Association between Selenium Status and Chronic Kidney Disease in Middle-Aged and Older Chinese Based on CHNS Data
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Outcome Variable: CKD
2.3. Exposure Variables: Selenium Intake
2.4. Covariates
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Tang, H.; Zliang, C. Research progress of selenoprotein in kidney diseases. Chin. J. Nephrol. 2020, 36, 165–170. [Google Scholar] [CrossRef]
- Collaboration, G.C.K.D. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Wong, C.; Chung, C.; Wu, M.; Huang, Y.; Ao, P.; Lin, Y.; Lin, Y.; Shiue, H.; Su, C.; et al. The association between plasma selenium and chronic kidney disease related to lead, cadmium and arsenic exposure in a Taiwanese population. Hazard. Mater. 2019, 375, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Bowe, B.; Mokdad, A.H.; Xian, H.; Yan, Y.; Li, T.; Maddukuri, G.; Tsai, C.Y.; Floyd, T.; Al-Aly, Z. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney Int. 2018, 94, 567–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, H.; Zhang, Q.; Zhang, S.; Zhang, T.; Pan, F.; Cui, Y.; Thomsen, S.T.; Jakobsen, L.S.; Liu, A.; Pires, S.M. Risk-Benefit Assessment of Consumption of Rice for Adult Men in China. Front. Nutr. 2021, 8, 694370. [Google Scholar] [CrossRef]
- Shen, Y.; Yin, Z.; Lv, Y.; Luo, J.; Shi, W.; Fang, J.; Shi, X. Plasma element levels and risk of chronic kidney disease in elderly populations (≥ 90 Years old). Chemosphere 2020, 254, 126809. [Google Scholar] [CrossRef]
- Joyce, T.; Rasmussen, P.; Melhem, N.; Clothier, J.; Booth, C.; Sinha, M.D. Vitamin and trace element concentrations in infants and children with chronic kidney disease. Pediatric Nephrol. 2020, 35, 1463–1470. [Google Scholar] [CrossRef] [Green Version]
- Rayman, M. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Zachara, B. Selenium and selenium-dependent antioxidants in chronic kidney disease. Adv. Clin. Chem. 2015, 68, 131–151. [Google Scholar] [CrossRef]
- Gladyshev, V.; Arnér, E.; Berry, M.; Brigelius-Flohé, R.; Bruford, E.; Burk, R.; Carlson, B.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Tang, F.; Liang, J.; Wang, P. Trajectories of middle-aged and elderly people’s chronic diseases Disability Adjusted Life Years (DALYs): Cohort, socio-economic status and gender disparities. Int. J. Equity Health 2021, 20, 179. [Google Scholar] [CrossRef]
- Li, S.; Sun, W.; Zhang, D. Association of Zinc, Iron, Copper, and Selenium Intakes with Low Cognitive Performance in Older Adults: A Cross-Sectional Study from National Health and Nutrition Examination Survey (NHANES). J. Alzheimers Dis. 2019, 72, 1145–1157. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Xian, J.; Zeng, M.; Cai, Z.; Li, S.; Zhao, Y.; Shi, Z. Regional Difference in the Association between the Trajectory of Selenium Intake and Hypertension: A 20-Year Cohort Study. Nutrients 2021, 13, 1501. [Google Scholar] [CrossRef] [PubMed]
- Adani, G.; Filippini, T.; Michalke, B.; Vinceti, M. Selenium and Other Trace Elements in the Etiology of Parkinson’s Disease: A Systematic Review and Meta-Analysis of Case-Control Studies. Neuroepidemiology 2020, 54, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Aaseth, J.; Skalny, A.V.; Roos, P.M.; Alexander, J.; Aschner, M.; Tinkov, A.A. Copper, Iron, Selenium and Lipo-Glycemic Dysmetabolism in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 9461. [Google Scholar] [CrossRef]
- Kmieć, Z.; Pétervári, E.; Balaskó, M.; Székely, M. Anorexia of aging. Vitam. Horm. 2013, 92, 319–355. [Google Scholar] [CrossRef]
- Soenen, S.; Rayner, C.K.; Jones, K.L.; Horowitz, M. The ageing gastrointestinal tract. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 12–18. [Google Scholar] [CrossRef]
- USRDS. Chronic Kidney Disease 2021 Annual Report. Available online: https://adr.usrds.org/2021/chronic-kidney-disease/1-ckd-in-the-general-population (accessed on 8 January 2022).
- Zachara, B.; Pawluk, H.; Bloch-Boguslawska, E.; Sliwka, K.; Korenkiewicz, J.; Skok, Z.; Ryć, K. Tissue level, distribution, and total body selenium content in healthy and diseased humans in Poland. Arch. Environ. Health Int. J. 2001, 56, 461–466. [Google Scholar] [CrossRef]
- Reinhardt, W.; Dolff, S.; Benson, S.; Broecker-Preuß, M.; Behrendt, S.; Hög, A.; Führer, D.; Schomburg, L.; Köhrle, J. Chronic Kidney Disease Distinctly Affects Relationship Between Selenoprotein P Status and Serum Thyroid Hormone Parameters. Thyroid 2015, 25, 1091–1096. [Google Scholar] [CrossRef]
- Burk, R.; Hill, K. Regulation of Selenium Metabolism and Transport. Annu. Rev. Nutr. 2015, 35, 109–134. [Google Scholar] [CrossRef]
- Zachara, B.A.; Trafikowska, U.; Adamowicz, A.; Nartowicz, E.; Manitius, J. Selenium, glutathione peroxidases, and some other antioxidant parameters in blood of patients with chronic renal failure. J. Trace Elem. Med. Biol. 2001, 15, 161–166. [Google Scholar] [CrossRef]
- Lai, H.; Nie, T.; Zhang, Y.; Chen, Y.; Tao, J.; Lin, T.; Ge, T.; Li, F.; Li, H. Selenium Deficiency-Induced Damage and Altered Expression of Mitochondrial Biogenesis Markers in the Kidneys of Mice. Biol. Trace Elem. Res. 2021, 199, 185–196. [Google Scholar] [CrossRef]
- Lv, Y.; Wei, Y.; Zhou, J.; Xue, K.; Guo, Y.; Liu, Y.; Ju, A.; Wu, B.; Zhao, F.; Chen, C.; et al. Human biomonitoring of toxic and essential metals in younger elderly, octogenarians, nonagenarians and centenarians: Analysis of the Healthy Ageing and Biomarkers Cohort Study (HABCS) in China. Environ. Int. 2021, 156, 106717. [Google Scholar] [CrossRef] [PubMed]
- Alehagen, U.; Aaseth, J.; Alexander, J.; Brismar, K.; Larsson, A. Selenium and Coenzyme Q10 Supplementation Improves Renal Function in Elderly Deficient in Selenium: Observational Results and Results from a Subgroup Analysis of a Prospective Randomised Double-Blind Placebo-Controlled Trial. Nutrients 2020, 12, 3780. [Google Scholar] [CrossRef]
- Kieliszek, M.; Błażejak, S. Current Knowledge on the Importance of Selenium in Food for Living Organisms: A Review. Molecules 2016, 21, 609. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhai, F.Y.; Du, S.F.; Popkin, B.M. The China Health and Nutrition Survey, 1989–2011. Obes. Rev. 2014, 15, 2–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Callaghan, C.A.; Shine, B.; Lasserson, D.S. Chronic kidney disease: A large-scale population-based study of the effects of introducing the CKD-EPI formula for eGFR reporting. BMJ Open 2011, 1, e000308. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y. China Food Composition Table (Standard Edition), 6th ed.; Peking University Medical Press: Beijing, China, 2018; Volume 1. [Google Scholar]
- Ng, S.W.; Norton, E.C.; Popkin, B.M. Why have physical activity levels declined among Chinese adults? Findings from the 1991-2006 China Health and Nutrition Surveys. Soc. Sci. Med. 2009, 68, 1305–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Health of the People’s Republic of China. WS/T 424-2013 Anthropometric measurements method in health surveillance. 2013. Available online: https://hbba.sacinfo.org.cn/attachment/onlineRead/f31d9c9cd268a22196bbfb3aa9920c00 (accessed on 27 June 2022).
- Zhou, B. Predictive values of body mass index and waist circumference to risk factors of related diseases in Chinese adult population. Chin. J. Epidemiol. 2002, 23, 5–10. [Google Scholar]
- Society, C.D. Guidelines for the prevention and control of type 2 diabetes in China (2017 Edition). Chin. J. Pract. Intern. Med. 2018, 38, 292–344. [Google Scholar]
- Haynes, J.W.; Barger, E.V. National Cholesterol Education Program: Adult Treatment Panel III Guidelines and the 2004 Update. Available online: https://doi.org/10.1007/978-0-387-76606-5_2 (accessed on 24 April 2022).
- Kipp, A.P.; Strohm, D.; Brigelius-Flohé, R.; Schomburg, L.; Bechthold, A.; Leschik-Bonnet, E.; Heseker, H. Revised reference values for selenium intake. J. Trace Elem. Med. Biol. 2015, 32, 195–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, C.D. Selenium and iodine intakes and status in New Zealand and Australia. Br. J. Nutr. 2004, 91, 661–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinese Nutrition Society. Chinese DRIs Handbook; People’s Medical Publishing House: Beijing, China, 2013. [Google Scholar]
- Hasanvand, A.; Abbaszadeh, A.; Darabi, S.; Nazari, A.; Gholami, M.; Kharazmkia, A. Evaluation of selenium on kidney function following ischemic injury in rats; protective effects and antioxidant activity. J. Ren. Inj. Prev. 2017, 6, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Dong, R.; Yang, Y.; Xie, H.; Huang, Y.; Chen, X.; Wang, D.; Zhang, Z. Protective Effect of Organic Selenium on Oxidative Damage and Inflammatory Reaction of Rabbit Kidney Induced by T-2 Toxin. Biol. Trace Elem. Res. 2021, 199, 1833–1842. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Yi, X.; Guo, J.; Xu, S.; Xiao, Y.; Huang, X.; Duan, Y.; Luo, D.; Xiao, S.; Huang, Z.; et al. Association of plasma and urine metals levels with kidney function: A population-based cross-sectional study in China. Chemosphere 2019, 226, 321–328. [Google Scholar] [CrossRef]
- Köhrle, J. Selenium and the thyroid. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Tatar, E.; Sezis Demirci, M.; Kircelli, F.; Gungor, O.; Yaprak, M.; Asci, G.; Basci, A.; Ozkahya, M.; Ok, E. The association between thyroid hormones and arterial stiffness in peritoneal dialysis patients. Int. Urol. Nephrol. 2012, 44, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Tao, J.; Chen, Y.; Zhang, Y.; Li, F.; Zhang, Y.; Han, X.; Zhao, Z.; Liu, G.; Li, H. Selenium Deficiency Leads to Changes in Renal Fibrosis Marker Proteins and Wnt/β-Catenin Signaling Pathway Components. Biol. Trace Elem. Res. 2021, 200, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Viña, J.; Sastre, J.; Pallardó, F.; Borrás, C. Mitochondrial theory of aging: Importance to explain why females live longer than males. Antioxid. Redox Signal. 2003, 5, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Cavedon, E.; Manso, J.; Negro, I.; Censi, S.; Serra, R.; Busetto, L.; Vettor, R.; Plebani, M.; Pezzani, R.; Nacamulli, D.; et al. Selenium Supplementation, Body Mass Composition, and Leptin Levels in Patients with Obesity on a Balanced Mildly Hypocaloric Diet: A Pilot Study. Int. J. Endocrinol. 2020, 2020, 4802739. [Google Scholar] [CrossRef] [PubMed]
- Ozgen, I.T.; Tascilar, M.E.; Bilir, P.; Boyraz, M.; Guncikan, M.N.; Akay, C.; Dundaroz, R. Oxidative stress in obese children and its relation with insulin resistance. J. Pediatric Endocrinol. Metab. 2012, 25, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Błażewicz, A.; Szymańska, I.; Dolliver, W.; Suchocki, P.; Turło, J.; Makarewicz, A.; Skórzyńska-Dziduszko, K. Are Obese Patients with Autism Spectrum Disorder More Likely to Be Selenium Deficient? Research Findings on Pre- and Post-Pubertal Children. Nutrients 2020, 12, 3581. [Google Scholar] [CrossRef] [PubMed]
- Laclaustra, M.; Navas-Acien, A.; Stranges, S.; Ordovas, J.M.; Guallar, E. Serum selenium concentrations and hypertension in the US Population. Circ. Cardiovasc. Qual. Outcomes 2009, 2, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Bleys, J.; Navas-Acien, A.; Stranges, S.; Menke, A.; Miller, E.R., 3rd; Guallar, E. Serum selenium and serum lipids in US adults. Am. J. Clin. Nutr. 2008, 88, 416–423. [Google Scholar] [CrossRef] [Green Version]
- Kieliszek, M. Selenium⁻Fascinating Microelement, Properties and Sources in Food. Molecules 2019, 24, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levey, A.S.; Coresh, J.; Greene, T.; Marsh, J.; Stevens, L.A.; Kusek, J.W.; Van Lente, F. Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin. Chem. 2007, 53, 766–772. [Google Scholar] [CrossRef] [Green Version]
- Juutilainen, A.; Kastarinen, H.; Antikainen, R.; Peltonen, M.; Salomaa, V.; Tuomilehto, J.; Jousilahti, P.; Sundvall, J.; Laatikainen, T.; Kastarinen, M. Comparison of the MDRD Study and the CKD-EPI Study equations in evaluating trends of estimated kidney function at population level: Findings from the National FINRISK Study. Nephrol. Dial. Transplant. 2012, 27, 3210–3217. [Google Scholar] [CrossRef] [Green Version]
- Stevens, L.A.; Schmid, C.H.; Greene, T.; Zhang, Y.L.; Beck, G.J.; Froissart, M.; Hamm, L.L.; Lewis, J.B.; Mauer, M.; Navis, G.J.; et al. Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study equations for estimating GFR levels above 60 mL/min/1.73 m2. Am. J. Kidney Dis. 2010, 56, 486–495. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, K.; Selvin, E.; Bash, L.D.; Astor, B.C.; Coresh, J. Risk implications of the new CKD Epidemiology Collaboration (CKD-EPI) equation compared with the MDRD Study equation for estimated GFR: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Kidney Dis. 2010, 55, 648–659. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Alarcon, M.; Cabrera-Vique, C. Selenium in food and the human body: A review. Sci. Total Environ. 2008, 400, 115–141. [Google Scholar] [CrossRef]
- Letsiou, S.; Nomikos, T.; Panagiotakos, D.B.; Pergantis, S.A.; Fragopoulou, E.; Pitsavos, C.; Stefanadis, C.; Antonopoulou, S. Gender-specific distribution of selenium to serum selenoproteins: Associations with total selenium levels, age, smoking, body mass index, and physical activity. BioFactors 2014, 40, 524–535. [Google Scholar] [CrossRef] [PubMed]
Factor | Q1 | Q2 | Q3 | Q4 | p-Value |
---|---|---|---|---|---|
N | 1350 | 1368 | 1322 | 1341 | |
Se intake (µg/day), mean (SD) | 21.5 (4.8) | 33.1 (2.8) | 43.8 (3.7) | 67.0 (14.0) | |
Se intake (µg/day), range | 7.8~28.2 | 28.4~37.8 | 38~50.8 | 51~114.2 | |
Age, mean (SD) | 61.8 (10.8) | 60.1 (10.1) | 58.3 (9.3) | 57.0 (9.0) | <0.01 |
Energy intake (kcal/day), mean (SD) | 1656.2 (463.8) (n = 1337) | 2009.9 (512.7) (n = 1367) | 2215.3 (566.9) (n = 1320) | 2529.4 (634.1) (n = 1327) | <0.01 |
Carbohydrate intake (g/day), mean (SD) | 238.4 (80.3) (n = 1337) | 277.3 (87.0) (n = 1367) | 299.2 (93.8) (n = 1321) | 340.6 (108.8) (n = 1337) | <0.01 |
Fat intake (g/day), mean (SD) | 56.7 (27.4) (n = 1341) | 70.9 (29.7) (n = 1359) | 77.9 (32.9) (n = 1303) | 86.6 (34.6) (n = 1313) | <0.01 |
Protein intake (g/day), mean (SD) | 44.9 (13.1) (n = 1339) | 58.2 (13.5) (n = 1368) | 69.3 (16.5) (n = 1321) | 83.4 (20.1) (n = 1313) | <0.01 |
Physical activity (MET h/week), mean (SD) | 172.1 (111.2) (n = 514) | 169.5 (105.1) (n = 553) | 165.7 (107.3) (n = 589) | 177.4 (100.2) (n = 661) | 0.25 |
Sex | <0.01 | ||||
Male | 484 (35.9%) | 616 (45.0%) | 645 (48.8%) | 785 (58.5%) | |
Female | 866 (64.1%) | 752 (55.0%) | 677 (51.2%) | 556 (41.5%) | |
Alcohol | <0.01 | ||||
No | 1046 (77.7%) | 959 (70.1%) | 884 (66.9%) | 790 (58.9%) | |
Yes | 301 (22.3%) | 409 (29.9%) | 438 (33.1%) | 551 (41.1%) | |
Smoker | <0.01 | ||||
Non-smoker | 997 (74.0%) | 935 (68.3%) | 889 (67.3%) | 814 (60.7%) | |
Ex-smoker | 57 (4.2%) | 51 (3.7%) | 49 (3.7%) | 74 (5.5%) | |
Current smoker | 293 (21.8%) | 382 (27.9%) | 382 (28.9%) | 453 (33.8%) | |
Income | <0.01 | ||||
Low | 554 (42.7%) | 437 (33.2%) | 400 (30.8%) | 347 (26.3%) | |
Medium | 439 (33.9%) | 449 (34.1%) | 429 (33.1%) | 434 (33.0%) | |
High | 303 (23.4%) | 430 (32.7%) | 468 (36.1%) | 536 (40.7%) | |
Urbanization | <0.01 | ||||
Low | 553 (41.0%) | 475 (34.7%) | 377 (28.5%) | 402 (30.0%) | |
Medium | 432 (32.0%) | 477 (34.9%) | 438 (33.1%) | 453 (33.8%) | |
High | 365 (27.0%) | 416 (30.4%) | 507 (38.4%) | 486 (36.2%) | |
Region | <0.01 | ||||
North | 469 (34.7%) | 523 (38.2%) | 556 (42.15) | 741 (55.3%) | |
South | 881 (65.3%) | 845 (61.8%) | 766 (57.9%) | 600 (44.7%) | |
Education | <0.01 | ||||
Low | 283 (21.1%) | 299 (21.9%) | 264 (20.0%) | 266 (19.9%) | |
Medium | 236 (17.6%) | 351 (25.7%) | 360 (27.3%) | 424 (31.6%) | |
High | 198 (14.8%) | 254 (18.6%) | 299 (22.7%) | 325 (24.3%) | |
Unknown | 625 (46.6%) | 461 (33.8%) | 397 (30.1%) | 325 (24.3%) | |
BMI | <0.01 | ||||
Lower | 123 (9.3%) | 85 (6.3%) | 61 (4.7%) | 32 (2.4%) | |
Normal | 699 (53.0%) | 705 (52.6%) | 644 (49.4%) | 635 (48.1%) | |
Overweight | 380 (28.8%) | 423 (31.6%) | 450 (34.5%) | 485 (36.7%) | |
Obesity | 118 (8.9%) | 127 (9.5%) | 149 (11.4%) | 168 (12.7%) | |
CKD | <0.01 | ||||
No | 1035 (76.7%) | 1090 (79.7%) | 1124 (85.0%) | 1217 (90.8%) | |
Yes | 315 (23.3%) | 278 (20.3%) | 198 (15.0%) | 124 (9.2%) | |
Hypertension | <0.01 | ||||
No | 694 (51.4%) | 662 (48.4%) | 671 (50.8%) | 750 (55.9%) | |
Yes | 656 (48.6%) | 706 (51.6%) | 651 (49.2%) | 591 (44.1%) | |
Diabetes | 0.13 | ||||
No | 1227 (90.9%) | 1206 (88.2%) | 1184 (89.6%) | 1205 (89.9%) | |
Yes | 123 (9.1%) | 162 (11.8%) | 138 (10.4%) | 136 (10.1%) | |
Hyperlipidemia | 0.10 | ||||
No | 870 (64.4%) | 822 (60.1%) | 807 (61.1%) | 843 (62.9%) | |
Yes | 480 (35.6%) | 545 (39.9%) | 514 (38.9%) | 498 (37.1%) |
Q1 | Q2 | Q3 | Q4 | p for Trend | |
---|---|---|---|---|---|
Se intake (µg/day), mean (SD) | 21.5 (4.82) | 33.1 (2.79) | 43.8 (3.70) | 67.0 (13.97) | |
case | 1350 | 1368 | 1322 | 1341 | |
Prevalence | 23.33% | 20.32% | 14.98% | 9.25% | |
Model 1 | 1 | 0.838 (0.698–1.005) | 0.579 (0.475–0.705) | 0.335 (0.268–0.419) | <0.001 |
Model 2 | 1 | 1.057 (0.852–1.311) | 0.897 (0.708–1.137) | 0.575 (0.435–0.759) | <0.001 |
Model 3 | 1 | 1.092 (0.69–1.729) | 0.818 (0.485–1.378) | 0.427 (0.216–0.845) | 0.017 |
Q1 | Q2 | Q3 | Q4 | P for Interaction | |
---|---|---|---|---|---|
Age | 0.327 | ||||
< 60 | 1.00 | 1.01 (0.53–2.01) | 0.86 (0.42–1.77) | 0.58 (0.24–1.43) | |
≥ 60 | 1.00 | 1.00 (0.53–1.90) | 0.55 (0.25–1.19) | 0.23 (0.08–0.67) | |
Sex | 0.582 | ||||
Male | 1.00 | 0.92 (0.47–1.81) | 0.82 (0.38–1.73) | 0.41 (0.16–1.04) | |
Female | 1.00 | 0.99 (0.53–1.82) | 0.54 (0.26–1.12) | 0.36 (0.14–0.95) | |
Region | 0.388 | ||||
North | 1.00 | 3.80 (1.03–13.98) | 1.35 (0.30–6.11) | 2.36 (0.49–11.43) | |
South | 1.00 | 0.97 (0.58–1.62) | 0.94 (0.51–1.73) | 0.56 (0.24–1.31) | |
Alcohol Drinking | 0.826 | ||||
No | 1.00 | 0.90 (0.53–1.53) | 0.59 (0.32–1.09) | 0.32 (0.14–0.73) | |
Yes | 1.00 | 1.12 (0.46–2.75) | 0.74 (0.27–2.08) | 0.53 (0.16–1.76) | |
Smoker | 0.239 | ||||
Non-/ex-smoker | 1.00 | 0.89 (0.52–1.55) | 0.52 (0.27–0.99) | 0.36 (0.16–0.81) | |
Current smoker | 1.00 | 1.22 (0.54–2.79) | 1.04 (0.41–2.66) | 0.38 (0.11–1.30) | |
Hypertension | 0.756 | ||||
No | 1.00 | 0.87 (0.46–1.64) | 0.57 (0.28–1.19) | 0.38 (0.15–0.99) | |
Yes | 1.00 | 1.14 (0.58–2.24) | 0.79 (0.36–1.71) | 0.42 (0.16–1.14) | |
Diabetes | 0.248 | ||||
No | 1.00 | 0.86 (0.53–1.38) | 0.66 (0.38–1.14) | 0.43 (0.22–0.86) | |
Yes | 1.00 | 5.09 (0.65–41.13) | 1.11 (0.11–11.21) | 0.13 (0.004–4.32) | |
Hyperlipidemia | 0.552 | ||||
No | 1.00 | 0.94 (0.54–1.66) | 0.52 (0.27–1.01) | 0.44 (0.19–1.02) | |
Yes | 1.00 | 1.42 (0.63–3.20) | 1.20 (0.49–2.92) | 0.34 (0.10–1.20) | |
BMI | 0.720 | ||||
Lower | 1.00 | 0.88 (0.16–4.91) | 1.66 (0.25–10.96) | 2.67 (0.22–32.32) | |
Normal | 1.00 | 1.17 (0.65–2.13) | 0.83 (0.42–1.63) | 0.43 (0.17–1.07) | |
Overweight | 1.00 | 0.74 (0.30–1.84) | 0.24 (0.07–0.78) | 0.09 (0.02–0.46) | |
Obesity | 1.00 | 0.32 (0.025–4.16) | 0.89 (0.12–6.84) | 0.79 (0.10–6.03) | |
Physical activity | 0.674 | ||||
Low | 1.00 | 1.35 (0.68–2.67) | 0.93 (0.40–2.13) | 0.54 (0.18–1.63) | |
Medium | 1.00 | 1.09 (0.48–2.48) | 0.70 (0.29–1.70) | 0.48 (0.16–1.41) | |
High | 1.00 | 0.57 (0.21–1.54) | 0.32 (0.10–1.06) | 0.12 (0.02–0.61) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, C.; Zeng, M.; Shi, Z.; Li, S.; Jiang, K.; Zhao, Y. Association between Selenium Status and Chronic Kidney Disease in Middle-Aged and Older Chinese Based on CHNS Data. Nutrients 2022, 14, 2695. https://doi.org/10.3390/nu14132695
Xie C, Zeng M, Shi Z, Li S, Jiang K, Zhao Y. Association between Selenium Status and Chronic Kidney Disease in Middle-Aged and Older Chinese Based on CHNS Data. Nutrients. 2022; 14(13):2695. https://doi.org/10.3390/nu14132695
Chicago/Turabian StyleXie, Changxiao, Mao Zeng, Zumin Shi, Shengping Li, Ke Jiang, and Yong Zhao. 2022. "Association between Selenium Status and Chronic Kidney Disease in Middle-Aged and Older Chinese Based on CHNS Data" Nutrients 14, no. 13: 2695. https://doi.org/10.3390/nu14132695
APA StyleXie, C., Zeng, M., Shi, Z., Li, S., Jiang, K., & Zhao, Y. (2022). Association between Selenium Status and Chronic Kidney Disease in Middle-Aged and Older Chinese Based on CHNS Data. Nutrients, 14(13), 2695. https://doi.org/10.3390/nu14132695