Dietary Nitrate Intake Is Associated with Decreased Incidence of Open-Angle Glaucoma: The Rotterdam Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Ophthalmic Assessment
2.3. Dietary Nitrate Data
2.4. Covariates
2.5. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Ramdas, W.D. The relation between dietary intake and glaucoma: A systematic review. Acta Ophthalmol. 2018, 96, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Willett, W.C.; Rosner, B.A.; Buys, E.; Wiggs, J.L.; Pasquale, L.R. Association of Dietary Nitrate Intake with Primary Open-Angle Glaucoma: A Prospective Analysis From the Nurses’ Health Study and Health Professionals Follow-up Study. JAMA Ophthalmol. 2016, 134, 294–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, A.L.; Stone, K.L.; Kodjebacheva, G.; Yu, F.; Pedula, K.L.; Ensrud, K.E.; Cauley, J.A.; Hochberg, M.C.; Topouzis, F.; Badala, F.; et al. Glaucoma Risk and the Consumption of Fruits and Vegetables Among Older Women in the Study of Osteoporotic Fractures. Am. J. Ophthalmol. 2008, 145, 1081–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giaconi, J.A.; Yu, F.; Stone, K.L.; Pedula, K.L.; Ensrud, K.E.; Cauley, J.A.; Hochberg, M.C.; Coleman, A.L.; Study of Osteoporotic Fractures Research Group. The association of consumption of fruits/vegetables with decreased risk of glaucoma among older African-American women in the study of osteoporotic fractures. Am. J. Ophthalmol. 2012, 154, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Brkić, D.; Bošnir, J.; Bevardi, M.; Bošković, A.G.; Miloš, S.; Lasić, D.; Krivohlavek, A.; Racz, A.; Ćuić, A.M.; Trstenjak, N.U. Nitrate in Leafy Green Vegetables and Estimated Intake. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 31–41. [Google Scholar]
- Sweazea, K.L.; Johnston, C.S.; Miller, B.; Gumpricht, E. Nitrate-Rich Fruit and Vegetable Supplement Reduces Blood Pressure in Normotensive Healthy Young Males without Significantly Altering Flow-Mediated Vasodilation: A Randomized, Double-Blinded, Controlled Trial. J. Nutr. Metab. 2018, 2018, 1729653. [Google Scholar] [CrossRef]
- Iammarino, M.; Di Taranto, A.; Cristino, M. Monitoring of nitrites and nitrates levels in leafy vegetables (spinach and lettuce): A contribution to risk assessment. J. Sci. Food Agric. 2014, 94, 773–778. [Google Scholar] [CrossRef]
- Morris, M.C.; Wang, Y.; Barnes, L.L.; Bennett, D.A.; Dawson-Hughes, B.; Booth, S.L. Nutrients and bioactives in green leafy vegetables and cognitive decline: Prospective study. Neurology 2018, 90, e214–e222. [Google Scholar] [CrossRef]
- Bauer, V.; Sotníková, R. Nitric oxide—The endothelium-derived relaxing factor and its role in endothelial functions. Gen. Physiol. Biophys. 2010, 29, 319–340. [Google Scholar] [CrossRef]
- Saccà, S.C.; Gandolfi, S.; Bagnis, A.; Manni, G.; Damonte, G.; Traverso, C.E.; Izzotti, A. The Outflow Pathway: A Tissue with Morphological and Functional Unity. J. Cell. Physiol. 2016, 231, 1876–1893. [Google Scholar] [CrossRef] [PubMed]
- Dismuke, W.M.; Mbadugha, C.C.; Ellis, D.Z. NO-induced regulation of human trabecular meshwork cell volume and aqueous humor outflow facility involve the BKCa ion channel. Am. J. Physiol. Cell Physiol. 2008, 294, C1378–C1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamer, W.D.; Lei, Y.; Boussommier-Calleja, A.; Overby, D.R.; Ethier, C.R. eNOS, a pressure-dependent regulator of intraocular pressure. Investig. Ophthalmol. Vis. Sci. 2011, 52, 9438–9444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galassi, F.; Renieri, G.; Sodi, A.; Ucci, F.; Vannozzi, L.; Masini, E. Nitric oxide proxies and ocular perfusion pressure in primary open angle glaucoma. Br. J. Ophthalmol. 2004, 88, 757–760. [Google Scholar] [CrossRef] [Green Version]
- Lidder, S.; Webb, A.J. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate-nitrite-nitric oxide pathway. Br. J. Clin. Pharmacol. 2013, 75, 677–696. [Google Scholar] [CrossRef] [Green Version]
- Doganay, S.; Evereklioglu, C.; Turkoz, Y.; Er, H. Decreased nitric oxide production in primary open-angle glaucoma. Eur. J. Ophthalmol. 2002, 12, 44–48. [Google Scholar] [CrossRef]
- Kotikoski, H.; Vapaatalo, H.; Oksala, O. Nitric oxide and cyclic GMP enhance aqueous humor outflow facility in rabbits. Curr. Eye Res. 2003, 26, 119–123. [Google Scholar] [CrossRef]
- Borghi, V.; Bastia, E.; Guzzetta, M.; Chiroli, V.; Toris, C.B.; Batugo, M.R.; Carreiro, S.T.; Chong, W.K.; Gale, D.C.; Kucera, D.J.; et al. A novel nitric oxide releasing prostaglandin analog, NCX 125, reduces intraocular pressure in rabbit, dog, and primate models of glaucoma. J. Ocul. Pharmacol. Ther. 2010, 26, 125–132. [Google Scholar] [CrossRef]
- Mäepea, O.; Bill, A. The pressures in the episcleral veins, Schlemm’s canal and the trabecular meshwork in monkeys: Effects of changes in intraocular pressure. Exp. Eye Res. 1989, 49, 645–663. [Google Scholar] [CrossRef]
- Mäepea, O.; Bill, A. Pressures in the juxtacanalicular tissue and Schlemm’s canal in monkeys. Exp. Eye Res. 1992, 54, 879–883. [Google Scholar] [CrossRef]
- Ashpole, N.E.; Overby, D.R.; Ethier, C.R.; Stamer, W.D. Shear stress-triggered nitric oxide release from Schlemm’s canal cells. Investig. Ophthalmol. Vis. Sci. 2014, 55, 8067–8076. [Google Scholar] [CrossRef] [PubMed]
- Bondonno, C.P.; Croft, K.D.; Hodgson, J.M. Dietary nitrate, nitric oxide, and cardiovascular health. Crit. Rev. Food Sci. Nutr. 2016, 56, 2036–2052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikram, M.A.; Brusselle, G.G.O.; Murad, S.D.; van Duijn, C.M.; Franco, O.H.; Goedegebure, A.; Klaver, C.C.W.; Nijsten, T.E.C.; Peeters, R.P.; Stricker, B.H.; et al. The Rotterdam Study: 2018 update on objectives, design and main results. Eur. J. Epidemiol. 2017, 32, 807–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, A.L.; Miglior, S. Risk factors for glaucoma onset and progression. Surv. Ophthalmol. 2008, 53 (Suppl. 1), S3–S10. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Shultz, J.M. Impact of aging on eating behaviors, food choices, nutrition, and health status. J. Nutr. Health Aging 2001, 5, 75–79. [Google Scholar] [PubMed]
- Hiza, H.A.; Casavale, K.O.; Guenther, P.M.; Davis, C.A. Diet quality of Americans differs by age, sex, race/ethnicity, income, and education level. J. Acad. Nutr. Diet. 2013, 113, 297–306. [Google Scholar] [CrossRef]
- Grzymisławska, M.; Puch, E.A.; Zawada, A.; Grzymisławski, M. Do nutritional behaviors depend on biological sex and cultural gender? Adv. Clin. Exp. Med. 2020, 29, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Springelkamp, H.; Wolfs, R.C.; Ramdas, W.D.; Hofman, A.; Vingerling, J.R.; Klaver, C.C.; Jansonius, N.M. Incidence of glaucomatous visual field loss after two decades of follow-up: The Rotterdam Study. Eur. J. Epidemiol. 2017, 32, 691–699. [Google Scholar] [CrossRef] [Green Version]
- Dielemans, I.; Vingerling, J.R.; Hofman, A.; Grobbee, D.E.; de Jong, P.T. Reliability of intraocular pressure measurement with the Goldmann applanation tonometer in epidemiological studies. Graefes Arch. Clin. Exp. Ophthalmol. 1994, 232, 141–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikram, M.A.; Brusselle, G.; Ghanbari, M.; Goedegebure, A.; Ikram, M.K.; Kavousi, M.; Kieboom, B.C.T.; Klaver, C.C.W.; de Knegt, R.J.; Luik, A.I.; et al. Objectives, design and main findings until 2020 from the Rotterdam Study. Eur. J. Epidemiol. 2020, 35, 483–517. [Google Scholar] [CrossRef]
- Klipstein-Grobusch, K.; den Breeijen, J.H.; Goldbohm, R.A.; Geleijnse, J.M.; Hofman, A.; Grobbee, D.E.; Witteman, J.C. Dietary assessment in the elderly: Validation of a semiquantitative food frequency questionnaire. Eur. J. Clin. Nutr. 1998, 52, 588–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldbohm, R.A.; van den Brandt, P.A.; Brants, H.A.; van’t Veer, P.; Al, M.; Sturmans, F.; Hermus, R.J. Validation of a dietary questionnaire used in a large-scale prospective cohort study on diet and cancer. Eur. J. Clin. Nutr. 1994, 48, 253–265. [Google Scholar] [PubMed]
- Feunekes, G.I.; Van Staveren, W.A.; De Vries, J.H.; Burema, J.; Hautvast, J.G. Relative and biomarker-based validity of a food-frequency questionnaire estimating intake of fats and cholesterol. Am. J. Clin. Nutr. 1993, 58, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Bogovski, P.; Bogovski, S. Special report animal species in which n-nitroso compounds induce cancer. Int. J. Cancer 1981, 27, 471–474. [Google Scholar] [CrossRef]
- Keszei, A.P.; Goldbohm, R.A.; Schouten, L.J.; Jakszyn, P.; van den Brandt, P.A. Dietary N-nitroso compounds, endogenous nitrosation, and the risk of esophageal and gastric cancer subtypes in the Netherlands Cohort Study. Am. J. Clin. Nutr. 2013, 97, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Knekt, P.; Järvinen, R.; Dich, J.; Hakulinen, T. Risk of colorectal and other gastro-intestinal cancers after exposure to nitrate, nitrite and N-nitroso compounds: A follow-up study. Int. J. Cancer 1999, 80, 852–856. [Google Scholar] [CrossRef]
- Aschebrook-Kilfoy, B.; Ward, M.H.; Gierach, G.L.; Schatzkin, A.; Hollenbeck, A.R.; Sinha, R.; Cross, A.J. Epithelial ovarian cancer and exposure to dietary nitrate and nitrite in the NIH-AARP Diet and Health Study. Eur. J. Cancer Prev. 2012, 21, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Cross, A.J.; Freedman, N.D.; Ren, J.; Ward, M.H.; Hollenbeck, A.R.; Schatzkin, A.; Sinha, R.; Abnet, C.C. Meat consumption and risk of esophageal and gastric cancer in a large prospective study. Am. J. Gastroenterol. 2011, 106, 432–442. [Google Scholar] [CrossRef] [Green Version]
- Dellavalle, C.T.; Daniel, C.R.; Aschebrook-Kilfoy, B.; Hollenbeck, A.R.; Cross, A.J.; Sinha, R.; Ward, M.H. Dietary intake of nitrate and nitrite and risk of renal cell carcinoma in the NIH-AARP Diet and Health Study. Br. J. Cancer 2013, 108, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Blekkenhorst, L.C.; Prince, R.L.; Ward, N.C.; Croft, K.D.; Lewis, J.R.; Devine, A.; Shinde, S.; Woodman, R.J.; Hodgson, J.M.; Bondonno, C.P. Development of a reference database for assessing dietary nitrate in vegetables. Mol. Nutr. Food Res. 2017, 61, 1600982. [Google Scholar] [CrossRef] [Green Version]
- Inoue-Choi, M.; Virk-Baker, M.K.; Aschebrook-Kilfoy, B.; Cross, A.J.; Subar, A.F.; Thompson, F.E.; Sinha, R.; Ward, M.H. Development and calibration of a dietary nitrate and nitrite database in the NIH-AARP Diet and Health Study. Public Health Nutr. 2016, 19, 1934–1943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ATC/DDD Index 2022. Available online: https://www.whocc.no/atc_ddd_index/ (accessed on 14 June 2022).
- Voortman, T.; Kiefte-de Jong, J.C.; Ikram, M.A.; Stricker, B.H.; van Rooij, F.J.A.; Lahousse, L.; Tiemeier, H.; Brusselle, G.G.; Franco, O.H.; Schoufour, J.D. Adherence to the 2015 Dutch dietary guidelines and risk of non-communicable diseases and mortality in the Rotterdam Study. Eur. J. Epidemiol. 2017, 32, 993–1005. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.J.; Bloemberg, B.P.; Saris, W.H.; Merritt, R.K.; Kromhout, D. The prevalence of selected physical activities and their relation with coronary heart disease risk factors in elderly men: The Zutphen Study, 1985. Am. J. Epidemiol. 1991, 133, 1078–1092. [Google Scholar] [CrossRef]
- Stel, V.S.; Smit, J.H.; Pluijm, S.M.; Visser, M.; Deeg, D.J.; Lips, P. Comparison of the LASA Physical Activity Questionnaire with a 7-day diary and pedometer. J. Clin. Epidemiol. 2004, 57, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, B.; Liew, G.; Lewis, J.R.; Blekkenhorst, L.C.; Bondonno, C.; Burlutsky, G.; Hodgson, J.M.; Mitchell, P. Association of dietary nitrate intake with retinal microvascular structure in older adults. Eur. J. Nutr. 2020, 59, 2057–2063. [Google Scholar] [CrossRef]
- McGeechan, K.; Liew, G.; Macaskill, P.; Irwig, L.; Klein, R.; Klein, B.E.K.; Wang, J.J.; Mitchell, P.; Vingerling, J.R.; DeJong, P.T.V.M. Meta-analysis: Retinal vessel caliber and risk for coronary heart disease. Ann. Intern. Med. 2009, 151, 404–413. [Google Scholar] [CrossRef]
- Ikram, M.K.; De Jong, F.J.; Bos, M.J.; Vingerling, J.R.; Hofman, A.; Koudstaal, P.J.; De Jong, P.; Breteler, M.M.B. Retinal vessel diameters and risk of stroke: The Rotterdam Study. Neurology 2006, 66, 1339–1343. [Google Scholar] [CrossRef]
- Chan, K.K.W.; Tang, F.; Tham, C.C.Y.; Young, A.L.; Cheung, C.Y. Retinal vasculature in glaucoma: A review. BMJ Open Ophthalmol. 2017, 1, e000032. [Google Scholar] [CrossRef]
- Mitchell, P.; Leung, H.; Wang, J.J.; Rochtchina, E.; Lee, A.J.; Wong, T.Y.; Klein, R. Retinal vessel diameter and open-angle glaucoma: The Blue Mountains Eye Study. Ophthalmology 2005, 112, 245–250. [Google Scholar] [CrossRef]
- Kawasaki, R.; Wang, J.J.; Rochtchina, E.; Lee, A.J.; Wong, T.Y.; Mitchell, P. Retinal vessel caliber is associated with the 10-year incidence of glaucoma: The Blue Mountains Eye Study. Ophthalmology 2013, 120, 84–90. [Google Scholar] [CrossRef]
- Amerasinghe, N.; Aung, T.; Cheung, N.; Fong, C.W.; Wang, J.J.; Mitchell, P.; Saw, S.M.; Wong, T.Y. Evidence of retinal vascular narrowing in glaucomatous eyes in an Asian population. Investig. Ophthalmol. Vis. Sci. 2008, 49, 5397–5402. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, L.; Wang, Y.; Wang, Y.; Jonas, J.B. Retinal vessel diameter in normal and glaucomatous eyes: The Beijing eye study. Clin. Exp. Ophthalmol. 2007, 35, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Yoo, E.; Yoo, C.; Lee, B.R.; Lee, T.E.; Kim, Y.Y. Diagnostic Ability of Retinal Vessel Diameter Measurements in Open-Angle Glaucoma. Investig. Ophthalmol. Vis. Sci. 2015, 56, 7915–7922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bengtsson, B. Some factors affecting the distribution of intraocular pressures in a population. Acta Ophthalmol. 1972, 50, 33–46. [Google Scholar] [CrossRef]
- Bulpitt, C.J.; Hodes, C.; Everitt, M.G. Intraocular pressure and systemic blood pressure in the elderly. Br. J. Ophthalmol. 1975, 59, 717–720. [Google Scholar] [CrossRef] [Green Version]
- Kahn, H.A.; Leibowitz, H.M.; Ganley, J.P.; Kini, M.M.; Colton, T.; Nickerson, R.S.; Dawber, T.R. The Framingham Eye Study. II. Association of ophthalmic pathology with single variables previously measured in the Framingham Heart Study. Am. J. Epidemiol. 1977, 106, 33–41. [Google Scholar] [CrossRef]
- Klein, B.E.; Klein, R. Intraocular pressure and cardiovascular risk variables. Arch. Ophthalmol. 1981, 99, 837–839. [Google Scholar] [CrossRef]
- Klein, B.E.; Klein, R.; Linton, K.L. Intraocular pressure in an American community. The Beaver Dam Eye Study. Investig. Ophthalmol. Vis. Sci. 1992, 33, 2224–2228. [Google Scholar]
- Wu, S.Y.; Leske, M.C. Associations with intraocular pressure in the Barbados Eye Study. Arch. Ophthalmol. 1997, 115, 1572–1576. [Google Scholar] [CrossRef]
- Tielsch, J.M.; Katz, J.; Sommer, A.; Quigley, H.A.; Javitt, J.C. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch. Ophthalmol. 1995, 113, 216–221. [Google Scholar] [CrossRef]
- Dielemans, I.; Vingerling, J.R.; Algra, D.; Hofman, A.; Grobbee, D.E.; de Jong, P.T. Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population. The Rotterdam Study. Ophthalmology 1995, 102, 54–60. [Google Scholar] [CrossRef]
- Healey, P.R.; Mitchell, P.; Smith, W.; Wang, J.J. The influence of age and intraocular pressure on the optic cup in a normal population. J. Glaucoma 1997, 6, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Foster, P.J.; Machin, D.; Wong, T.Y.; Ng, T.P.; Kirwan, J.F.; Johnson, G.J.; Khaw, P.T.; Seah, S.K. Determinants of intraocular pressure and its association with glaucomatous optic neuropathy in Chinese Singaporeans: The Tanjong Pagar Study. Investig. Ophthalmol. Vis. Sci. 2003, 44, 3885–3891. [Google Scholar] [CrossRef]
- Resch, H.; Garhofer, G.; Fuchsjäger-Mayrl, G.; Hommer, A.; Schmetterer, L. Endothelial dysfunction in glaucoma. Acta Ophthalmologica 2009, 87, 4–12. [Google Scholar] [CrossRef]
- McMonnies, C. Reactive oxygen species, oxidative stress, glaucoma and hyperbaric oxygen therapy. J. Optom. 2018, 11, 3–9. [Google Scholar] [CrossRef]
- Kumar, D.M.; Agarwal, N. Oxidative stress in glaucoma: A burden of evidence. J. Glaucoma 2007, 16, 334–343. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Lerner, S.F.; Brunzini, R.; Evelson, P.A.; Llesuy, S.F. Oxidative stress markers in aqueous humor of glaucoma patients. Am. J. Ophthalmol. 2004, 137, 62–69. [Google Scholar] [CrossRef]
- Izzotti, A.; Saccà, S.C.; Cartiglia, C.; De Flora, S. Oxidative deoxyribonucleic acid damage in the eyes of glaucoma patients. Am. J. Med. 2003, 114, 638–646. [Google Scholar] [CrossRef]
- Chidlow, G.; Schmidt, K.G.; Wood, J.P.; Melena, J.; Osborne, N.N. Alpha-lipoic acid protects the retina against ischemia-reperfusion. Neuropharmacology 2002, 43, 1015–1025. [Google Scholar] [CrossRef]
- Pan, H.; He, M.; Liu, R.; Brecha, N.C.; Yu, A.C.; Pu, M. Sulforaphane protects rodent retinas against ischemia-reperfusion injury through the activation of the Nrf2/HO-1 antioxidant pathway. PLoS ONE 2014, 9, e114186. [Google Scholar] [CrossRef]
- Xu, Y.P.; Han, F.; Tan, J. Edaravone protects the retina against ischemia/reperfusion-induced oxidative injury through the PI3K/Akt/Nrf2 pathway. Mol. Med. Rep. 2017, 16, 9210–9216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seong, H.; Ryu, J.; Yoo, W.S.; Kim, S.J.; Han, Y.S.; Park, J.M.; Kang, S.S.; Seo, S.W. Resveratrol Ameliorates Retinal Ischemia/Reperfusion Injury in C57BL/6J Mice via Downregulation of Caspase-3. Curr. Eye Res. 2017, 42, 1650–1658. [Google Scholar] [CrossRef] [PubMed]
- Renner, M.; Stute, G.; Alzureiqi, M.; Reinhard, J.; Wiemann, S.; Schmid, H.; Faissner, A.; Dick, H.B.; Joachim, S.C. Optic Nerve Degeneration after Retinal Ischemia/Reperfusion in a Rodent Model. Front. Cell. Neurosci. 2017, 11, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Félétou, M.; Vanhoutte, P.M. Endothelium-derived hyperpolarizing factor: Where are we now? Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1215–1225. [Google Scholar] [CrossRef]
- Wink, D.A.; Miranda, K.M.; Espey, M.G.; Pluta, R.M.; Hewett, S.J.; Colton, C.; Vitek, M.; Feelisch, M.; Grisham, M.B. Mechanisms of the antioxidant effects of nitric oxide. Antioxid. Redox Signal. 2001, 3, 203–213. [Google Scholar] [CrossRef]
- Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. The potential benefits of red beetroot supplementation in health and disease. Nutrients 2015, 7, 2801–2822. [Google Scholar] [CrossRef]
- Song, X.; Li, P.; Li, Y.; Yan, X.; Yuan, L.; Zhao, C.; An, Y.; Chang, X. Strong association of glaucoma with atherosclerosis. Sci. Rep. 2021, 11, 8792. [Google Scholar] [CrossRef]
- Song, X.; Li, P.; Yuan, L.; Li, Y.; Yan, X.; Zhao, C.; An, Y.; Chang, X. Strong Association of Glaucoma with Atherosclerosis and Potential Therapeutic Effect of Methazolamide on Atherosclerosis. Res. Sq. 2021, 1–13. [Google Scholar] [CrossRef]
- Lin, S.C.; Pasquale, L.R.; Singh, K.; Lin, S.C. The Association between Body Mass Index and Open-angle Glaucoma in a South Korean Population-based Sample. J. Glaucoma 2018, 27, 239–245. [Google Scholar] [CrossRef]
- Ramdas, W.D.; Wolfs, R.C.; Hofman, A.; de Jong, P.T.; Vingerling, J.R.; Jansonius, N.M. Lifestyle and risk of developing open-angle glaucoma: The Rotterdam study. Arch. Ophthalmol. 2011, 129, 767–772. [Google Scholar] [CrossRef] [Green Version]
- Na, K.-S.; Kim, J.-H.; Paik, J.-S.; Cho, W.-K.; Ha, M.; Park, Y.-G.; Yang, S.-W. Underweight increases the risk of primary open-angle glaucoma in diabetes patients: A Korean nationwide cohort study. Medicine 2020, 99, e19285. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.Y.; Han, K.E.; Jun, R.M.; Choi, K.R. Progression of Visual Field Loss and Body Mass Index in Normal Tension Glaucoma. J. Korean Ophthalmol. Soc. 2017, 58, 1404–1409. [Google Scholar] [CrossRef] [Green Version]
- Berdahl, J.P.; Fleischman, D.; Zaydlarova, J.; Stinnett, S.; Allingham, R.R.; Fautsch, M.P. Body Mass Index Has a Linear Relationship with Cerebrospinal Fluid Pressure. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1422–1427. [Google Scholar] [CrossRef] [PubMed]
- Fleischman, D.; Berdahl, J.P.; Zaydlarova, J.; Stinnett, S.; Fautsch, M.P.; Allingham, R.R. Cerebrospinal fluid pressure decreases with older age. PLoS ONE 2012, 7, e52664. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Stampfer, M.J. Total energy intake: Implications for epidemiologic analyses. Am. J. Epidemiol. 1986, 124, 17–27. [Google Scholar] [CrossRef]
No iOAG (N = 865) | iOAG (N = 173) | p-Value | |
---|---|---|---|
Age, years, mean (SD) | 64.8 (7.0) | 65.7 (6.9) | 0.12 |
Sex, female, N (%) | 460 (53.2) | 92 (53.2) | >0.99 |
Education, N (%) | 0.77 | ||
Primary education | 101 (11.7) | 21 (12.1) | |
Lower education | 376 (43.5) | 78 (45.1) | |
Intermediate education | 250 (28.9) | 53 (30.6) | |
Higher education | 131 (15.1) | 21 (12.1) | |
Smoking status, N (%) | 0.79 | ||
Non-smoker | 281 (32.5) | 54 (31.2) | |
Former smoker | 410 (47.4) | 81 (46.8) | |
Current smoker | 170 (19.7) | 38 (21.9) | |
Hypertension, N (%) | 491 (56.8) | 92 (53.2) | 0.46 |
SBP, mmHg, mean (SD) | 137.6 (20.6) | 136.6 (20.9) | 0.58 |
DBP, mmHg, mean (SD) | 77.1 (11.6) | 75.0 (12.5) | 0.03 |
BMI, kg/m2, mean (SD) | 27.1 (4.1) | 25.9 (3.3) | <0.001 |
Total energy intake, kcal/day, mean (SD) | 2119.1 (594.5) | 2054.3 (515.0) | 0.19 |
Diet quality, mean (SD) | 6.6 (1.9) | 7.0 (1.9) | 0.04 |
Physical activity, MET hours/week, mean (SD) | 0.0 (0.9) | 0.1 (0.9) | 0.07 |
IOP, mmHg, mean (SD) | 14.1 (2.9) | 16.4 (3.9) | <0.001 |
Follow-up time, years, mean (SD) | 9.5 (4.7) | 10.9 (5.3) | <0.001 |
Total dietary nitrate intake, mg/day, mean (SD) | 109.8 (78.4) | 92.8 (47.1) | <0.001 |
Nitrate intake from vegetables, mg/day, mean (SD) | 94.2 (76.3) | 77.4 (45.2) | <0.001 |
Nitrate intake from non-vegetable food sources, mg/day, mean (SD) | 15.6 (7.9) | 15.4 (10.9) | 0.78 |
KERRYPNX | Q1 (N = 205) | Q3 (N = 206) | Q5 (N = 205) | p ANOVA |
---|---|---|---|---|
iOAG, N (%) | 38 (18.5) | 38 (18.4) | 20 (9.8) | 0.07 |
Age, years, mean (SD) | 66.4 (7.1) | 65.7 (6.9) | 62.5 (6.0) | <0.001 |
Sex, female, N (%) | 93 (45.4) | 124 (60.2) | 119 (58.0) | 0.03 |
Education, N (%) | 0.005 | |||
Primary education | 31 (15.1) | 29 (14.1) | 7 (3.4) | |
Lower education | 86 (42.0) | 89 (43.2) | 94 (45.8) | |
Intermediate education | 61 (30.0) | 58 (28.2) | 60 (29.3) | |
Higher education | 24 (11.7) | 28 (13.6) | 43 (21.0) | |
Smoking status, N (%) | 0.73 | |||
Non-smoker | 69 (33.7) | 75 (36.4) | 60 (29.3) | |
Former smoker | 88 (42.9) | 91 (44.2) | 106 (51.7) | |
Current smoker | 46 (22.4) | 40 (19.4) | 39 (19.0) | |
Hypertension, N (%) | 118 (57.5) | 123 (59.7) | 118 (57.6) | 0.39 |
SBP, mmHg, mean (SD) | 140.8 (20.4) | 138.9 (22.9) | 137.0 (19.7) | 0.04 |
DBP, mmHg, mean (SD) | 77.7 (12.3) | 76.5 (12.5) | 78.4 (10.6) | 0.02 |
BMI, kg/m2, mean (SD) | 26.3 (3.6) | 26.8 (3.9) | 28.2 (4.6) | <0.001 |
Total energy intake, kcal/days, mean (SD) | 2233.2 (673.9) | 2024.8 (484.4) | 2140.5 (569.8) | 0.002 |
Diet quality, mean (SD) | 6.0 (1.8) | 7.2 (1.8) | 7.0 (2.0) | <0.001 |
Physical activity, MET hours/week, mean (SD) | −0.1 (0.9) | 0.1 (0.9) | 0.1 (0.9) | 0.06 |
IOP, mmHg, mean (SD) | 14.6 (3.1) | 14.6 (3.1) | 14.1 (3.4) | 0.33 |
Follow-up time, years, mean (SD) | 9.6 (4.5) | 10.4 (5.2) | 9.2 (4.8) | 0.07 |
Total dietary nitrate intake, mg/day, mean (SD) | 48.8 (15.7) | 86.4 (11.4) | 213.0 (91.7) | <0.001 |
Nitrate intake from vegetables, mg/day, mean (SD) | 35.1 (14.5) | 71.2 (10.1) | 196.8 (91.4) | <0.001 |
Nitrate intake from non-vegetable food sources, mg/day, mean (SD) | 13.7 (4.6) | 15.2 (5.7) | 16.3 (6.7) | <0.001 |
Beta a per 1 Unit Increase | p-Value | Q1 | Q2 | Q3 | Q4 | Q5 | p-Trend b | ||
---|---|---|---|---|---|---|---|---|---|
Total dietary nitrate intake (10 mg/day) | Model 1 | 0.02 (−0.02–0.06) | 0.35 | 0.00 | −0.04 (−0.89–0.80) | −0.25 (−1.05–0.55) | −0.22 (−0.98–0.53) | −0.15 (−0.99–0.69) | 0.78 |
Model 2 | 0.02 (−0.02–0.06) | 0.39 | 0.00 | −0.02 (−0.87–0.83) | −0.30 (−1.11–0.50) | −0.23 (−0.99–0.54) | −0.20 (−1.06–0.66) | 0.69 | |
Nitrate intake from vegetables (10 mg/day) | Model 1 | 0.02 (−0.02–0.06) | 0.29 | 0.00 | 0.33 (−0.48–1.13) | 0.17 (−0.61–0.95) | −0.13 (−0.85–0.60) | 0.11 (−0.69–0.91) | 0.91 |
Model 2 | 0.02 (−0.02–0.06) | 0.32 | 0.00 | 0.33 (−0.48–1.14) | 0.18 (−0.61–0.97) | −0.12 (−0.85–0.62) | 0.05 (−0.76–0.87) | 0.82 | |
Nitrate intake from non-vegetable food sources (10 mg/day) | Model 1 | −0.45 (−0.96–0.06) | 0.09 | 0.00 | 0.37 (−0.52–1.25) | 0.05 (−0.73–0.84) | −0.15 (−0.92–0.62) | −0.29 (−1.05–0.47) | 0.09 |
Model 2 | −0.46 (−0.98–0.05) | 0.08 | 0.00 | 0.37 (−0.53–1.26) | 0.05 (−0.74–0.84) | −0.18 (−0.96–0.60) | −0.31 (−1.08–0.45) | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergroesen, J.E.; de Crom, T.O.E.; Blekkenhorst, L.C.; Klaver, C.C.W.; Voortman, T.; Ramdas, W.D. Dietary Nitrate Intake Is Associated with Decreased Incidence of Open-Angle Glaucoma: The Rotterdam Study. Nutrients 2022, 14, 2490. https://doi.org/10.3390/nu14122490
Vergroesen JE, de Crom TOE, Blekkenhorst LC, Klaver CCW, Voortman T, Ramdas WD. Dietary Nitrate Intake Is Associated with Decreased Incidence of Open-Angle Glaucoma: The Rotterdam Study. Nutrients. 2022; 14(12):2490. https://doi.org/10.3390/nu14122490
Chicago/Turabian StyleVergroesen, Joëlle E., Tosca O. E. de Crom, Lauren C. Blekkenhorst, Caroline C. W. Klaver, Trudy Voortman, and Wishal D. Ramdas. 2022. "Dietary Nitrate Intake Is Associated with Decreased Incidence of Open-Angle Glaucoma: The Rotterdam Study" Nutrients 14, no. 12: 2490. https://doi.org/10.3390/nu14122490
APA StyleVergroesen, J. E., de Crom, T. O. E., Blekkenhorst, L. C., Klaver, C. C. W., Voortman, T., & Ramdas, W. D. (2022). Dietary Nitrate Intake Is Associated with Decreased Incidence of Open-Angle Glaucoma: The Rotterdam Study. Nutrients, 14(12), 2490. https://doi.org/10.3390/nu14122490