (22.60) | <0.001 |
Characteristics | Participants, No. (%) | p-Value | |||
---|---|---|---|---|---|
Total Sample (N = 2204) | Cluster | ||||
A (N = 654) | B (N = 1493) | C (N = 57) | |||
Female, n (%) | 1108 (50.3) | 378 (57.8) | 694 (46.5) | 36 (63.2) | <0.001 |
Age | 69.07 ± 6.70 | 71.11 ± 6.95 | 68.12 ± 6.38 | 70.63 ± 6.55 | <0.001 |
Race/ethnicity 1, n (%) | <0.001 | ||||
MA | 202 (9.2) | 29 (4.4) | 169 (11.3) | 4 (7.0) | |
Hispanic | 232 (10.5) | 51 (7.8) | 175 (11.7) | 6 (10.5) | |
NHW | 1101 (50.0) | 442 (67.6) | 631 (42.3) | 28 (49.1) | |
NHB | 480 (21.8) | 79 (12.1) | 389 (26.1) | 12 (21.1) | |
Other | 189 (8.6) | 53 (8.1) | 129 (8.6) | 7 (12.3) | |
Marital status, n (%) | 0.016 | ||||
Married | 1259 (57.1) | 389 (59.5) | 840 (56.3) | 30 (52.6) | |
Widowed | 388 (17.6) | 129 (19.7) | 245 (16.4) | 14 (24.6) | |
Divorced | 316 (14.3) | 83 (12.7) | 225 (15.1) | 8 (14.0) | |
Separated | 53 (2.4) | 7 (1.1) | 43 (2.9) | 3 (5.3) | |
Never married | 122 (5.5) | 31 (4.7) | 91 (6.1) | 0 (0.0) | |
Living with partner | 66 (3.0) | 15 (2.3) | 49 (3.3) | 2 (3.5) | |
Education, n (%) | 0.001 | ||||
Less than 9th grade | 230 (10.4) | 43 (6.6) | 181 (12.1) | 6 (10.5) | |
9–11th grade | 291 (13.2) | 94 (14.4) | 189 (12.7) | 8 (14.0) | |
High-school graduate/GED | 510 (23.1) | 147 (22.5) | 351 (23.5) | 12 (12.1) | |
A college or AA degree | 636 (28.9) | 187 (28.6) | 438 (29.3) | 11 (19.3) | |
College graduate or above | 537 (24.4) | 183 (28.0) | 334 (22.4) | 20 (35.1) | |
BMI 1 (kg/m2) 2 | 29.03 ± 6.17 | 29.11 ± 5.98 | 29.02 ± 6.28 | 28.38 ± 5.73 | 0.685 |
Alcoholic drinks, n (%) | 1542 (70.0) | 442 (67.6) | 1063 (71.2) | 37 (64.9) | 0.421 |
Smoking, n (%) | 1093 (49.6) | 296 (45.3) | 775 (51.9) | 22 (38.6) | 0.017 |
Hypertension, n (%) | 1310 (59.4) | 424 (64.8) | 854 (57.2) | 32 (56.1) | 0.014 |
Hyperlipidemia, n (%) | 1216 (55.2) | 393 (60.1) | 793 (53.1) | 30 (52.6) | 0.003 |
Diabetes, n (%) | 464 (21.1) | 142 (21.7) | 306 (20.5) | 16 (8.1) | 0.709 |
Taking treatment for anemia 3, n (%) | 80 (3.6) | 31 (4.7) | 48 (3.2) | 1 (1.8) | 0.337 |
Nutrient intakes 2 | |||||
Total folate (ug) | 379.75 ± 232.47 | 410.07 ± 245.23 | 364.53 ± 214.32 | 430.67 ± 425.98 | <0.001 |
Dietary folic acid (ug) | 165.93 ± 162.73 | 201.87 ± 195.04 | 150.60 ± 142.87 | 155.16 ± 181.36 | <0.001 |
Food folate (ug) | 213.85 ± 145.66 | 208.26 ± 120.57 | 213.94 ± 136.54 | 275.46 ± 405.25 | 0.004 |
Folate, DFE 1 (ug) | 495.92 ± 329.51 | 551.37 (370.67) | 469.98 ± 298.94 | 539.05 ± 482.30 | <0.001 |
Vitamin B12 (ug) | 0.94 ± 2.29 | 1.32 ± 2.50 | 0.75 ± 2.14 | 1.32 ± 2.76 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Z.; Luo, L.; Guo, S.; Shen, Q.; Zheng, Y.; Zhu, S. Non-Linear Association between Folate/Vitamin B12 Status and Cognitive Function in Older Adults. Nutrients 2022, 14, 2443. https://doi.org/10.3390/nu14122443
Ding Z, Luo L, Guo S, Shen Q, Zheng Y, Zhu S. Non-Linear Association between Folate/Vitamin B12 Status and Cognitive Function in Older Adults. Nutrients. 2022; 14(12):2443. https://doi.org/10.3390/nu14122443
Chicago/Turabian StyleDing, Zhe, Lihui Luo, Shaohui Guo, Qing Shen, Yueying Zheng, and Shengmei Zhu. 2022. "Non-Linear Association between Folate/Vitamin B12 Status and Cognitive Function in Older Adults" Nutrients 14, no. 12: 2443. https://doi.org/10.3390/nu14122443
APA StyleDing, Z., Luo, L., Guo, S., Shen, Q., Zheng, Y., & Zhu, S. (2022). Non-Linear Association between Folate/Vitamin B12 Status and Cognitive Function in Older Adults. Nutrients, 14(12), 2443. https://doi.org/10.3390/nu14122443