Impact on the Nutritional Status and Inflammation of Patients with Cancer Hospitalized after the SARS-CoV-2 Lockdown
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection and Study Design
2.2. Lockdown Stage
2.3. Nutritional Status and Anthropometric Measurements
2.4. Blood Analyses
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Cohort
3.2. Nutritional Status of Patients at Admission
3.3. Biochemical Parameters and Inflammation
3.4. Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muscaritoli, M.; Lucia, S.; Farcomeni, A.; Lorusso, V.; Saracino, V.; Barone, C.; Plastino, F.; Gori, S.; Magarotto, R.; Carteni, G.; et al. Prevalence of malnutrition in patients at first medical oncology visit: The PreMiO study. Oncotarget 2017, 8, 79884–79896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarnoz-Esquiroz, P.; Lacasa, C.; Riestra, M.; Silva, C.; Fruhbeck, G. Clinical and financial implications of hospital malnutrition in Spain. Eur. Eat. Disord. Rev. 2019, 27, 581–602. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.M.; Power, D.G.; Daly, L.; Cushen, S.J.; Bhuachalla, E.N.; Prado, C.M. Cancer-associated malnutrition, cachexia and sarcopenia: The skeleton in the hospital closet 40 years later. Proc. Nutr. Soc. 2016, 75, 199–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Hernandez, J.; Vila, M.P.; Leon-Sanz, M.; de Lorenzo, A.G.; Celaya-Perez, S.; Garcia-Lorda, P.; Araujo, K.; Guerri, B.S.; PredyCes. Prevalence and costs of malnutrition in hospitalized patients; the PREDyCES Study. Nutr. Hosp. 2012, 27, 1049–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Planas, M.; Alvarez-Hernandez, J.; Leon-Sanz, M.; Celaya-Perez, S.; Araujo, K.; de Lorenzo, A.G.; Researchers, P.R. Prevalence of hospital malnutrition in cancer patients: A sub-analysis of the PREDyCES study. Supportive Care Cancer 2016, 24, 429–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arends, J.; Baracos, V.; Bertz, H.; Bozzetti, F.; Calder, P.C.; Deutz, N.E.P.; Erickson, N.; Laviano, A.; Lisanti, M.P.; Lobo, D.N.; et al. ESPEN expert group recommendations for action against cancer-related malnutrition. Clin. Nutr. 2017, 36, 1187–1196. [Google Scholar] [CrossRef] [Green Version]
- Cederholm, T.; Jensen, G.L.; Correia, M.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.J.S.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. J. Cachexia Sarcopenia Muscle 2019, 10, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Enriquez-Martinez, O.G.; Martins, M.C.T.; Pereira, T.S.S.; Pacheco, S.O.S.; Pacheco, F.J.; Lopez, K.V.; Huancahuire-Vega, S.; Silva, D.A.; Mora-Urda, A.I.; Rodriguez-Vasquez, M.; et al. Diet and Lifestyle Changes During the COVID-19 Pandemic in Ibero-American Countries: Argentina, Brazil, Mexico, Peru, and Spain. Front. Nutr. 2021, 8, 671004. [Google Scholar] [CrossRef]
- Laguna, L.; Fiszman, S.; Puerta, P.; Chaya, C.; Tarrega, A. The impact of COVID-19 lockdown on food priorities. Results from a preliminary study using social media and an online survey with Spanish consumers. Food Qual. Prefer. 2020, 86, 104028. [Google Scholar] [CrossRef]
- Perez-Rodrigo, C.; Citores, M.G.; Barbara, G.H.; Ruiz-Litago, F.; Saenz, L.C.; Arija, V.; Lopez-Sobaler, A.M.; de Victoria, E.M.; Ortega, R.M.; Partearroyo, T.; et al. Patterns of Change in Dietary Habits and Physical Activity during Lockdown in Spain Due to the COVID-19 Pandemic. Nutrients 2021, 13, 300. [Google Scholar] [CrossRef]
- Rodriguez-Perez, C.; Molina-Montes, E.; Verardo, V.; Artacho, R.; Garcia-Villanova, B.; Guerra-Hernandez, E.J.; Ruiz-Lopez, M.D. Changes in Dietary Behaviours during the COVID-19 Outbreak Confinement in the Spanish COVIDiet Study. Nutrients 2020, 12, 1730. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Roso, M.B.; Padilha, P.D.; Mantilla-Escalante, D.C.; Ulloa, N.; Brun, P.; Acevedo-Correa, D.; Peres, W.A.F.; Martorell, M.; Aires, M.T.; Cardoso, L.D.; et al. Covid-19 Confinement and Changes of Adolescent’s Dietary Trends in Italy, Spain, Chile, Colombia and Brazil. Nutrients 2020, 12, 1807. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Aranda, F.; Munguia, L.; Mestre-Bach, G.; Steward, T.; Etxandi, M.; Baenas, I.; Granero, R.; Sanchez, I.; Ortega, E.; Andreu, A.; et al. COVID Isolation Eating Scale (CIES): Analysis of the impact of confinement in eating disorders and obesity—A collaborative international study. Eur. Eat. Disord. Rev. 2020, 28, 871–883. [Google Scholar] [CrossRef] [PubMed]
- Hanna, T.P.; King, W.D.; Thibodeau, S.; Jalink, M.; Paulin, G.A.; Harvey-Jones, E.; O’Sullivan, D.E.; Booth, C.M.; Sullivan, R.; Aggarwal, A. Mortality due to cancer treatment delay: Systematic review and meta-analysis. Br. Med. J. 2020, 371, m4087. [Google Scholar] [CrossRef]
- Sud, A.; Jones, M.E.; Broggio, J.; Loveday, C.; Torr, B.; Garrett, A.; Nicol, D.L.; Jhanji, S.; Boyce, S.A.; Gronthoud, F.; et al. Collateral damage: The impact on outcomes from cancer surgery of the COVID-19 pandemic. Ann. Oncol. 2020, 31, 1065–1074. [Google Scholar] [CrossRef]
- Dinmohamed, A.G.; Visser, O.; Verhoeven, R.H.A.; Louwman, M.W.J.; van Nederveen, F.H.; Willems, S.M.; Merkx, M.A.W.; Lemmens, V.; Nagtegaal, I.D.; Siesling, S. Fewer cancer diagnoses during the COVID-19 epidemic in the Netherlands Comment. Lancet Oncol. 2020, 21, 750–751. [Google Scholar] [CrossRef]
- Boleo-Tome, C.; Monteiro-Grillo, I.; Camilo, M.; Ravasco, P. Validation of the Malnutrition Universal Screening Tool (MUST) in cancer. Br. J. Nutr. 2012, 108, 343–348. [Google Scholar] [CrossRef]
- White, J.V.; Guenter, P.; Jensen, G.; Malone, A.; Schofield, M.; Acad Malnutr Work, G.; Force, A.M.T.; Directors, A.B. Consensus Statement: Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition: Characteristics Recommended for the Identification and Documentation of Adult Malnutrition (Undernutrition). J. Parenter. Enter. Nutr. 2012, 36, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Elia, M. Screening for malnutrition: A multidisciplinary responsibility. In Development and Use of the ‘Malnutrition Universal Screening Tool’ (‘MUST’) for Adults; Malnutrition Advisory Group, a Standing Committee of BAPEN; BAPEN: Redditch, UK, 2003. [Google Scholar]
- Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: From bench to bedside. Mol. Asp. Med. 2012, 33, 209–290. [Google Scholar] [CrossRef]
- Bharadwaj, S.; Ginoya, S.; Tandon, P.; Gohel, T.D.; Guirguis, J.; Vallabh, H.; Jevenn, A.; Hanouneh, I. Malnutrition: Laboratory markers vs nutritional assessment. Gastroenterol. Rep. 2016, 4, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Bullock, A.F.; Greenley, S.L.; McKenzie, G.A.G.; Paton, L.W.; Johnson, M.J. Relationship between markers of malnutrition and clinical outcomes in older adults with cancer: Systematic review, narrative synthesis and meta-analysis. Eur. J. Clin. Nutr. 2020, 74, 1519–1535. [Google Scholar] [CrossRef] [PubMed]
- Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Grosse, Y.; Bianchini, F.; Straif, K.; International Agency for Research on Cancer Handbook Working Group. Body Fatness and Cancer—Viewpoint of the IARC Working Group. N. Engl. J. Med. 2016, 375, 794–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMillan, D.C. An inflammation-based prognostic score and its role in the nutrition-based management of patients with cancer. Proc. Nutr. Soc. 2008, 67, 257–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulia, K.A.; Klek, S.; Doundoulakis, I.; Bouras, E.; Karayiannis, D.; Baschali, A.; Passakiotou, M.; Chourdakis, M. The two most popular malnutrition screening tools in the light of the new ESPEN consensus definition of the diagnostic criteria for malnutrition. Clin. Nutr. 2017, 36, 1130–1135. [Google Scholar] [CrossRef]
- Douglas, E.; McMillan, D.C. Towards a simple objective framework for the investigation and treatment of cancer cachexia: The Glasgow Prognostic Score. Cancer Treat. Rev. 2014, 40, 685–691. [Google Scholar] [CrossRef]
- Morrison, L.; Laukkanen, J.A.; Ronkainen, K.; Kurl, S.; Kauhanen, J.; Toriola, A.T. Inflammatory biomarker score and cancer: A population-based prospective cohort study. BMC Cancer 2016, 16, 80. [Google Scholar] [CrossRef] [Green Version]
- Thibault, R.; Coeffier, M.; Joly, F.; Bohe, J.; Schneider, S.M.; Dechelotte, P. How the COVID-19 epidemic is challenging our practice in clinical nutrition-feedback from the field. Eur. J. Clin. Nutr. 2021, 75, 407–416. [Google Scholar] [CrossRef]
- Celorio-Sarda, R.; Comas-Baste, O.; Latorre-Moratalla, M.L.; Zeron-Rugerio, M.F.; Urpi-Sarda, M.; Illan-Villanueva, M.; Farran-Codina, A.; Izquierdo-Pulido, M.; Vidal-Carou, M.D. Effect of COVID-19 Lockdown on Dietary Habits and Lifestyle of Food Science Students and Professionals from Spain. Nutrients 2021, 13, 1494. [Google Scholar] [CrossRef]
- Batlle-Bayer, L.; Aldaco, R.; Bala, A.; Puig, R.; Laso, J.; Margallo, M.; Vazquez-Rowe, I.; Anto, J.M.; Fullana-I-Palmer, P. Environmental and nutritional impacts of dietary changes in Spain during the COVID-19 lockdown. Sci. Total Environ. 2020, 748, 141410. [Google Scholar] [CrossRef]
- Sanchez, E.; Lecube, A.; Bellido, D.; Monereo, S.; Malagon, M.M.; Tinahones, F.J.; on behalf of the Spanish Society for the Study of Obesity. Leading Factors for Weight Gain during COVID-19 Lockdown in a Spanish Population: A Cross-Sectional Study. Nutrients 2021, 13, 894. [Google Scholar] [CrossRef]
- Bossi, P.; Delrio, P.; Mascheroni, A.; Zanetti, M. The Spectrum of Malnutrition/Cachexia/Sarcopenia in Oncology According to Different Cancer Types and Settings: A Narrative Review. Nutrients 2021, 13, 1980. [Google Scholar] [CrossRef] [PubMed]
- de las Penas, R.; Majem, M.; Perez-Altozano, J.; Virizuela, J.A.; Cancer, E.; Diz, P.; Donnay, O.; Hurtado, A.; Jimenez-Fonseca, P.; Ocon, M.J. SEOM clinical guidelines on nutrition in cancer patients (2018). Clin. Transl. Oncol. 2019, 21, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battisti, N.M.L.; Mislang, A.R.; Cooper, L.; O’Donovan, A.; Audisio, R.A.; Cheung, K.L.; Sarrio, R.G.; Stauder, R.; Soto-Perez-de-Celis, E.; Jaklitsch, M.; et al. Adapting care for older cancer patients during the COVID-19 pandemic: Recommendations from the International Society of Geriatric Oncology (SIOG) COVID-19 Working Group. J. Geriatr. Oncol. 2020, 11, 1190–1198. [Google Scholar] [CrossRef] [PubMed]
- Basen-Engquist, K.; Chang, M. Obesity and Cancer Risk: Recent Review and Evidence. Curr. Oncol. Rep. 2011, 13, 71–76. [Google Scholar] [CrossRef]
- Kushi, L.H.; Doyle, C.; McCullough, M.; Rock, C.L.; Demark-Wahnefried, W.; Bandera, E.V.; Gapstur, S.; Patel, A.V.; Andrews, K.; Gansler, T.; et al. American Cancer Society Guidelines on Nutrition and Physical Activity for Cancer Prevention Reducing the Risk of Cancer With Healthy Food Choices and Physical Activity. CA Cancer J. Clin. 2012, 62, 30–67. [Google Scholar] [CrossRef]
- Lee, D.H.; Giovannucci, E.L. The Obesity Paradox in Cancer: Epidemiologic Insights and Perspectives. Curr. Nutr. Rep. 2019, 8, 175–181. [Google Scholar] [CrossRef]
- Lennon, H.; Sperrin, M.; Badrick, E.; Renehan, A.G. The Obesity Paradox in Cancer: A Review. Curr. Oncol. Rep. 2016, 18, 56. [Google Scholar] [CrossRef]
- Martinez-Tapia, C.; Diot, T.; Oubaya, N.; Paillaud, E.; Poisson, J.; Gisselbrecht, M.; Morisset, L.; Caillet, P.; Baudin, A.; Pamoukdjian, F.; et al. The obesity paradox for mid- and long-term mortality in older cancer patients: A prospective multicenter cohort study. Am. J. Clin. Nutr. 2021, 113, 129–141. [Google Scholar] [CrossRef]
- Pamoukdjian, F.; Aparicio, T.; Canoui-Poitrine, F.; Duchemann, B.; Levy, V.; Wind, P.; Ganne, N.; Sebbane, G.; Zelek, L.; Paillaud, E. Obesity survival paradox in cancer patients: Results from the Physical Frailty in older adult cancer patients (PF-EC) study. Clin. Nutr. 2019, 38, 2806–2812. [Google Scholar] [CrossRef]
- Martin, L.; Senesse, P.; Gioulbasanis, I.; Antoun, S.; Bozzetti, F.; Deans, C.; Strasser, F.; Thoresen, L.; Jagoe, R.T.; Chasen, M.; et al. Diagnostic Criteria for the Classification of Cancer-Associated Weight Loss. J. Clin. Oncol. 2015, 33, 90-U147. [Google Scholar] [CrossRef]
- Gonzalez, M.C.; Pastore, C.A.; Orlandi, S.P.; Heymsfield, S.B. Obesity paradox in cancer: New insights provided by body composition. Am. J. Clin. Nutr. 2014, 99, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Shachar, S.S.; Williams, G.R. The Obesity Paradox in Cancer-Moving Beyond BMI. Cancer Epidemiol. Biomark. Prev. 2017, 26, 13–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donini, L.M.; Busetto, L.; Bauer, J.M.; Bischoff, S.; Boirie, Y.; Cederholm, T.; Cruz-Jentoft, A.J.; Dicker, D.; Fruhbeck, G.; Giustina, A.; et al. Critical appraisal of definitions and diagnostic criteria for sarcopenic obesity based on a systematic review. Clin. Nutr. 2020, 39, 2368–2388. [Google Scholar] [CrossRef]
- Gomez-Ambrosi, J.; Gallego-Escuredo, J.M.; Catalan, V.; Rodriguez, A.; Domingo, P.; Moncada, R.; Valenti, V.; Salvador, J.; Giralt, M.; Villarroya, F.; et al. FGF19 and FGF21 serum concentrations in human obesity and type 2 diabetes behave differently after diet- or surgically-induced weight loss. Clin. Nutr. 2017, 36, 861–868. [Google Scholar] [CrossRef]
- Fruhbeck, G.; Gomez-Ambrosi, J. Rationale for the existence of additional adipostatic hormones. FASEB J. 2001, 15, 1996–2006. [Google Scholar] [CrossRef] [PubMed]
- Landecho, M.F.; Tuero, C.; Valenti, V.; Bilbao, I.; Higuera, M.d.L.; Fruhbeck, G. Relevance of leptin and other adipokines in obesity-associated cardiovascular risk. Nutrients 2019, 11, 2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muscaritoli, M.; Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Hutterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN practical guideline: Clinical Nutrition in cancer. Clin. Nutr. 2021, 40, 2898–2913. [Google Scholar] [CrossRef]
- Schuetz, P.; Seres, D.; Lobo, D.N.; Gomes, F.; Kaegi-Braun, N.; Stanga, Z. Management of disease-related malnutrition for patients being treated in hospital. Lancet 2021, 398, 1927–1938. [Google Scholar] [CrossRef]
- Winter, J.E.; MacInnis, R.J.; Wattanapenpaiboon, N.; Nowson, C.A. BMI and all-cause mortality in older adults: A meta-analysis. Am. J. Clin. Nutr. 2014, 99, 875–890. [Google Scholar] [CrossRef] [Green Version]
- Sivasankarapillai, V.S.; Madhu Kumar Nair, R.; Rahdar, A.; Bungau, S.; Zaha, D.C.; Aleya, L.; Tit, D.M. Overview of the anticancer activity of withaferin A, an active constituent of the Indian ginseng Withania somnifera. Environ. Sci. Pollut. Res. 2020, 27, 26025–26035. [Google Scholar] [CrossRef]
- Tagde, P.; Tagde, S.; Tagde, P.; Bhattacharya, T.; Monzur, S.M.; Rahman, M.H.; Otrisal, P.; Behl, T.; ul Hassan, S.S.; Abdel-Daim, M.M.; et al. Nutraceuticals and Herbs in Reducing the Risk and Improving the Treatment of COVID-19 by Targeting SARS-CoV-2. Biomedicines 2021, 9, 1266. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Sharma, A.; Sharma, L.; Sehgal, A.; Singh, S.; Sharma, N.; Zengin, G.; Bungau, S.; Toma, M.M.; Gitea, D.; et al. Current Perspective on the Natural Compounds and Drug Delivery Techniques in Glioblastoma Multiforme. Cancers 2021, 13, 2765. [Google Scholar] [CrossRef] [PubMed]
Steps | ||
---|---|---|
Step 1: BMI Score (kg/m2) >20: Score 0 18.5–20.0: Score 1 <18.5: Score 2 | Step 2: Weight loss score Unplanned weight loss in past 3–6 months <5.0%: Score 0 5.0–10.0%: Score 1 >10.0%: Score 2 | Step 3: Acute disease effect score If patient is acutely ill, and there has been or is likely to be no nutritional intake for > 5 days Score 2 |
Step 4: Overall risk of malnutrition (add scores together to calculate overall risk of malnutrition): Score 0: Low Risk.Score 1: Medium Risk. Score ≥ 2: High Risk. | ||
Step 5: Management guidelines according risk Low Risk, routine care—unless major clinical deterioration expected. Medium Risk, observe or treat if approaching high risk or if rapid clinical deterioration anticipated. High Risk, treat unless detrimental or no benefit from nutritional support expected e.g., imminent death. |
2019 | 2020 Post-Lockdown | p | ||
---|---|---|---|---|
n | 440 | 288 | ||
Age (years) | 62.3 ± 14.7 | 60.4 ± 16.5 | 0.103 | |
Sex | Male | 256 | 170 | 0.821 |
Female | 184 | 118 | ||
LOS (days) | 12.2 ± 12.4 | 13.1 ± 13.1 | 0.363 | |
Weight (kg) | 70.3 ± 14.7 | 72.1 ± 17.1 | 0.143 | |
BMI (kg/m2) | 24.8 ± 4.6 | 25.2 ± 4.7 | 0.321 | |
Albumin (g/dL) | 2.7 ± 0.6 | 3.0 ± 0.6 | <0.001 | |
Prealbumin (mg/dL) | 15.0 ± 9.4 | 16.0 ± 7.7 | 0.604 | |
Cholesterol (mg/dL) | 136.5 ± 56.6 | 126.0 ± 52.8 | 0.447 | |
Lymphocytes (109 cells/L) | 1.1 ± 0.8 | 1.2 ± 1.3 | 0.621 | |
CRP (mg/dL) | 7.17 ± 8.11 | 5.92 ± 7.27 | 0.005 | |
MUST | BMI score | 0.2 | 0.2 | 0.867 |
Weight loss score | 0.2 | 0.1 | 0.032 | |
Acute disease effect | 0.2 | 0.1 | 0.262 | |
Overall risk | 0.6 | 0.4 | 0.042 |
Stage | p | ||||
---|---|---|---|---|---|
I | II | III | IV | ||
2019 | 0.3% | 3.8% | 14.1% | 81.8% | 0.001 |
2020 | 6.2% | 6.2% | 17.1% | 70.5% | |
Treatment | |||||
Monotherapy | Polytherapy | Radiotherapy | Surgery | ||
2019 | 22.3% | 74.1% | 2.7% | 0.9% | 0.030 |
2020 | 14.6% | 78.8% | 4.2% | 2.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yárnoz-Esquíroz, P.; Chopitea, A.; Olazarán, L.; Aguas-Ayesa, M.; Silva, C.; Vilalta-Lacarra, A.; Escalada, J.; Gil-Bazo, I.; Frühbeck, G.; Gómez-Ambrosi, J. Impact on the Nutritional Status and Inflammation of Patients with Cancer Hospitalized after the SARS-CoV-2 Lockdown. Nutrients 2022, 14, 2754. https://doi.org/10.3390/nu14132754
Yárnoz-Esquíroz P, Chopitea A, Olazarán L, Aguas-Ayesa M, Silva C, Vilalta-Lacarra A, Escalada J, Gil-Bazo I, Frühbeck G, Gómez-Ambrosi J. Impact on the Nutritional Status and Inflammation of Patients with Cancer Hospitalized after the SARS-CoV-2 Lockdown. Nutrients. 2022; 14(13):2754. https://doi.org/10.3390/nu14132754
Chicago/Turabian StyleYárnoz-Esquíroz, Patricia, Ana Chopitea, Laura Olazarán, Maite Aguas-Ayesa, Camilo Silva, Anna Vilalta-Lacarra, Javier Escalada, Ignacio Gil-Bazo, Gema Frühbeck, and Javier Gómez-Ambrosi. 2022. "Impact on the Nutritional Status and Inflammation of Patients with Cancer Hospitalized after the SARS-CoV-2 Lockdown" Nutrients 14, no. 13: 2754. https://doi.org/10.3390/nu14132754
APA StyleYárnoz-Esquíroz, P., Chopitea, A., Olazarán, L., Aguas-Ayesa, M., Silva, C., Vilalta-Lacarra, A., Escalada, J., Gil-Bazo, I., Frühbeck, G., & Gómez-Ambrosi, J. (2022). Impact on the Nutritional Status and Inflammation of Patients with Cancer Hospitalized after the SARS-CoV-2 Lockdown. Nutrients, 14(13), 2754. https://doi.org/10.3390/nu14132754