1H NMR-Based Metabolomics Reveals the Intrinsic Interaction of Age, Plasma Signature Metabolites, and Nutrient Intake in the Longevity Population in Guangxi, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enrollment of Participants
2.2. Assessment of Dietary Nutrition Status
2.3. Sample Collection and Preparation
2.4. NMR Data Acquisition and Analysis
2.5. Plasma Metabolites Identification
2.6. Statistical Analysis
3. Results
3.1. Nutrient Intakes in Participants
3.2. 1H NMR Blood Plasma Metabolites Identification
3.3. Multivariate Analysis of the Plasma Metabolites
3.4. Differential Analysis of Potential Plasma Metabolic Markers Associated with Longevity
3.5. Enrichment Analysis of Metabolic Pathways Associated with Differential Metabolites
3.6. Correlation Analysis between Nutrient Intake and Plasma Metabolites
3.7. Change in Plasma Signature Metabolites Is Associated with Age in Longevous Region Participants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fontana, L.; Partridge, L. Promoting health and longevity through diet: From model organisms to humans. Cell 2015, 161, 106–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, C.L.; Lamming, D.W.; Fontana, L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat. Rev. Mol. Cell Biol. 2022, 23, 56–73. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvado, J.; Covas, M.I.; Corella, D.; Aros, F.; Gomez-Gracia, E.; Ruiz-Gutierrez, V.; Fiol, M.; Lapetra, J.; et al. Retraction and Republication: Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. N. Engl. J. Med. 2018, 378, 2441–2442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertram, H.C.; Larsen, L.B.; Chen, X.; Jeppesen, P.B. Impact of high-fat and high-carbohydrate diets on liver metabolism studied in a rat model with a systems biology approach. J. Agric. Food Chem. 2012, 60, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Macias, S.; Kirma, J.; Yilmaz, A.; Moore, S.E.; McKinley, M.C.; McKeown, P.P.; Woodside, J.V.; Graham, S.F.; Green, B.D. Application of 1H-NMR Metabolomics for the Discovery of Blood Plasma Biomarkers of a Mediterranean Diet. Metabolites 2019, 9, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, G.; Hasan, M.; Kwon, O.S.; Jung, B.H. Identification of Altered Metabolic Pathways during Disease Progression in EAE Mice via Metabolomics and Lipidomics. Neuroscience 2019, 416, 74–87. [Google Scholar] [CrossRef] [PubMed]
- van der Spek, A.; Broer, L.; Draisma, H.; Pool, R.; Albrecht, E.; Beekman, M.; Mangino, M.; Raag, M.; Nyholt, D.R.; Dharuri, H.K.; et al. Metabolomics reveals a link between homocysteine and lipid metabolism and leukocyte telomere length: The ENGAGE consortium. Sci. Rep. 2019, 9, 11623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, M.M.; Perlman, G.; Kim, N.; Wu, C.Y.; Daher, V.; Zhou, A.; Mathers, E.H.; Anita, N.Z.; Lanctot, K.L.; Herrmann, N.; et al. Depression in type 2 diabetes: A systematic review and meta-analysis of blood inflammatory markers. Psychoneuroendocrinology 2021, 134, 105448. [Google Scholar] [CrossRef]
- Yang, F.; Li, Q.; Xiang, J.; Zhang, H.; Tang, Y. NMR-based Plasma Metabolomics of Adult B-cell Acute Lymphoblastic Leukemia. Mol. Omics 2021, 17, 153–159. [Google Scholar] [CrossRef]
- Kovalik, J.P.; Zhao, X.; Gao, F.; Leng, S.; Chow, V.; Chew, H.; Teo, L.; Tan, R.S.; Ewe, S.H.; Tan, H.C.; et al. Amino acid differences between diabetic older adults and non-diabetic older adults and their associations with cardiovascular function. J. Mol. Cell. Cardiol. 2021, 158, 63–71. [Google Scholar] [CrossRef]
- Weng, J.; Muti, I.H.; Zhong, A.B.; Kivisakk, P.; Hyman, B.T.; Arnold, S.E.; Cheng, L.L. A Nuclear Magnetic Resonance Spectroscopy Method in Characterization of Blood Metabolomics for Alzheimer’s Disease. Metabolites 2022, 12, 181. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.C.; Parker, K.; Aguirre, B.F.; Nemkov, T.G.; D’Alessandro, A.; Johnson, S.A.; Seals, D.R.; Martens, C.R. The plasma metabolome as a predictor of biological aging in humans. Geroscience 2019, 41, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Montoliu, I.; Scherer, M.; Beguelin, F.; DaSilva, L.; Mari, D.; Salvioli, S.; Martin, F.P.; Capri, M.; Bucci, L.; Ostan, R.; et al. Serum profiling of healthy aging identifies phospho- and sphingolipid species as markers of human longevity. Aging 2014, 6, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Koulman, A.; Volmer, D.A. Perspectives for Metabolomics in Human Nutrition: An Overview. Nutr. Bull. 2008, 33, 324–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, D.; Zhao, S.; Li, D.; Chang, F.; Tian, X.; Huang, G.; Zhu, Z.; Liu, D.; Dou, X.; Li, S.; et al. Nutrient Intake Is Associated with Longevity Characterization by Metabolites and Element Profiles of Healthy Centenarians. Nutrients 2016, 8, 564. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Ren, M.; He, Q.; Gao, J.; Li, Q. Revealing the Longevity Code of Humans with up to Extreme Longevity in Guangxi Based on Physical Examination Indicators and Personalized Biomarkers of Aging. BioMed Res. Int. 2022, 2022, 2810379. [Google Scholar] [CrossRef]
- Ke, L.; Toshiro, T.; Fengyan, S.; Ping, Y.; Xiaoling, D.; Kazuo, T. Relative validity of a semi-quantitative food frequency questionnaire versus 3 day weighed diet records in middle-aged inhabitants in Chaoshan area, China. Asian Pac. J. Cancer Prev. 2005, 6, 376–381. [Google Scholar]
- Tokudome, S.; Imaeda, N.; Tokudome, Y.; Fujiwara, N.; Nagaya, T.; Sato, J.; Kuriki, K.; Ikeda, M.; Maki, S. Relative validity of a semi-quantitative food frequency questionnaire versus 28 day weighed diet records in Japanese female dietitians. Eur. J. Clin. Nutr. 2001, 55, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Shuai, P.; Qiao, Q.; Li, T. Validity and reliability of a simplified food frequency questionnaire: A cross sectional study among physical health examination adults in southwest region of China. Nutr. J. 2020, 19, 114. [Google Scholar] [CrossRef]
- Zhuang, M.; Yuan, Z.; Lin, L.; Hu, B.; Wang, X.; Yang, Y.; Chen, X.; Jin, L.; Lu, M.; Ye, W. Reproducibility and relative validity of a food frequency questionnaire developed for adults in Taizhou, China. PLoS ONE 2012, 7, e48341. [Google Scholar] [CrossRef] [Green Version]
- Almanza-Aguilera, E.; Urpi-Sarda, M.; Llorach, R.; Vázquez-Fresno, R.; Garcia-Aloy, M.; Carmona, F.; Sanchez, A.; Madrid-Gambin, F.; Estruch, R.; Corella, D. Microbial metabolites are associated with a high adherence to a Mediterranean dietary pattern using a 1H-NMR-based untargeted metabolomics approach. J. Nutr. Biochem. 2017, 48, 36–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennan, L. NMR-based metabolomics: From sample preparation to applications in nutrition research. Prog. Nucl. Magn. Reason. Spectrosc. 2014, 83, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Ge, I.; Kirschen, G.W.; Wang, X. Shifted Dynamics of Glucose Metabolism in the Hippocampus During Aging. Front. Aging Neurosci. 2021, 13, 700306. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Zhan, Y.; Xue, R.; Wu, Y.; Li, X.; Pei, F. Gd-DTPA-induced dynamic metabonomic changes in rat biofluids. Magn. Reson. Imaging 2017, 44, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.F.; Gong, W.X.; Zheng, Y.H.; Li, J.W.; Zhou, Y.Z.; Qin, X.M.; Du, G.H. Urinary metabolomics study of the effects of Scutellaria baicalensis Georgi ethanol extract on D-galactose-induced rats. Yao Xue Xue Bao 2016, 51, 86–92. [Google Scholar] [PubMed]
- Mota-Martorell, N.; Jove, M.; Borras, C.; Berdun, R.; Obis, E.; Sol, J.; Cabre, R.; Pradas, I.; Galo-Licona, J.D.; Puig, J.; et al. Methionine transsulfuration pathway is upregulated in long-lived humans. Free Radic. Biol. Med. 2021, 162, 38–52. [Google Scholar] [CrossRef]
- Ma, S.; Upneja, A.; Galecki, A.; Tsai, Y.M.; Burant, C.F.; Raskind, S.; Zhang, Q.; Zhang, Z.D.; Seluanov, A.; Gorbunova, V.; et al. Cell culture-based profiling across mammals reveals DNA repair and metabolism as determinants of species longevity. eLife 2016, 5, e19130. [Google Scholar] [CrossRef] [Green Version]
- Darst, B.F.; Koscik, R.L.; Hogan, K.J.; Johnson, S.C.; Engelman, C.D. Longitudinal plasma metabolomics of aging and sex. Aging 2019, 11, 1262–1282. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.C.; Blusztajn, J.K.; Caudill, M.A.; Klatt, K.C.; Natker, E.; Zeisel, S.H.; Zelman, K.M. Choline: The Underconsumed and Underappreciated Essential Nutrient. Nutr. Today 2018, 53, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Poly, C.; Massaro, J.M.; Seshadri, S.; Wolf, P.A.; Cho, E.; Krall, E.; Jacques, P.F.; Au, R. The relation of dietary choline to cognitive performance and white-matter hyperintensity in the Framingham Offspring Cohort. Am. J. Clin. Nutr. 2011, 94, 1584–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Iavicoli, I.; Di Paola, R.; Koverech, A.; Cuzzocrea, S.; Rizzarelli, E.; Calabrese, E.J. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim. Biophys. Acta 2012, 1822, 753–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rattray, N.; Trivedi, D.K.; Xu, Y.; Chandola, T.; Johnson, C.H.; Marshall, A.D.; Mekli, K.; Rattray, Z.; Tampubolon, G.; Vanhoutte, B.; et al. Metabolic dysregulation in vitamin E and carnitine shuttle energy mechanisms associate with human frailty. Nat. Commun. 2019, 10, 5027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burks, S.; Raymick, J.; Robinson, B.; Hanig, J.; Sarkar, S. Neuroprotective effects of acetyl-l-carnitine (ALC) in a chronic MPTP-induced Parkinson’s disease mouse model: Endothelial and microglial effects. Neurosci. Lett. 2019, 703, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Brennan, L.; Manach, C.; Andres-Lacueva, C.; Dragsted, L.O.; Draper, J.; Rappaport, S.M.; van der Hooft, J.J.; Wishart, D.S. The food metabolome: A window over dietary exposure. Am. J. Clin. Nutr. 2014, 99, 1286–1308. [Google Scholar] [CrossRef] [Green Version]
- Malinowska, A.M.; Szwengiel, A.; Chmurzynska, A. Dietary, anthropometric, and biochemical factors influencing plasma choline, carnitine, trimethylamine, and trimethylamine-N-oxide concentrations. Int. J. Food Sci. Nutr. 2017, 68, 488–495. [Google Scholar] [CrossRef]
- Xie, G.; Li, X.; Li, H.; Jia, W. Toward personalized nutrition: Comprehensive phytoprofiling and metabotyping. J. Proteome Res. 2013, 12, 1547–1559. [Google Scholar] [CrossRef]
- Holmes, E.; Loo, R.L.; Stamler, J.; Bictash, M.; Yap, I.K.; Chan, Q.; Ebbels, T.; De Iorio, M.; Brown, I.J.; Veselkov, K.A.; et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 2008, 453, 396–400. [Google Scholar] [CrossRef]
- Davinelli, S.; Willcox, D.C.; Scapagnini, G. Extending healthy ageing: Nutrient sensitive pathway and centenarian population. Immun. Ageing 2012, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Nik, M.F.N.; Shahar, S.; Ismail, I.S.; Ahmad, A.A.; Rajab, N.F. Urine Untargeted Metabolomic Profiling Is Associated with the Dietary Pattern of Successful Aging among Malaysian Elderly. Nutrients 2020, 12, 2900. [Google Scholar]
LRC (n = 27) | LRN (n = 37) | LRE (n = 26) | NLRE (n = 27) | |
---|---|---|---|---|
Age | 103.41 ± 4.14 | 93.00 ± 2.17 | 70.08 ± 8.24 | 71.84 ± 7.59 |
Height (cm) | 142.67 ± 6.59 | 145.08 ± 8.44 | 157.65 ± 9.07 | 157.48 ± 5.96 |
Weight (Kg) | 39.25 ± 4.94 | 40.25 ± 9.27 | 56.29 ± 13.97 | 57.71 ± 9.57 |
BMI (kg/m2) | 19.30 ± 2.18 | 19.01 ± 3.29 | 22.33 ± 3.91 | 23.23 ± 3.3 |
Female/Male | 3/24 | 8/29 | 9/17 | 14/13 |
LRC | LRN | LRE | NLRE | |
---|---|---|---|---|
Energy (Kcal) | 1313.46 ± 107.72 a | 1398.75 ± 108.07 a | 1586.03 ± 155.5 b | 1742.58 ± 114.61 c |
Protein (g) | 39.9 ± 3.65 a | 40.97 ± 3.24 a | 54.58 ± 6.22 b | 61.01 ± 7.22 c |
Fat (g) | 40.05 ± 5.29 a | 42.39 ± 4.02 a | 62.81 ± 10.21 b | 76.73 ± 8.18 c |
SFA (g) | 4.98 ± 0.57 a | 5.13 ± 0.77 a | 6.91 ± 1.1 b | 9.08 ± 1.16 c |
MUFA (g) | 8.13 ± 1.00 a | 8.31 ± 0.85 a | 11.62 ± 1.91 b | 15.38 ± 1.99 c |
PUFA (g) | 7.21 ± 0.9 a | 7.53 ± 1.18 a | 10.55 ± 1.64 b | 14.87 ± 2.33 c |
Cholesterol (mg) | 189.96 ± 46.55 a | 197.75 ± 15.59 a | 311.84 ± 66.91 b | 378.46 ± 168.6 c |
Carbohydrate (g) | 213.56 ± 20.75 b | 218.46 ± 16.86 b | 226.95 ± 13.78 b | 207.15 ± 22.47 a |
Dietary fiber (g) | 29.26 ± 3.61 b | 29.93 ± 2.56 b | 30.73 ± 2.15 b | 16.93 ± 1.48 a |
Vitamin A (μgRE) | 1287 ± 590.19 b | 1313.28 ± 227.57 b | 1592.8 ± 616.39 c | 855.75 ± 376.23 a |
Vitamin B1 (mg) | 0.68 ± 0.06 a | 0.69 ± 0.04 a | 0.89 ± 0.10 ab | 0.95 ± 0.11 b |
Riboflavin (mg) | 0.79 ± 0.10 a | 0.82 ± 0.07 a | 1.05 ± 0.15 b | 1.09 ± 0.17 b |
Vitamin B6 (mg) | 0.49 ± 0.05 a | 0.49 ± 0.04 a | 0.52 ± 0.09 ab | 0.55 ± 0.25 a |
Folic Acid (μg) | 174.83 ± 16.72 a,b | 169.8 ± 10.96 a | 187.92 ± 25.00 b | 225.12 ± 101.68 c |
Nicotinic Acid (mg) | 9.5 ± 1.22 a | 10.42 ± 1.45 a | 13.84 ± 1.80 b | 15.72 ± 3.00 c |
Vitamin C (mg) | 69.77 ± 17.39 a,b | 67.49 ± 13.7 a,b | 61.24 ± 19.22 a | 74.56 ± 21.28 b |
Vitamin E (mg) | 19.85 ± 1.05 a,b | 19.57 ± 1.44 a,b | 17.77 ± 2.17 a | 22.61 ± 2.77 b |
Vitamin K (μg) | 393.57 ± 39.25 a,b | 404.29 ± 32.3 a,b | 380.22 ± 60.55 a | 422.27 ± 226.75 b |
Choline (mg) | 162.62 ± 22.09 b | 172.48 ± 23.2 b,c | 181.56 ± 23.42 c | 135.75 ± 21.09 a |
Calcium (mg) | 450.19 ± 52.66 a,b | 452.25 ± 51.24 a,b | 431.91 ± 98.93 a | 475.04 ± 114.91 b |
Phosphorus (mg) | 702.25 ± 54.72 a | 720.16 ± 69.12 a | 818.21 ± 101.72 a,b | 954.99 ± 86.54 b |
Potassium (mg) | 1580.6 ± 158.27 a | 1612.34 ± 108.16 a | 1796.21 ± 270.81 a,b | 1918.65 ± 367.79 b |
Sodium (mg) | 1648.18 ± 102.65 a | 1688.02 ± 252.41 a,b | 1801 ± 251.74 b | 2298 ± 274.3 c |
Magnesium (mg) | 323.07 ± 32.81 a | 385.02 ± 26.40 b | 430.03 ± 54.7 b | 330.75 ± 25.02 a |
Iron (mg) | 13.33 ± 1.74 a | 13.91 ± 1.69 a | 15.94 ± 3.59 b | 15.6 ± 1.95 b |
Zinc (mg) | 6.06 ± 1.76 a | 6.66 ± 1.02 a | 7.87 ± 1.99 b | 8.08 ± 2.07 b |
Selenium (μg) | 24.65 ± 3.73 a | 26.43 ± 2.38 a | 31.84 ± 5.92 b | 32.05 ± 7.04 b |
Copper (mg) | 3.37 ± 0.67 a | 3.72 ± 0.72 b | 3.75 ± 0.64 b | 3.24 ± 0.88 a |
Manganese (mg) | 3.05 ± 0.67 a | 3.22 ± 0.63 a | 3.88 ± 0.58 b | 3.65 ± 0.61 b |
Chemical Shift (ppm) | FC 1 | |||
---|---|---|---|---|
LRC vs. NLRE | LRN vs. NLRE | LRE vs. NLRE | ||
Lipid (VLDL) | 0.86 | −0.37 | −0.77 | −0.69 |
Lactate | 1.32 | −0.79 | −0.97 | −0.74 |
Alanine | 1.47 | −1.45 | −1.41 | −1.44 |
NAG | 2.03 | −0.45 | −0.87 | −0.86 |
Citrate | 2.53 | +0.66 | +0.78 | +0.64 |
Tyrosine | 3.14 | +0.68 | +0.70 | +0.55 |
Choline | 3.20 | +0.96 | +2.18 | +1.79 |
Carnitine | 3.21 | +0.62 | +1.20 | +1.27 |
TMAO | 3.26 | −0.75 | −0.83 | −1.10 |
β-Glucose | 3.46 | / | −0.49 | −0.61 |
α-Glucose | 3.53 | −0.38 | −0.78 | −0.88 |
Valine | 3.60 | +1.20 | +1.36 | +1.30 |
Unsaturated Lipid | 5.29 | −0.91 | −1.09 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Ren, M.; Li, Q. 1H NMR-Based Metabolomics Reveals the Intrinsic Interaction of Age, Plasma Signature Metabolites, and Nutrient Intake in the Longevity Population in Guangxi, China. Nutrients 2022, 14, 2539. https://doi.org/10.3390/nu14122539
Li H, Ren M, Li Q. 1H NMR-Based Metabolomics Reveals the Intrinsic Interaction of Age, Plasma Signature Metabolites, and Nutrient Intake in the Longevity Population in Guangxi, China. Nutrients. 2022; 14(12):2539. https://doi.org/10.3390/nu14122539
Chicago/Turabian StyleLi, He, Minhong Ren, and Quanyang Li. 2022. "1H NMR-Based Metabolomics Reveals the Intrinsic Interaction of Age, Plasma Signature Metabolites, and Nutrient Intake in the Longevity Population in Guangxi, China" Nutrients 14, no. 12: 2539. https://doi.org/10.3390/nu14122539
APA StyleLi, H., Ren, M., & Li, Q. (2022). 1H NMR-Based Metabolomics Reveals the Intrinsic Interaction of Age, Plasma Signature Metabolites, and Nutrient Intake in the Longevity Population in Guangxi, China. Nutrients, 14(12), 2539. https://doi.org/10.3390/nu14122539