Machine Learning-Based Prediction of In-Hospital Complications in Elderly Patients Using GLIM-, SGA-, and ESPEN 2015-Diagnosed Malnutrition as a Factor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Data Collection
2.3. Diagnostic Criteria for Malnutrition
2.3.1. The SGA Criteria
2.3.2. The ESPEN 2015 Criteria
2.3.3. The GLIM Criteria
2.4. Statistical Analysis
2.5. Machine Learning Analysis
3. Results
3.1. General Characteristics of the Subjects
3.2. Prevalence of Malnutrition
3.3. Differences between Malnourished and Normal Subjects
3.4. Diagnostic Consistency between the Criteria
3.5. Adverse Clinical Outcomes of the Patients within 30 Days of Hospitalization
3.6. Covariates Analysis of the Exposure and Outcome Variables
3.7. Factors Influencing the Total In-Hospital Complications in the Patients
3.8. The Predictive Value of the Malnutrition Diagnosis with the Three Criteria on the Total In-Hospital Complications of the Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cederholm, T.; Barazzoni, R. A year with the GLIM diagnosis of malnutrition—Does it work for older persons? Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Correia, M.; Tappenden, K.A.; Malone, A.; Prado, C.M.; Evans, D.C.; Sauer, A.C.; Hegazi, R.; Gramlich, L. Utilization and validation of the Global Leadership Initiative on Malnutrition (GLIM): A scoping review. Clin. Nutr. 2022, 41, 687–697. [Google Scholar] [CrossRef] [PubMed]
- de van der Schueren, M.A.E.; Keller, H.; Consortium, G.; Cederholm, T.; Barazzoni, R.; Compher, C.; Correia, M.; Gonzalez, M.C.; Jager-Wittenaar, H.; Pirlich, M.; et al. Global Leadership Initiative on Malnutrition (GLIM): Guidance on validation of the operational criteria for the diagnosis of protein-energy malnutrition in adults. Clin. Nutr. 2020, 39, 2872–2880. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Wei, J.; Chen, W.; Yang, X.; Cui, H.; Zhu, S.; Ad hoc Working, G. Nutritional Risk and Nutritional Status at Admission and Discharge among Chinese Hospitalized Patients: A Prospective, Nationwide, Multicenter Study. J. Am. Coll. Nutr. 2017, 36, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Allepaerts, S.; Buckinx, F.; Bruyere, O.; Reginster, J.Y.; Paquot, N.; Gillain, S. Clinical Impact of Nutritional Status and Energy Balance in Elderly Hospitalized Patients. J. Nutr. Health Aging 2020, 24, 1073–1079. [Google Scholar] [CrossRef]
- Detsky, A.S.; McLaughlin, J.R.; Baker, J.P.; Johnston, N.; Whittaker, S.; Mendelson, R.A.; Jeejeebhoy, K.N. What is subjective global assessment of nutritional status? JPEN J. Parenter. Enter. Nutr. 1987, 11, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Lu, Z.; Li, Z.; Xu, J.; Cui, H.; Zhu, M. Influence of Malnutrition According to the GLIM Criteria on the Clinical Outcomes of Hospitalized Patients with Cancer. Front. Nutr. 2021, 8, 774636. [Google Scholar] [CrossRef]
- Cederholm, T.; Bosaeus, I.; Barazzoni, R.; Bauer, J.; Van Gossum, A.; Klek, S.; Muscaritoli, M.; Nyulasi, I.; Ockenga, J.; Schneider, S.M.; et al. Diagnostic criteria for malnutrition—An ESPEN Consensus Statement. Clin. Nutr. 2015, 34, 335–340. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Nakyeyune, R.; Ruan, X.; Shen, Y.; Shao, Y.; Niu, C.; Zang, Z.; Liu, F. Diagnostic Performance of SGA, PG-SGA and MUST for Malnutrition Assessment in Adult Cancer Patients: A Systematic Literature Review and Hierarchical Bayesian Meta-Analysis. Nutr. Cancer 2022, 74, 903–915. [Google Scholar] [CrossRef]
- van Bokhorst-de van der Schueren, M.A.; Guaitoli, P.R.; Jansma, E.P.; de Vet, H.C. Nutrition screening tools: Does one size fit all? A systematic review of screening tools for the hospital setting. Clin. Nutr. 2014, 33, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Simpson, F.; Doig, G.S. Bedside nutrition evaluation and physical assessment techniques in critical illness. Curr. Opin. Crit. Care 2016, 22, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, M.; Zhang, Q.; Zhang, K.P.; Guo, Z.Q.; Xu, H.X.; Yuan, K.T.; Yu, M.; Braga, M.; Cederholm, T.; et al. The GLIM criteria as an effective tool for nutrition assessment and survival prediction in older adult cancer patients. Clin. Nutr. 2021, 40, 1224–1232. [Google Scholar] [CrossRef]
- Kootaka, Y.; Kamiya, K.; Hamazaki, N.; Nozaki, K.; Ichikawa, T.; Nakamura, T.; Yamashita, M.; Maekawa, E.; Reed, J.L.; Yamaoka-Tojo, M.; et al. The GLIM criteria for defining malnutrition can predict physical function and prognosis in patients with cardiovascular disease. Clin. Nutr. 2021, 40, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Wang, J.; Zhou, F.; Tang, M.; Xu, J.; Zhang, Y.; Yan, M.; Li, S.; Zhang, Z.; Wu, G. Validation of GLIM malnutrition criteria in cancer patients undergoing major abdominal surgery: A large-scale prospective study. Clin. Nutr. 2022, 41, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Fiorindi, C.; Luceri, C.; Dragoni, G.; Piemonte, G.; Scaringi, S.; Staderini, F.; Nannoni, A.; Ficari, F.; Giudici, F. GLIM Criteria for Malnutrition in Surgical IBD Patients: A Pilot Study. Nutrients 2020, 12, 2222. [Google Scholar] [CrossRef]
- Kazmierczak-Siedlecka, K.; Skonieczna-Zydecka, K.; Folwarski, M.; Ruszkowski, J.; Swierblewski, M.; Makarewicz, W. Influence of malnutrition stage according to GLIM 2019 criteria and SGA on the quality of life of patients with advanced cancer. Nutr. Hosp. 2020, 37, 1179–1185. [Google Scholar] [CrossRef]
- Yin, L.; Cheng, N.; Chen, P.; Zhang, M.; Li, N.; Lin, X.; He, X.; Wang, Y.; Xu, H.; Guo, W.; et al. Association of Malnutrition, as Defined by the PG-SGA, ESPEN 2015, and GLIM Criteria, With Complications in Esophageal Cancer Patients After Esophagectomy. Front. Nutr. 2021, 8, 632546. [Google Scholar] [CrossRef]
- Sanchez-Rodriguez, D.; Locquet, M.; Reginster, J.Y.; Cavalier, E.; Bruyere, O.; Beaudart, C. Mortality in malnourished older adults diagnosed by ESPEN and GLIM criteria in the SarcoPhAge study. J. Cachexia Sarcopenia Muscle 2020, 11, 1200–1211. [Google Scholar] [CrossRef]
- Yeung, S.S.Y.; Chan, J.H.Y.; Chan, R.S.M.; Sham, A.; Ho, S.C.; Woo, J. Predictive Value of the GLIM Criteria in Chinese Community-Dwelling and Institutionalized Older Adults Aged 70 Years and Over. J. Nutr. Health Aging 2021, 25, 645–652. [Google Scholar] [CrossRef]
- Huo, Z.; Chong, F.; Yin, L.; Lu, Z.; Liu, J.; Xu, H. Accuracy of the GLIM criteria for diagnosing malnutrition: A systematic review and meta-analysis. Clin. Nutr. 2022, 41, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhu, M.; Yang, X.; Cui, H.; Li, Z.; Wei, J. Controlling Nutritional Status Score as a Predictive Marker of In-hospital Mortality in Older Adult Patients. Front Nutr. 2021, 8, 738045. [Google Scholar] [CrossRef] [PubMed]
- Kondrup, J.; Allison, S.P.; Elia, M.; Vellas, B.; Plauth, M.; Educational and Clinical Practice Committee, European Society of Parenteral Enteral Nutrition. ESPEN guidelines for nutrition screening 2002. Clin. Nutr. 2003, 22, 415–421. [Google Scholar] [CrossRef]
- Yin, L.; Lin, X.; Li, N.; Zhang, M.; He, X.; Liu, J.; Kang, J.; Chen, X.; Wang, C.; Wang, X.; et al. Evaluation of the Global Leadership Initiative on Malnutrition Criteria Using Different Muscle Mass Indices for Diagnosing Malnutrition and Predicting Survival in Lung Cancer Patients. JPEN J. Parenter. Enter. Nutr. 2021, 45, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef] [PubMed]
- Weaving, G.; Batstone, G.F.; Jones, R.G. Age and sex variation in serum albumin concentration: An observational study. Ann. Clin. Biochem. 2016, 53, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.Y.; Zhu, M.W.; Zhang, H.; Li, L.; Tang, P.X.; Chen, W.; Wei, J.M. A Cross-Sectional Study of GLIM-Defined Malnutrition Based on New Validated Calf Circumference Cut-off Values and Different Screening Tools in Hospitalised Patients over 70 Years Old. J. Nutr. Health Aging 2020, 24, 832–838. [Google Scholar] [CrossRef]
- Balci, C.; Bolayir, B.; Esme, M.; Arik, G.; Kuyumcu, M.E.; Yesil, Y.; Varan, H.D.; Kara, O.; Gungor, A.E.; Dogu, B.B.; et al. Comparison of the Efficacy of the Global Leadership Initiative on Malnutrition Criteria, Subjective Global Assessment, and Nutrition Risk Screening 2002 in Diagnosing Malnutrition and Predicting 5-Year Mortality in Patients Hospitalized for Acute Illnesses. JPEN J. Parenter. Enter. Nutr. 2021, 45, 1172–1180. [Google Scholar] [CrossRef]
- Burgos, R.; Sarto, B.; Elio, I.; Planas, M.; Forga, M.; Canton, A.; Trallero, R.; Munoz, M.J.; Perez, D.; Bonada, A.; et al. Prevalence of malnutrition and its etiological factors in hospitals. Nutr. Hosp. 2012, 27, 469–476. [Google Scholar]
- Moradell, A.; Fernandez-Garcia, A.I.; Navarrete-Villanueva, D.; Sagarra-Romero, L.; Gesteiro, E.; Perez-Gomez, J.; Rodriguez-Gomez, I.; Ara, I.; Casajus, J.A.; Vicente-Rodriguez, G.; et al. Functional Frailty, Dietary Intake, and Risk of Malnutrition. Are Nutrients Involved in Muscle Synthesis the Key for Frailty Prevention? Nutrients 2021, 13, 1231. [Google Scholar] [CrossRef]
- White, J.V.; Guenter, P.; Jensen, G.; Malone, A.; Schofield, M.; Academy Malnutrition Work Group, A.S.P.E.N. Malnutrition Task Force and and the A.S.P.E.N. Board of Directors. Consensus statement of the Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition: Characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). J. Acad. Nutr. Diet 2012, 112, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Hudgens, J.; Langkamp-Henken, B.; Stechmiller, J.K.; Herrlinger-Garcia, K.A.; Nieves, C., Jr. Immune function is impaired with a mini nutritional assessment score indicative of malnutrition in nursing home elders with pressure ulcers. JPEN J. Parenter. Enter. Nutr. 2004, 28, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, K.; Kadota, J.; Iida, K.; Shirai, R.; Abe, K.; Kohno, S. Reduced immune function and malnutrition in the elderly. Tohoku J. Exp. Med. 1999, 187, 157–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weijs, P.J.; Looijaard, W.G.; Beishuizen, A.; Girbes, A.R.; Oudemans-van Straaten, H.M. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. Crit. Care 2014, 18, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Power, L.; Mullally, D.; Gibney, E.R.; Clarke, M.; Visser, M.; Volkert, D.; Bardon, L.; de van der Schueren, M.A.E.; Corish, C.A.; MaNu, E.L.C. A review of the validity of malnutrition screening tools used in older adults in community and healthcare settings—A MaNuEL study. Clin. Nutr. ESPEN 2018, 24, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Barazzoni, R.; Jensen, G.L.; Correia, M.; Gonzalez, M.C.; Higashiguchi, T.; Shi, H.P.; Bischoff, S.C.; Boirie, Y.; Carrasco, F.; Cruz-Jentoft, A.; et al. Guidance for assessment of the muscle mass phenotypic criterion for the Global Leadership Initiative on Malnutrition (GLIM) diagnosis of malnutrition. Clin. Nutr. 2022, 41, 1425–1433. [Google Scholar] [CrossRef]
Characteristics | GLIM | SGA | ESPEN 2015 | ||||||
---|---|---|---|---|---|---|---|---|---|
Malnutrition | Non-Malnutrition | p | Malnutrition | Non-Malnutrition | p | Malnutrition | Non-Malnutrition | p | |
n | 956 | 1570 | 829 | 1697 | 429 | 2097 | |||
Age (year) | 75.91 ± 7.28 | 73.85 ± 6.91 | <0.0001 | 75.60 ± 7.15 | 74.16 ± 7.06 | <0.0001 | 76.66 ± 7.21 | 74.22 ± 7.03 | <0.0001 |
Males (%) | 584(61.09) | 911(58.03) | 0.129 | 512(61.76) | 983(57.93) | 0.066 | 255(59.44) | 1240(59.13) | 0.906 |
Married (%) | 929(97.18) | 1448(90.23) | <0.0001 | 796(96.02) | 1581(93.16) | 0.004 | 413(96.27) | 1964(93.66) | 0.036 |
Primary school and lower | 705(73.74) | 1108(70.57) | 0.097 | 595(71.77) | 1218(71.77) | 0.102 | 322(75.06) | 1491(71.10) | 0.250 |
High school | 125(13.08) | 206(13.12) | 122(14.72) | 209(12.32) | 49(11.42) | 282(13.45) | |||
Bachelor’s degree or above | 126(13.18) | 256(16.31) | 112(13.51) | 270(15.91) | 58(13.52) | 324(15.45) | |||
Height (cm) | 163.97 ± 8.45 | 164.41 ± 8.14 | 0.194 | 163.98 ± 8.38 | 164.37 ± 8.21 | 0.270 | 163.76 ± 8.30 | 164.34 ± 8.26 | 0.183 |
Weight (kg) | 56.37 ± 10.88 | 65.15 ± 10.47 | <0.0001 | 57.71 ± 11.08 | 63.84 ± 11.09 | <0.0001 | 48.90 ± 7.42 | 64.48 ± 10.27 | <0.0001 |
BMI (kg/m2) | 20.90 ± 3.37 | 24.06 ± 3.14 | <0.0001 | 21.40 ± 3.50 | 23.58 ± 3.38 | <0.0001 | 18.17 ± 1.89 | 23.82 ± 3.03 | <0.0001 |
Grip strength (kg) | 19.83 ± 9.17 | 23.93 ± 9.27 | <0.0001 | 20.42 ± 8.99 | 23.34 ± 9.51 | <0.0001 | 18.78 ± 8.81 | 23.11 ± 9.40 | <0.0001 |
Mid-upper arm circumference (cm) | 25.04 ± 3.97 | 27.39 ± 3.27 | <0.0001 | 25.28 ± 4.21 | 27.08 ± 3.28 | <0.0001 | 23.42 ± 3.05 | 27.11 ± 3.56 | <0.0001 |
Calf circumference (cm) | 30.69 ± 3.96 | 33.68 ± 3.93 | <0.0001 | 31.14 ± 4.43 | 33.20 ± 3.92 | <0.0001 | 29.38 ± 3.57 | 33.18 ± 4.03 | <0.0001 |
Lymphocytes § (109/L) | 1.30(0.46) | 1.66(0.58) | <0.0001 | 1.30(0.45) | 1.60(0.58) | <0.0001 | 1.22(0.42) | 1.57(0.55) | <0.0001 |
Hemoglobin (g/L) | 115.42 ± 21.95 | 126.92 ± 18.05 | <0.0001 | 116.53 ± 22.08 | 125.42 ± 18.88 | <0.0001 | 112.98 ± 21.38 | 124.38 ± 19.69 | <0.0001 |
Total protein (g/L) | 63.60 ± 7.29 | 66.63 ± 6.43 | <0.0001 | 64.01 ± 7.25 | 66.19 ± 6.65 | <0.0001 | 63.13 ± 7.22 | 65.92 ± 6.78 | <0.0001 |
Albumin (g/L) | 35.80 ± 5.37 | 39.74 ± 4.53 | <0.0001 | 36.22 ± 5.51 | 39.22 ± 4.78 | <0.0001 | 35.75 ± 5.41 | 38.70 ± 5.05 | <0.0001 |
Pre-albumin (g/L) | 0.21 ± 0.09 | 0.24 ± 0.07 | <0.0001 | 0.21 ± 0.09 | 0.24 ± 0.07 | <0.0001 | 0.21 ± 0.09 | 0.23 ± 0.08 | 0.004 |
Triglyceride (mmol/L) | 1.47 ± 1.30 | 2.16 ± 2.22 | <0.0001 | 1.53 ± 1.41 | 2.07 ± 2.15 | <0.0001 | 1.33 ± 1.14 | 2.02 ± 2.07 | <0.0001 |
Total cholesterol (mmol/L) | 3.94 ± 1.36 | 4.18 ± 1.51 | 0.001 | 3.91 ± 1.44 | 4.17 ± 1.47 | 0.001 | 3.88 ± 1.40 | 4.13 ± 1.47 | 0.001 |
Endocrine diseases | 18(1.88) | 45(2.87) | 0.124 | 19(2.29) | 44(2.59) | 0.649 | 6(1.40) | 57(2.72) | 0.110 |
Nervous system diseases | 72(7.53) | 358(22.80) | <0.0001 | 72(8.69) | 358(21.10) | <0.0001 | 37(8.62) | 393(18.74) | <0.0001 |
Osteoarthropathy | 30(3.14) | 111(7.07) | <0.0001 | 11(1.33) | 130(7.66) | <0.0001 | 10(2.33) | 131(6.25) | 0.001 |
Digestive diseases | 189(19.77) | 274(17.45) | 0.144 | 187(22.56) | 276(16.26) | <0.0001 | 73(17.02) | 390(18.60) | 0.440 |
Respiratory diseases | 101(10.56) | 122(7.77) | 0.016 | 90(10.86) | 133(7.84) | 0.012 | 51(11.89) | 172(8.20) | 0.014 |
Cardiovascular diseases | 31(3.24) | 107(6.82) | <0.0001 | 33(3.98) | 105(6.19) | 0.022 | 20(4.66) | 118(5.63) | 0.423 |
Tumors | 483(50.52) | 465(29.62) | <0.0001 | 390(47.04) | 558(32.88) | <0.0001 | 213(49.65) | 735(35.05) | <0.0001 |
Kidney diseases | 3(0.31) | 7(0.45) | 0.608 | 4(0.48) | 6(0.35) | 0.628 | 1(0.23) | 9(0.43) | 0.415 |
GLIM | SGA | ESPEN 2015 | |||||||
---|---|---|---|---|---|---|---|---|---|
Malnutrition | Normal | p | Malnutrition | Normal | p | Malnutrition | Normal | p | |
n | 956 | 1570 | - | 829 | 1697 | - | 429 | 2097 | - |
Total complications | 60(6.3) | 43(2.7) | <0.0001 | 47(50.7) | 56(3.3) | 0.005 | 27(6.3) | 76(3.6) | 0.011 |
Infectious complications | 37(3.9) | 25(1.6) | <0.0001 | 29(3.5) | 33(1.9) | 0.018 | 14(3.3) | 48(2.3) | 0.233 |
Non-infectious complications | 23(2.4) | 18(1.1) | 0.015 | 18(2.2) | 23(1.4) | 0.128 | 13(3.0) | 28(1.3) | 0.011 |
ICU admission | 62(6.5) | 104(6.6) | 0.891 | 50(6.0) | 116(6.8) | 0.444 | 24(5.6) | 142(6.8) | 0.267 |
Mortality | 10(1.0) | 0(0.0) | <0.0001 | 7(0.8) | 3(0.2) | 0.012 | 5(1.2) | 5(0.2) | 0.005 |
LOS, days # | 15.01 ± 6.83 | 13.89 ± 6.01 | <0.0001 | 14.89 ± 6.82 | 14.03 ± 6.20 | 0.001 | 15.00 ± 7.13 | 14.17 ± 6.18 | 0.014 |
Days in ICU #,§ | 0.00(0.00) | 0.00(0.00) | 0.557 | 0.00(0.00) | 0.00(0.00) | 0.479 | 0.00(0.00) | 0.00(0.00) | 0.400 |
Total hospital expenses, USD #,§ | 3265.59(2592.52) | 3242.81 (2285.47) | 0.036 | 3242.81(2496.35) | 3242.81(2333.12) | 0.348 | 3052.32(2166.82) | 3242.81(2510.13) | 0.378 |
Risk Factors | Model 1(GLIM) | Model 2 (SGA) | Model 3 (ESPEN 2015) | ||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95%CI | p | OR | 95%CI | p | OR | 95%CI | p | |
Malnutrition | 2.414 | (1.605–3.630) | <0.0001 | 1.745 | (1.169–2.604) | 0.006 | 1.786 | (1.130–2.824) | 0.013 |
Age | 0.998 | (0.971–1.026) | 0.911 | 1.003 | (0.976–1.031) | 0.827 | 1.002 | (0.975–1.030) | 0.881 |
Gender | 1.446 | (0.947–2.208) | 0.088 | 1.454 | (0.953–2.219) | 0.082 | 1.482 | (0.971–2.261) | 0.068 |
Marriage status | 0.697 | (0.314–1.547) | 0.375 | 0.802 | (0.364–1.767) | 0.584 | 0.827 | (0.376–1.821) | 0.638 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, S.-S.; Zhu, M.-W.; Zhang, K.-W.; Chen, B.-W.; Yang, C.; Xiao, R.; Li, P.-G. Machine Learning-Based Prediction of In-Hospital Complications in Elderly Patients Using GLIM-, SGA-, and ESPEN 2015-Diagnosed Malnutrition as a Factor. Nutrients 2022, 14, 3035. https://doi.org/10.3390/nu14153035
Ren S-S, Zhu M-W, Zhang K-W, Chen B-W, Yang C, Xiao R, Li P-G. Machine Learning-Based Prediction of In-Hospital Complications in Elderly Patients Using GLIM-, SGA-, and ESPEN 2015-Diagnosed Malnutrition as a Factor. Nutrients. 2022; 14(15):3035. https://doi.org/10.3390/nu14153035
Chicago/Turabian StyleRen, Shan-Shan, Ming-Wei Zhu, Kai-Wen Zhang, Bo-Wen Chen, Chun Yang, Rong Xiao, and Peng-Gao Li. 2022. "Machine Learning-Based Prediction of In-Hospital Complications in Elderly Patients Using GLIM-, SGA-, and ESPEN 2015-Diagnosed Malnutrition as a Factor" Nutrients 14, no. 15: 3035. https://doi.org/10.3390/nu14153035
APA StyleRen, S. -S., Zhu, M. -W., Zhang, K. -W., Chen, B. -W., Yang, C., Xiao, R., & Li, P. -G. (2022). Machine Learning-Based Prediction of In-Hospital Complications in Elderly Patients Using GLIM-, SGA-, and ESPEN 2015-Diagnosed Malnutrition as a Factor. Nutrients, 14(15), 3035. https://doi.org/10.3390/nu14153035