Genetic Variants in Folate and Cobalamin Metabolism-Related Genes in Pregnant Women of a Homogeneous Spanish Population: The Need for Revisiting the Current Vitamin Supplementation Strategies
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Population and Design
2.2. Sociodemographic and Obstetrics Variables
2.3. Vitamin B12 and Folic Acid Supplementation Use
2.4. Maternal and Neonatal Outcomes and Definitions
2.5. Sample Collection
2.6. Genotyping
2.7. Statistics Analysis
3. Results
3.1. Baseline Characteristics
3.2. Distribution of SNP Genotypes of Genes Related to Folate and Cobalamin Metabolism and Transport in the Study Population
3.3. Association between SNP Genotypes and Pregnancy Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sengpiel, V.; Bacelis, J.; Myhre, R.; Myking, S.; Devold Pay, A.S.; Haugen, M.; Brantsæter, A.-L.; Meltzer, H.M.; Nilsen, R.M.; Magnus, P.; et al. Folic acid supplementation, dietary folate intake during pregnancy and risk for spontaneous preterm delivery: A prospective observational cohort study. BMC Pregnancy Childbirth 2014, 14, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves-Santos, N.H.; Cocate, P.G.; Benaim, C.; Farias, D.R.; Emmett, P.M.; Kac, G. Prepregnancy Dietary Patterns and Their Association with Perinatal Outcomes: A Prospective Cohort Study. J. Acad. Nutr. Diet. 2019, 119, 1439–1451. [Google Scholar] [CrossRef] [PubMed]
- Bulloch, R.E.; Wall, C.R.; McCowan, L.M.E.; Taylor, R.S.; Roberts, C.T.; Thompson, J.M.D. The Effect of Interactions between Folic Acid Supplementation and One Carbon Metabolism Gene Variants on Small-for-Gestational-Age Births in the Screening for Pregnancy Endpoints (SCOPE) Cohort Study. Nutrients 2020, 12, 1677. [Google Scholar] [CrossRef] [PubMed]
- de Bildt, A.; Oosterling, I.J.; van Lang, N.D.J.; Sytema, S.; Minderaa, R.B.; van Engeland, H.; Roos, S.; Buitelaar, J.K.; van der Gaag, R.-J.; de Jonge, M.V. Standardized ADOS scores: Measuring severity of autism spectrum disorders in a Dutch sample. J. Autism Dev. Disord. 2011, 41, 311–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furness, D.; Fenech, M.; Dekker, G.; Khong, T.Y.; Roberts, C.; Hague, W. Folate, vitamin B12, vitamin B6 and homocysteine: Impact on pregnancy outcome. Matern. Child Nutr. 2013, 9, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Furness, D.L.F.; Dekker, G.A.; Roberts, C.T. DNA damage and health in pregnancy. J. Reprod. Immunol. 2011, 89, 153–162. [Google Scholar] [CrossRef]
- Maloney, C.A.; Rees, W.D. Gene-nutrient interactions during fetal development. Reproduction 2005, 130, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Redman, C.W.G.; Sargent, I.L. Immunology of pre-eclampsia. Am. J. Reprod. Immunol. 2010, 63, 534–543. [Google Scholar] [CrossRef]
- Imbard, A.; Benoist, J.-F.; Blom, H.J. Neural tube defects, folic acid and methylation. Int. J. Environ. Res. Public Health 2013, 10, 4352–4389. [Google Scholar] [CrossRef] [Green Version]
- van Gool, J.D.; Hirche, H.; Lax, H.; De Schaepdrijver, L. Folic acid and primary prevention of neural tube defects: A review. Reprod. Toxicol. 2018, 80, 73–84. [Google Scholar] [CrossRef]
- Wahbeh, F.; Manyama, M. The role of Vitamin B12 and genetic risk factors in the etiology of neural tube defects: A systematic review. Int. J. Dev. Neurosci. 2021, 81, 386–406. [Google Scholar] [CrossRef] [PubMed]
- Mardali, F.; Fatahi, S.; Alinaghizadeh, M.; Kord Varkaneh, H.; Sohouli, M.H.; Shidfar, F.; Găman, M.-A. Association between abnormal maternal serum levels of vitamin B12 and preeclampsia: A systematic review and meta-analysis. Nutr. Rev. 2021, 79, 518–528. [Google Scholar] [CrossRef]
- Saravanan, P.; Sukumar, N.; Adaikalakoteswari, A.; Goljan, I.; Venkataraman, H.; Gopinath, A.; Bagias, C.; Yajnik, C.S.; Stallard, N.; Ghebremichael-Weldeselassie, Y.; et al. Association of maternal vitamin B12 and folate levels in early pregnancy with gestational diabetes: A prospective UK cohort study (PRiDE study). Diabetologia 2021, 64, 2170–2182. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, E.F.; Grisdale, M.; Morais, M. Maternal Vitamin B12 Levels During Pregnancy and Their Effects on Maternal Neurocognitive Symptoms: A Systematic Review. J. Obstet. Gynaecol. Can. 2022, 44, 390–394.e3. [Google Scholar] [CrossRef] [PubMed]
- WHO; FAO. Vitamin B12. In Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization: Rome, Italy, 2004; pp. 279–302. [Google Scholar]
- Zinck, J.W.; de Groh, M.; MacFarlane, A.J. Genetic modifiers of folate, vitamin B-12, and homocysteine status in a cross-sectional study of the Canadian population. Am. J. Clin. Nutr. 2015, 101, 1295–1304. [Google Scholar] [CrossRef] [Green Version]
- Solanky, N.; Requena Jimenez, A.; D’Souza, S.W.; Sibley, C.P.; Glazier, J.D. Expression of folate transporters in human placenta and implications for homocysteine metabolism. Placenta 2010, 31, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Talaulikar, V.S.; Arulkumaran, S. Folic acid in obstetric practice: A review. Obstet. Gynecol. Surv. 2011, 66, 240–247. [Google Scholar] [CrossRef]
- Nazki, F.H.; Sameer, A.S.; Ganaie, B.A. Folate: Metabolism, genes, polymorphisms and the associated diseases. Gene 2014, 533, 11–20. [Google Scholar] [CrossRef]
- McNulty, H.; Ward, M.; Hoey, L.; Hughes, C.F.; Pentieva, K. Addressing optimal folate and related B-vitamin status through the lifecycle: Health impacts and challenges. Proc. Nutr. Soc. 2019, 78, 449–462. [Google Scholar] [CrossRef]
- American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef] [Green Version]
- Garovic, V.D.; Dechend, R.; Easterling, T.; Karumanchi, S.A.; McMurtry Baird, S.; Magee, L.A.; Rana, S.; Vermunt, J.V.; August, P.; American Heart Association Council on Hypertension; et al. Hypertension in Pregnancy: Diagnosis, Blood Pressure Goals, and Pharmacotherapy: A Scientific Statement From the American Heart Association. Hypertension 2022, 79, e21–e41. [Google Scholar] [CrossRef] [PubMed]
- Carrascosa, A.; Yeste, D.; Copil, A.; Almar, J.; Salcedo, S.; Gussinyé, M. Anthropometric growth patterns of preterm and full-term newborns (24–42 weeks’ gestational age) at the Hospital Materno-Infantil Vall d’Hebron (Barcelona)(1997–2002). An. Pediatr. 2004, 60, 406–416. [Google Scholar]
- Torres-Sánchez, L.; López-Carrillo, L.; Blanco-Muñoz, J.; Chen, J. Maternal dietary intake of folate, vitamin B12 and MTHFR 677C>T genotype: Their impact on newborn’s anthropometric parameters. Genes Nutr. 2014, 9, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guéant-Rodriguez, R.-M.; Guéant, J.-L.; Debard, R.; Thirion, S.; Hong, L.X.; Bronowicki, J.-P.; Namour, F.; Chabi, N.W.; Sanni, A.; Anello, G.; et al. Prevalence of methylenetetrahydrofolate reductase 677T and 1298C alleles and folate status: A comparative study in Mexican, West African, and European populations. Am. J. Clin. Nutr. 2006, 83, 701–707. [Google Scholar] [CrossRef] [Green Version]
- Wilcken, B.; Bamforth, F.; Li, Z.; Zhu, H.; Ritvanen, A.; Renlund, M.; Stoll, C.; Alembik, Y.; Dott, B.; Czeizel, A.E.; et al. Geographical and ethnic variation of the 677C>T allele of 5,10 methylenetetrahydrofolate reductase (MTHFR): Findings from over 7000 newborns from 16 areas world wide. J. Med. Genet. 2003, 40, 619–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar-Lacasaña, S.; López-Flores, I.; González-Alzaga, B.; Giménez-Asensio, M.J.; Carmona, F.D.; Hernández, A.F.; López Gallego, M.F.; Romero-Molina, D.; Lacasaña, M. Methylenetetrahydrofolate Reductase (MTHFR) Gene Polymorphism and Infant’s Anthropometry at Birth. Nutrients 2021, 13, 831. [Google Scholar] [CrossRef]
- Bueno, O.; Molloy, A.M.; Fernandez-Ballart, J.D.; García-Minguillán, C.J.; Ceruelo, S.; Ríos, L.; Ueland, P.M.; Meyer, K.; Murphy, M.M. Common Polymorphisms That Affect Folate Transport or Metabolism Modify the Effect of the MTHFR 677C > T Polymorphism on Folate Status. J. Nutr. 2016, 146, 1–8. [Google Scholar] [CrossRef] [Green Version]
- de Batlle, J.; Matejcic, M.; Chajes, V.; Moreno-Macias, H.; Amadou, A.; Slimani, N.; Cox, D.G.; Clavel-Chapelon, F.; Fagherazzi, G.; Romieu, I. Determinants of folate and vitamin B12 plasma levels in the French E3N-EPIC cohort. Eur. J. Nutr. 2018, 57, 751–760. [Google Scholar] [CrossRef]
- Shane, B.; Pangilinan, F.; Mills, J.L.; Fan, R.; Gong, T.; Cropp, C.D.; Kim, Y.; Ueland, P.M.; Bailey-Wilson, J.E.; Wilson, A.F.; et al. The 677C→T variant of MTHFR is the major genetic modifier of biomarkers of folate status in a young, healthy Irish population. Am. J. Clin. Nutr. 2018, 108, 1334–1341. [Google Scholar] [CrossRef] [Green Version]
- Hiraoka, M.; Kagawa, Y. Genetic polymorphisms and folate status. Congenit. Anom. 2017, 57, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Molloy, A.M. Genetic aspects of folate metabolism. Subcell. Biochem. 2012, 56, 105–130. [Google Scholar] [PubMed]
- Lee, S.-A. Gene-diet interaction on cancer risk in epidemiological studies. J. Prev. Med. Public Health 2009, 42, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-A.; Kim, Y.-J.; Park, H.; Kim, H.-K.; Lee, H.-Y. Localization of folate metabolic enzymes, methionine synthase and 5,10-methylenetetrahydrofolate reductase in human placenta. Gynecol. Obstet. Investig. 2014, 78, 259–265. [Google Scholar] [CrossRef]
- Moulik, N.R.; Kumar, A.; Agrawal, S. Folic acid, one-carbon metabolism & childhood cancer. Indian J. Med. Res. 2017, 146, 163–174. [Google Scholar]
- Field, M.S.; Stover, P.J. Safety of folic acid. Ann. N. Y. Acad. Sci. 2018, 1414, 59–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yila, T.A.; Sasaki, S.; Miyashita, C.; Braimoh, T.S.; Kashino, I.; Kobayashi, S.; Okada, E.; Baba, T.; Yoshioka, E.; Minakami, H.; et al. Effects of maternal 5,10-methylenetetrahydrofolate reductase C677T and A1298C Polymorphisms and tobacco smoking on infant birth weight in a Japanese population. J. Epidemiol. 2012, 22, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Colson, N.J.; Naug, H.L.; Nikbakht, E.; Zhang, P.; McCormack, J. The impact of MTHFR 677 C/T genotypes on folate status markers: A meta-analysis of folic acid intervention studies. Eur. J. Nutr. 2017, 56, 247–260. [Google Scholar] [CrossRef]
- Shelnutt, K.P.; Kauwell, G.P.A.; Gregory, J.F.; Maneval, D.R.; Quinlivan, E.P.; Theriaque, D.W.; Henderson, G.N.; Bailey, L.B. Methylenetetrahydrofolate reductase 677C-->T polymorphism affects DNA methylation in response to controlled folate intake in young women. J. Nutr. Biochem. 2004, 15, 554–560. [Google Scholar] [CrossRef]
- Kupferminc, M.J.; Eldor, A.; Steinman, N.; Many, A.; Bar-Am, A.; Jaffa, A.; Fait, G.; Lessing, J.B. Increased frequency of genetic thrombophilia in women with complications of pregnancy. N. Engl. J. Med. 1999, 340, 9–13. [Google Scholar] [CrossRef]
- Chen, H.; Yang, X.; Lu, M. Methylenetetrahydrofolate reductase gene polymorphisms and recurrent pregnancy loss in China: A systematic review and meta-analysis. Arch. Gynecol. Obstet. 2016, 293, 283–290. [Google Scholar] [CrossRef]
- Valdez, L.L.; Quintero, A.; Garcia, E.; Olivares, N.; Celis, A.; Rivas, F.; Rivas, F. Thrombophilic polymorphisms in preterm delivery. Blood Cells. Mol. Dis. 2004, 33, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, A.; Chelikowsky, A.P.; Nachman, K.E.; Cohen, A.J.; Ritz, B. Exposure to particulate matter and adverse birth outcomes: A comprehensive review and meta-analysis. Air Qual. Atmos. Health 2012, 5, 369–381. [Google Scholar] [CrossRef]
- Martínez-Martínez, R.E.; Moreno-Castillo, D.F.; Loyola-Rodríguez, J.P.; Sánchez-Medrano, A.G.; Miguel-Hernández, J.H.S.; Olvera-Delgado, J.H.; Domínguez-Pérez, R.A. Association between periodontitis, periodontopathogens and preterm birth: Is it real? Arch. Gynecol. Obstet. 2016, 294, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Qiu, J.; Zhou, M.; He, X.; Cui, H.; Lerro, C.; Lv, L.; Lin, X.; Zhang, C.; Zhang, H.; et al. Exposure to cooking fuels and birth weight in Lanzhou, China: A birth cohort study. BMC Public Health 2015, 15, 712. [Google Scholar] [CrossRef] [Green Version]
- Dai, C.; Fei, Y.; Li, J.; Shi, Y.; Yang, X. A Novel Review of Homocysteine and Pregnancy Complications. Biomed Res. Int. 2021, 2021, 6652231. [Google Scholar]
- Rigotti, A. Absorption, transport, and tissue delivery of vitamin E. Mol. Aspects Med. 2007, 28, 423–436. [Google Scholar] [CrossRef]
- Zhao, Y.; Lee, M.-J.; Cheung, C.; Ju, J.-H.; Chen, Y.-K.; Liu, B.; Hu, L.-Q.; Yang, C.S. Analysis of multiple metabolites of tocopherols and tocotrienols in mice and humans. J. Agric. Food Chem. 2010, 58, 4844–4852. [Google Scholar] [CrossRef] [Green Version]
- Niforou, A.; Konstantinidou, V.; Naska, A. Genetic Variants Shaping Inter-individual Differences in Response to Dietary Intakes-A Narrative Review of the Case of Vitamins. Front. Nutr. 2020, 7, 558598. [Google Scholar] [CrossRef]
- Wang, X.; Wu, H.; Qiu, X. Methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism and risk of preeclampsia: An updated meta-analysis based on 51 studies. Arch. Med. Res. 2013, 44, 159–168. [Google Scholar] [CrossRef]
- Osunkalu, V.O.; Taiwo, I.A.; Makwe, C.C.; Quao, R.A. Methylene tetrahydrofolate reductase and methionine synthase gene polymorphisms as genetic determinants of pre-eclampsia. Pregnancy Hypertens. 2020, 20, 7–13. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J.-Y.; Wang, F.; Peng, Q.-Q.; Hou, J.; Sun, S.-N.; Gui, Y.-H.; Duan, W.-Y.; Qiao, B.; Wang, H.-Y. A genetic variant in vitamin B12 metabolic genes that reduces the risk of congenital heart disease in Han Chinese populations. PLoS ONE 2014, 9, e88332. [Google Scholar]
- Hazra, A.; Kraft, P.; Lazarus, R.; Chen, C.; Chanock, S.J.; Jacques, P.; Selhub, J.; Hunter, D.J. Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway. Hum. Mol. Genet. 2009, 18, 4677–4687. [Google Scholar] [CrossRef] [PubMed]
- Behere, R.V.; Deshmukh, A.S.; Otiv, S.; Gupte, M.D.; Yajnik, C.S. Maternal Vitamin B12 Status During Pregnancy and Its Association With Outcomes of Pregnancy and Health of the Offspring: A Systematic Review and Implications for Policy in India. Front. Endocrinol. 2021, 12, 619176. [Google Scholar] [CrossRef] [PubMed]
- Coppedè, F.; Bosco, P.; Lorenzoni, V.; Migheli, F.; Barone, C.; Antonucci, I.; Stuppia, L.; Romano, C.; Migliore, L. The MTR 2756A>G polymorphism and maternal risk of birth of a child with Down syndrome: A case-control study and a meta-analysis. Mol. Biol. Rep. 2013, 40, 6913–6925. [Google Scholar] [CrossRef] [PubMed]
- Yi, K.; Ma, Y.-H.; Wang, W.; Zhang, X.; Gao, J.; He, S.-E.; Xu, X.-M.; Ji, M.; Guo, W.-F.; You, T. The roles of reduced folate carrier-1 (RFC1) A8oG (rs1051266) polymorphism in congenital heart disease: A meta-analysis. Med. Sci. Monit. 2021, 27, e929911. [Google Scholar] [CrossRef]
Variables | Data | ||
---|---|---|---|
N | 149 | ||
Maternal age (years) | 34.7 ± 5.2 | ||
Pregestational BMI (kg/m2) | 26.4 ± 5.50 | ||
GDM (%) | 62.4 | ||
Socioeconomic status (% active) | 80.4 | ||
Type of gestation (%) | |||
Spontaneous | 83.9 | ||
Assisted | 15.1 | ||
Weight gain (kg) | 11.6 ± 5.84 | ||
Type of delivery (%) | |||
Vaginal | 70.5 | ||
Caesarean | 29.5 | ||
Induced | 17.7 | ||
Spontaneous | 82.3 | ||
Hospital stay (days) | 3.18 ± 1.37 | ||
GHT (%) | 2.0 | ||
Preeclampsia (%) | 3.4 | ||
Vitamin and mineral supplementation (%) | |||
Vitamin complex | 81.2 | ||
Iodine and folic acid | 13.4 | ||
Folic acid | 5.4 | ||
Iron | 55.0 | ||
Gestational week (wks) | 39.2 ± 1.9 | ||
Baby weight at birth (kg) | 3.18 ± 0.57 | ||
PTB (%) | 7.4 | ||
Neonatal ICU income (%) | 8.8 | ||
Baby sex (% women) | 48.3 | ||
SGA (%) | 3.4 | ||
AGA (%) | 89.9 | ||
LGA (%) | 6.7 | ||
Low birth weight (%) | 9.4 | ||
Macrosomia (%) | 6.7 |
Prevalence (%) | SCL19A1 (rs1051266) | CUBN (rs11254363) | CUBN (rs1801222) | MTR (rs1805087) | MTHFR (rs1801133) | MTHFR (rs1801131) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TT | TC/CC | p Value | AA | AG/GG | p Value | AA | AG/GG | p Value | AA | AG/GG | p Value | CC | TC/TT | p Value | TT | TG/GG | p Value | |
Samples | 28.15 | 71.85 | 59.26 | 40.74 | 52.59 | 47.41 | 74.81 | 25.19 | 39.26 | 60.74 | 47.41 | 52.59 | ||||||
Spontaneous gestation | 84.21 | 78.35 | 0.429 | 80.00 | 80.00 | 1.000 | 84.51 | 75.00 | 0.177 | 79.21 | 82.35 | 0.689 | 73.58 | 84.15 | 0.155 | 87.50 | 73.24 | 0.035 |
Assisted fertilization | 7.89 | 18.56 | 0.075 | 15.00 | 16.36 | 0.836 | 11.27 | 20.31 | 0.158 | 16.83 | 11.76 | 0.460 | 20.75 | 12.20 | 0.208 | 9.38 | 21.13 | 0.055 |
Vaginal delivery | 47.37 | 43.30 | 0.673 | 43.75 | 45.45 | 0.846 | 38.03 | 51.56 | 0.116 | 43.56 | 47.06 | 0.726 | 45.28 | 43.90 | 0.876 | 45.31 | 43.66 | 0.849 |
Vaginal–instrumental delivery | 28.95 | 20.62 | 0.334 | 27.50 | 16.36 | 0.120 | 25.35 | 20.31 | 0.492 | 22.77 | 23.53 | 0.929 | 24.53 | 21.95 | 0.735 | 23.44 | 22.54 | 0.903 |
Caesarean | 23.68 | 32.99 | 0.276 | 26.25 | 36.36 | 0.221 | 36.62 | 23.44 | 0.095 | 31.68 | 26.47 | 0.563 | 28.30 | 31.71 | 0.676 | 28.13 | 32.39 | 0.594 |
Induced delivery | 18.42 | 15.46 | 0.693 | 16.25 | 16.36 | 0.986 | 19.72 | 12.50 | 0.261 | 15.84 | 17.65 | 0.815 | 18.87 | 14.63 | 0.535 | 20.31 | 12.68 | 0.243 |
Spontaneous delivery | 81.58 | 83.51 | 0.798 | 83.75 | 81.82 | 0.777 | 80.28 | 85.94 | 0.390 | 82.18 | 85.29 | 0.672 | 79.25 | 85.37 | 0.380 | 79.69 | 85.92 | 0.350 |
Preeclampsia | 2.63 | 4.12 | 0.698 | 3.75 | 3.64 | 0.977 | 2.82 | 4.69 | 0.625 | 2.97 | 5.88 | 0.567 | 0.00 | 6.10 | 0.000 | 4.69 | 2.82 | 0.625 |
Preterm birth | 7.89 | 7.22 | 0.902 | 10.00 | 3.64 | 0.139 | 4.23 | 10.94 | 0.155 | 6.93 | 8.82 | 0.748 | 1.89 | 10.98 | 0.013 | 6.25 | 8.45 | 0.646 |
Neonatal ICU income | 10.53 | 8.25 | 0.706 | 10.00 | 7.27 | 0.594 | 7.04 | 10.94 | 0.454 | 6.93 | 14.71 | 0.261 | 11.32 | 7.32 | 0.466 | 7.81 | 9.86 | 0.692 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Carnero, G.; Lorenzo, P.M.; Canton-Blanco, A.; Mendizabal, L.; Arregi, M.; Zulueta, M.; Simon, L.; Macia-Cortiñas, M.; Casanueva, F.F.; Crujeiras, A.B. Genetic Variants in Folate and Cobalamin Metabolism-Related Genes in Pregnant Women of a Homogeneous Spanish Population: The Need for Revisiting the Current Vitamin Supplementation Strategies. Nutrients 2022, 14, 2702. https://doi.org/10.3390/nu14132702
Rodriguez-Carnero G, Lorenzo PM, Canton-Blanco A, Mendizabal L, Arregi M, Zulueta M, Simon L, Macia-Cortiñas M, Casanueva FF, Crujeiras AB. Genetic Variants in Folate and Cobalamin Metabolism-Related Genes in Pregnant Women of a Homogeneous Spanish Population: The Need for Revisiting the Current Vitamin Supplementation Strategies. Nutrients. 2022; 14(13):2702. https://doi.org/10.3390/nu14132702
Chicago/Turabian StyleRodriguez-Carnero, Gemma, Paula M. Lorenzo, Ana Canton-Blanco, Leire Mendizabal, Maddi Arregi, Mirella Zulueta, Laureano Simon, Manuel Macia-Cortiñas, Felipe F. Casanueva, and Ana B. Crujeiras. 2022. "Genetic Variants in Folate and Cobalamin Metabolism-Related Genes in Pregnant Women of a Homogeneous Spanish Population: The Need for Revisiting the Current Vitamin Supplementation Strategies" Nutrients 14, no. 13: 2702. https://doi.org/10.3390/nu14132702
APA StyleRodriguez-Carnero, G., Lorenzo, P. M., Canton-Blanco, A., Mendizabal, L., Arregi, M., Zulueta, M., Simon, L., Macia-Cortiñas, M., Casanueva, F. F., & Crujeiras, A. B. (2022). Genetic Variants in Folate and Cobalamin Metabolism-Related Genes in Pregnant Women of a Homogeneous Spanish Population: The Need for Revisiting the Current Vitamin Supplementation Strategies. Nutrients, 14(13), 2702. https://doi.org/10.3390/nu14132702