Comparison of Quality of Carbohydrate Metrics Related to Fasting Insulin, Glycosylated Hemoglobin and HOMA-IR in Brazilian Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Response Rates
2.2. Variables and Missing Data
2.3. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ojo, O.; Ojo, O.O.; Adebowale, F.; Wang, X.H. The effect of dietary glycaemic index on glycaemia in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2018, 10, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, D.E.; Elliott, E.J. The use of low-glycaemic index diets in diabetes control. Br. J. Nutr. 2010, 104, 797–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venn, B.J.; Green, T.J. Glycemic index and glycemic load: Measurement issues and their effect on diet–disease relationships. Eur. J. Clin. Nutr. 2007, 61, S122–S131. [Google Scholar] [CrossRef] [PubMed]
- Vega-López, S.; Venn, B.J.; Slavin, J.L. Relevance of the glycemic index and glycemic load for body weight, diabetes, and cardiovascular disease. Nutrients 2018, 10, 1361. [Google Scholar] [CrossRef] [Green Version]
- Clar, C.; Al-Khudairy, L.; Loveman, E.; Kelly, S.A.M.; Hartley, L.; Flowers, N.; Germanò, R.; Frost, G.; Rees, K. Low glycaemic index diets for the prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2017, 2021, CD004467. [Google Scholar] [CrossRef] [Green Version]
- Nicholl, A.; du Heaume, M.; Mori, T.A.; Beilin, L.J.; Oddy, W.H.; Bremner, A.P.; O’Sullivan, T.A. Higher breakfast glycaemic load is associated with increased metabolic syndrome risk, including lower HDL-cholesterol concentrations and increased TAG concentrations, in adolescent girls. Br. J. Nutr. 2014, 112, 1974–1983. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Hou, D.; Zhao, X.; Wang, L.; Hu, Y.; Liu, J.; Cheng, H.; Yang, P.; Shan, X.; Yan, Y.; et al. Childhood obesity affects adult metabolic syndrome and diabetes. Endocrine 2015, 50, 87–92. [Google Scholar] [CrossRef]
- Murni, I.K.; Sulistyoningrum, D.C.; Susilowati, R.; Julia, M. Risk of metabolic syndrome and early vascular markers for atherosclerosis in obese Indonesian adolescents. Paediatr. Int. Child Health 2019, 40, 117–123. [Google Scholar] [CrossRef]
- Weihe, P.; Weihrauch-Blüher, S. Metabolic syndrome in children and adolescents: Diagnostic criteria, therapeutic options and perspectives. Curr. Obes. Rep. 2019, 8, 472–479. [Google Scholar] [CrossRef]
- Zimmet, P.; Alberti, K.G.M.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S.; et al. The metabolic syndrome in children and adolescents? An IDF consensus report. Pediatr. Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef]
- Bloch, K.V.; Szklo, M.; Kuschnir, M.C.C.; de Azevedo Abreu, G.; Barufaldi, L.A.; Klein, C.H.; de Vasconcelos, M.T.; da Veiga, G.V.; Figueiredo, V.C.; Dias, A.; et al. The study of cardiovascular risk in adolescents—ERICA: Rationale, design and sample characteristics of a national survey examining cardiovascular risk actor profile in Brazilian adolescents. BMC Public Health 2015, 15, 94. [Google Scholar]
- De Vasconcellos, M.T.L.; Silva, P.L.D.N.; Szklo, M.; Kuschnir, M.C.C.; Klein, C.H.; Abreu, G.D.A.; Barufaldi, L.A.; Bloch, K.V. Sampling design for the Study of Cardiovascular Risks in Adolescents (ERICA). Cad. Saude Publica 2015, 31, 921–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, T.L.N.; Klein, C.H.; Souza, A.D.M.; Barufaldi, L.A.; Abreu, G.D.A.; Kuschnir, M.C.C.; de Vasconcellos, M.T.L.; Bloch, K.V. Response rate in the study of cardiovascular risks in adolescents—ERICA. Rev. Saude Publica 2016, 50, 1s–13s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conwell, L.S.; Trost, S.G.; Brown, W.J.; Lote, J.A. Indexes of insulin resistance and secretion in obese children and adolescents: A validation study. Diabetes Care 2004, 27, 314–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, R.P.; Vicini, P.; Cobelli, C. Pubertal changes in HOMA and QUICKI: Relationship to hepatic and peripheral insulin sensitivity. Pediatr. Diabetes 2004, 5, 122–125. [Google Scholar] [CrossRef]
- Keskin, M.; Kurtoglu, S.; Kendirci, M.; Atabek, M.E.; Yazici, C. Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics 2005, 115, e500–e503. [Google Scholar] [CrossRef] [Green Version]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clementes, J.C.; Rumpler, W.V.; Paulo, D.R.; Sebastião, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Pesquisa de Orçamentos Familiares—POF 2008–2010: Tabelas de Composição Nutricional dos Alimentos Consumidos no Brasil; Instituto Brasileiro de Geografia e Estatística (IBGE): Rio de Janeiro, Brazil, 2011. (In Portuguese)
- The University of Sydney. Glycemic Index. Available online: https://www.glycemicindex.com/index.php (accessed on 1 October 2018).
- Balisteiro, D.M. Efeito dos Compostos Fenólicos de Frutas Nativas Brasileiras na Glicemia pós Prandial. Master’s Thesis, Universidade de São Paulo, São Paulo, Brazil, 2013. [Google Scholar]
- Cardoso, A.M.C. Índice glicêmico de alimentos típicos da Amazônia. Rev. Bras. Nutr. Clínica 2003, 18, 190–192. [Google Scholar]
- Cordenunsi, B.R.; de Menezes, E.W.; Genovese, M.I.; Colli, C.; de Souza, A.G.; Lajolo, F.M. Chemical composition and glycemic index of Brazilian pine (Araucaria angustifolia) seeds. J. Agric. Food Chem. 2004, 52, 3412–3416. [Google Scholar] [CrossRef]
- Foster-Powell, K.; Holt, S.H.; Brand-Miller, J.C. International table of glycemic index and glycemic load values: 2002. Am. J. Clin. Nutr. 2002, 76, 5–56. [Google Scholar] [CrossRef] [Green Version]
- Oriondo, R.; Valdivieso, R.; Oré, R.; Arnao, I.; Palomino, M.; Estrada, E. Evaluación de la capacidad antioxidante y el índice glicémico de los frutos promisorios amazónicos del Perú. An. Fac. Med. 2013, 73, 19. [Google Scholar] [CrossRef] [Green Version]
- Passos, T.U.; Sampaio, H.A.D.C.; Sabry, M.O.D.; De Melo, M.L.P.; Coelho, M.A.M.; Lima, J.W.D.O. Glycemic index and glycemic load of tropical fruits and the potential risk for chronic diseases. Food Sci. Technol. 2015, 35, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations; World Health Organization (Eds.) Carbohydrates in Human Nutrition: Report of a Joint FAO/WHO Expert Consultation, Rome, 14–18 April 1997; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- De Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- DeBoer, M.D. Assessing and managing the metabolic syndrome in children and adolescents. Nutrients 2019, 11, 1788. [Google Scholar] [CrossRef] [Green Version]
- Marson, E.C.; Delevatti, R.S.; Prado, A.K.G.; Netto, N.; Kruel, L.F.M. Effects of aerobic, resistance, and combined exercise training on insulin resistance markers in overweight or obese children and adolescents: A systematic review and meta-analysis. Prev. Med. 2016, 93, 211–218. [Google Scholar] [CrossRef]
- Sallis, J.F.; Strikmiller, P.K.; Harsha, D.W.; Feldman, H.A.; Ehlinger, S.; Stone, E.J.; Williston, J.; Woods, S. Validation of interviewer- and self-administered physical activity checklists for fifth grade students. Med. Sci. Sports Exerc. 1996, 28, 840–851. [Google Scholar] [CrossRef]
- Zdravković, V.; Sajić, S.; Mitrović, J.; Stefanović, I.; Pavićević, P.; Nikolić, D.; Dimić, J.; Lalić, N.M. The diagnosis of prediabetes in adolescents. J. Med. Biochem. 2015, 34, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Chiavaroli, L.; Di Pede, G.; Dall’Asta, M.; Cossu, M.; Francinelli, V.; Goldoni, M.; Scazzina, F.; Brighenti, F. The importance of glycemic index on post-prandial glycaemia in the context of mixed meals: A randomized controlled trial on pasta and rice. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 615–625. [Google Scholar] [CrossRef]
- Cooper, S.B.; Dring, K.J.; Morris, J.G.; Cousins, B.E.W.; Nute, M.L.; Nevill, M. Sex differences in adolescents’ glycaemic and insulinaemic responses to high and low glycaemic index breakfasts: A randomised control trial. Br. J. Nutr. 2017, 117, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Cornejo-Monthedoro, A.; Negreiros-Sánchez, I.; Del Águila, C.; Ysla-Marquillo, M.; Mayta-Tristán, P. Association between dietary glycemic load and metabolic syndrome in obese children and adolescents. Arch. Argent. Pediatr. 2017, 115, 323–330. [Google Scholar] [CrossRef]
- De Almeida Alves, M.; de Moura Souza, A.; Barufaldi, L.A.; Tavares, B.M.; Bloch, K.V.; de Vasconcelos, F.D.A.G. Padrões alimentares de adolescentes brasileiros por regiões geográficas: Análise do Estudo de Riscos Cardiovasculares em Adolescentes (ERICA). Cad. Saúde Pública 2019, 35, e00153818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massarani, F.A.; Cunha, D.B.; Muraro, A.P.; da Silva Nalin de Souza, B.; Sichieri, R.; Yokoo, E.M. Agregação familiar e padrões alimentares na população brasileira. Cad. Saúde Pública 2015, 31, 2535–2545. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.M.; Pereira, R.A.; Yokoo, E.M.; Levy, R.B.; Sichieri, R. Alimentos mais consumidos no Brasil: Inquérito Nacional de Alimentação 2008–2009. Rev. Saude Publica 2013, 47, 190S–199S. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.M.; Barufaldi, L.A.; Abreu, G.D.A.; Giannini, D.T.; De Oliveira, C.L.; dos Santos, M.M.; Leal, V.S.; de Vasconcelos, F.D.A.G. ERICA: Intake of macro and micronutrients of Brazilian adolescents. Rev. Saúde Pública 2016, 50, 5S. [Google Scholar] [CrossRef]
- Ferreira, N.L.; Claro, R.M.; Lopes, A.C.S. Consumption of sugar-rich food products among Brazilian students: National School Health Survey (PeNSE 2012). Cad. Saude Publica 2015, 31, 2493–2504. [Google Scholar] [CrossRef] [Green Version]
- Caferoglu, Z.; Erdal, B.; Akin, L.; Kurtoglu, S. Breakfast and dinner insulin index and insulin load in relation to overweight in children and adolescents. Eur. J. Nutr. 2021, 60, 2819–2829. [Google Scholar] [CrossRef]
- Hernández, E.; Kim, M.; Kim, W.G.; Yoon, J. Nutritional aspects of night eating and its association with weight status among Korean adolescents. Nutr. Res. Pract. 2016, 10, 448–455. [Google Scholar] [CrossRef] [Green Version]
- Striegel-Moore, R.H.; Rosselli, F.; Wilson, G.T.; Perrin, N.; Harvey, K.; DeBar, L. Nocturnal eating: Association with binge eating, obesity, and psychological distress. Int. J. Eat. Disord. 2010, 43, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Conway, J.M.; Ingwersen, L.A.; Vinyard, B.T.; Moshfegh, A.J. Effectiveness of the US Department of Agriculture 5-step multiple-pass method in assessing food intake in obese and nonobese women. Am. J. Clin. Nutr. 2003, 77, 1171–1178. [Google Scholar] [CrossRef] [Green Version]
- Rutishauser, I.H.E. Dietary intake measurements. Public Health Nutr. 2005, 8, 1100–1107. [Google Scholar] [CrossRef] [Green Version]
- Bingham, S.A.; Nelson, M. Assessment of food consumption and nutrient intake. In Design Concepts in Nutritional Epidemiology; Margetts, B.M., Nelson, M., Eds.; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
Female n = (21,489) | Male (n = 14,248) | |||
---|---|---|---|---|
Variable | Normal Weight (n = 16,144) | Overweight/ Obese (n = 5345) | Normal Weight (n = 10,377) | Overweight/ Obese (n = 3871) |
Frequency (%) (95% CI) | ||||
School Type | ||||
Public | 75.00 | 72.33 | 75.76 | 65.15 |
(71.82; 78.19) | (68.81; 75.84) | (72.57; 78.96) a | (61.09; 69,21) a | |
Private | 25.00 | 27.67 | 24.24 | 34.85 |
(21.81; 28.18) | (24.16; 31.19) | (21.04; 27.43) b | (30.79; 38.91) b | |
Residence Area | ||||
Capital | 74.23 | 72.4 | 73.94 | 73.62 |
(72.85; 75.60) | (70.68; 74.20) | (72.35; 75.54) | (71.62; 75.62) | |
Countryside | 25.77 | 27.56 | 26.06 | 26.38 |
(24.40; 27.15) | (25.80; 29.32) | (24.46; 27.65) | (24.38; 28.38) | |
Physical activity level 1 | ||||
Inactive | 26.60 | 23.33 | 9.88 | 10.22 |
(25.80; 27.41) c | (22.10; 24.55) c | (9.23; 10.52) | (9.21; 11.23) | |
Insufficiently active | 33.40 | 32.11 | 26.44 | 28.52 |
(32.58; 34.21) | (30.80; 33.42) | (25.42; 27.45) | (26.96; 30.07) | |
Active | 40.00 | 44.56 | 63.69 | 61.26 |
(39.17; 40.84) d | (43.17; 45.95) d | (62.59; 64.81) | (59.64; 62.89) | |
Mean (95% CI) | ||||
Age (years) | 14.74 | 14.47 | 14.72 | 14.38 |
(14.65–14.83) | (14.37–14.58) | (14.62–14.81) e | (14.27–14.48) e | |
Daily GI | 59.35 | 59.14 | 59.53 | 59.21 |
(59.24–59.46) | (58.98–59.31) | (59.39–59.67) | (59.02–59.39) | |
Average GI | 59.17 | 59.12 | 59.50 | 59.18 |
(59.05–59.28) | (58.95–59.29) | (59.35–59.65) | (58.98–59.37) | |
Daily GL | 165.22 | 140.61 | 194.86 | 164.94 |
(163.40–167.04) f | (138.30–142.91) f | (192.52–197.19) g | (162.05–167.83) g | |
Average GL | 37.92 | 34.29 | 45.27 | 40.63 |
(37.55–38.29) h | (33.75–34.83) h | (44.77–45.76) i | (39.97–41.30) i | |
Glucose (mg/dL) 2 | 84.45 | 85.26 | 86.80 | 88.04 |
(84.25–84.66) j | (84.95–85.58) j | (86.57–87.03) k | (87.71–88.37) k | |
Glycosylated hemoglobin (%) 3 | 5.33 | 5.38 | 5.40 | 5.42 |
(5.33–5.34) l | (5.37–5.39) l | (5.39–5.41) | (5.40–5.43) | |
Insulin (mU/L) 4 | 8.71 | 13.20 | 7.10 | 12.04 |
(8.59–8.84) m | (12.91–13.48) m | (6.99–7.22) n | (11.74–12.34) n | |
HOMA-IR 5 | 1.84 | 2.82 | 1.54 | 2.66 |
(1.81–1.87) o | (2.75–2.89) o | (1.52–1.57) p | (2.58–2.73) p |
Normal Weight | ||||||
---|---|---|---|---|---|---|
Glycosylated Hemoglobin | Insulin | HOMA-IR | ||||
ß | p-Value | ß | p-Value | ß | p-Value | |
Daily GI | 0.000 | 0.883 | 0.091 | 0.002 | 0.021 | 0.002 |
Average GI | 0.001 | 0.603 | 0.089 | 0.002 | 0.019 | 0.005 |
Daily GL | 0.004 | 0.074 | 0.057 | 0.059 | 0.012 | 0.082 |
Average GL | 0.006 | 0.011 | 0.124 | <0.0001 | 0.029 | <0.0001 |
Overweight/Obese | ||||||
Glycosylated Hemoglobin | Insulin | HOMA-IR | ||||
ß | p-Value | ß | p-Value | ß | p-Value | |
Daily GI | −0.001 | 0.843 | 0.162 | 0.030 | 0.034 | 0.049 |
Average GI | 0.003 | 0.3561 | 0.229 | 0.001 | 0.051 | 0.002 |
Daily GL | 0.001 | 0.746 | −0.084 | 0.308 | −0.026 | 0.168 |
Average GL | −0.003 | 0.544 | 0.072 | 0.315 | 0.018 | 0.278 |
Normal Weight (n = 26,521) | Overweight/Obese (n = 9216) | |||
---|---|---|---|---|
Mean (95% CI) | % Total Energy | Mean (95% CI) | % Total Energy | |
Energy (kcal) | 2372 | - | 2059 | - |
(2351–2393) | (2034–2084) * | |||
Total carbohydrate (g) | 316 | 53 | 271 | 52 |
(313–319) | (267–274) * | |||
Glycemic carbohydrate (g) | 297 | 50 | 254 | 49 |
(295–300) | (251–258) * | |||
Glycemic carbohydrate from food (g) | 274 | 46 | 235 | 45 |
(272–277) | (232–238) * | |||
Glycemic carbohydrate from added sugar (g) | 23 | 4 | 20 | 4 |
(22–24) | (19–20) * | |||
Fiber (g) | 19 | 3 | 16 | 3 |
(19–19) | (16–17) * | |||
Protein (g) | 93 | 16 | 84 | 16 |
(92–94) | (83–85) * | |||
Lipids (g) | 83 | 31 | 72 | 31 |
(82–83) | (71–73) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Rocha, C.M.M.; Gama, V.P.M.; de Moura Souza, A.; Massae Yokoo, E.; Verly Junior, E.; Bloch, K.V.; Sichieri, R. Comparison of Quality of Carbohydrate Metrics Related to Fasting Insulin, Glycosylated Hemoglobin and HOMA-IR in Brazilian Adolescents. Nutrients 2022, 14, 2544. https://doi.org/10.3390/nu14122544
da Rocha CMM, Gama VPM, de Moura Souza A, Massae Yokoo E, Verly Junior E, Bloch KV, Sichieri R. Comparison of Quality of Carbohydrate Metrics Related to Fasting Insulin, Glycosylated Hemoglobin and HOMA-IR in Brazilian Adolescents. Nutrients. 2022; 14(12):2544. https://doi.org/10.3390/nu14122544
Chicago/Turabian Styleda Rocha, Camilla Medeiros Macedo, Vanessa Proêza Maciel Gama, Amanda de Moura Souza, Edna Massae Yokoo, Eliseu Verly Junior, Katia Vergetti Bloch, and Rosely Sichieri. 2022. "Comparison of Quality of Carbohydrate Metrics Related to Fasting Insulin, Glycosylated Hemoglobin and HOMA-IR in Brazilian Adolescents" Nutrients 14, no. 12: 2544. https://doi.org/10.3390/nu14122544
APA Styleda Rocha, C. M. M., Gama, V. P. M., de Moura Souza, A., Massae Yokoo, E., Verly Junior, E., Bloch, K. V., & Sichieri, R. (2022). Comparison of Quality of Carbohydrate Metrics Related to Fasting Insulin, Glycosylated Hemoglobin and HOMA-IR in Brazilian Adolescents. Nutrients, 14(12), 2544. https://doi.org/10.3390/nu14122544