The Chilean Diet: Is It Sustainable?
Abstract
:1. Introduction
2. Materials and Methods
2.1. National Survey of Food Consumption
2.2. Carbon Footprint and Water Footprint
2.3. Bibliographic Search for the Calculation of the CF and WF
2.4. Analysis of the Results
3. Results
3.1. Carbon Footprint
3.2. Water Footprint
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Categorization |
---|---|
Sex | Female |
Male | |
Age group | 2–5 years (preschoolers); |
6–13 years (basic education schoolchildren); | |
14–18 years (high school students); | |
19–29 years (young adults); | |
30–49 years (middle-aged adults); 50–64 years (adults); | |
≥65 years (older adults) | |
Socioeconomic level | High |
Medium-high | |
Medium | |
Medium-low | |
Low | |
Macrozone | North |
North-Central | |
South-Central | |
South | |
Metropolitan region |
Appendix B
Percentile | |||
---|---|---|---|
Food Group | p25 | p50 | p75 |
CEREALS, POTATOES, LEGUMES G/DAY | 270 | 387.2 | 558 |
VEGETABLES G/DAY | 130 | 227 | 357 |
FRESH FRUITS G/DAY | 84.2 | 168.3 | 312.6 |
DAIRY ML/DAY | 325.3 | 325.0 | 578 |
FISH, MEAT, EGGS AND DRIED LEGUMES G/DAY | 97.3 | 148.5 | 220.4 |
OILS AND FATS G/DAY | 20.6 | 37 | 64.1 |
SUGARS AND OTHERS G/DAY | 41.6 | 76.9 | 126.3 |
BEVERAGES AND SOFT DRINKS ML/DAY | 76 | 212.2 | 424 |
ALCOHOLIC BEVERAGES ML/DAY | 70.7 | 20 | 214 |
Appendix C
Enca Foods Subgroups | Average Carbon Footprint (CO2 Eq/100 g or mL of Food) (min–max) | Source Carbon Footprint | Average Water Footprint (L Eq/100 g or mL of Food) (min–max) | Source Water Footprint |
---|---|---|---|---|
CEREALS AND RAW PASTA (chuchoca, cornstarch, semolina, mote, quinoa) | 0.16 | Clune 2016 [24] | 153.5 (122.2–184.9) | Mekonnen 2011 [28] |
COOKED CEREALS AND RAISINS (rice, noodles) | 0.17 (0.081–0.266) | Clune 2016 [24] | 207.6 (182.7–223) | Mekonnen 2011 [28] |
Wallén 2004 [25] | ||||
BREAD | 0.51 (0.265–0.7) | Wallén 2004 [25] | 160.8 | Mekonnen 2011 [28] |
PROCESSED CEREALS (cookies, breakfast cereals, oatmeal) | 0.136 (0.04–0.264) | Clune 2016 [24] | 209 (164.4–253.6) | Mekonnen 2011 [28] |
Wallén 2004 [25] | ||||
FRESH LEGUMES, potatoes and others (peas, corn, broad beans, cassava potatoes) | 0.05 (0.02–0.067) | Clune 2016 [24] | 133.2 (28.7–201.8) | Mekonnen 2011 [28] |
FREE CONSUMPTION VEGETABLES | 0.046 (0.06–0.033) | Clune 2016 [24] | 33.7 (23.7–37.9) | Mekonnen 2011 [28] |
GENERAL VEGETABLES | 0.049 (0.018–0.135) | Clune 2016 [24] | 49.1 (19.5–215) | Mekonnen 2011 [28] |
FRUITS | 0.05 (0.014–0.269) | Ecobase 2015 [26] | 102.5 (23.5–335) | Mekonnen 2011 [28] |
Clune 2016 [24] | ||||
Wallén 2004 [25] | ||||
DAIRY PRODUCTS (high, medium and low fat) | 0.13 (0.084–0.234) | Clune 2016 [24] | 179.2 (59.3–376.3) | Mekonnen 2012 [29] |
Ecobase 2015 [26] | ||||
CHEESES | 0.8 | Clune 2016 [24] | 506 | Mekonnen 2011 [28] |
RED MEAT (pork, lamb, beef) | 1.6 (0.39–2.87) | Clune 2016 [24] | 1100.7 (598.8–1541.5) | Mekonnen 2012 [29] |
Ecobase 2015 [26] | Chenoweth 2014 [30] | |||
BIRDS | 0.45 (0.34–0.6) | Clune 2016 [24] | 432.5 | Mekonnen 2012 [29] |
Ecobase 2015 [26] | ||||
FISH AND SEAFOOD | 0.47 (0.11–1.48) | Clune 2016 [24] | 232.5 (149–316) | Yuan 2017 [32] |
Ecobase 2015 [26] | ||||
Wallén 2004 [25] | ||||
PROCESSED MEATS | 1.29 (0.48–2.87) | Clune 2016 [24] | 722.5 (317–1541) | Mekonnen 2012 [29] |
EGGS | 0.33 | Clune 2016 [24] | 326.5 | Mekonnen 2012 [29] |
DRIED LEGUMES | 0.10 | Clune 2016 [24] | 422.76 (197.9–587) | Mekonnen 2011 [28] |
MAINLY POLYUNSATURATED OILS AND FATS (corn oil, marigold, grape seed) | 0.35 | Wallén 2004 [25] | 451,9 (257.5–679.2) | Mekonnen 2011 [28] |
MAINLY SATURATED OILS AND FATS (butter, margarine, cream, lard, mayonnaise) | 0.63 (0.2–1.15) | Wallén 2004 [25] | 555.3 | Mekonnen 2012 [29] |
Clune 2016 [24] | ||||
MAINLY MONOUNSATURATED OILS AND FATS (canola, olive, avocado oil) | 0.35 | Wallén 2004 [25] | 1472.6 | Mekonnen 2011 [28] |
FOODS RICH IN LIPIDS, MAINLY MONOUNSATURATED (olives, almonds, peanuts, walnuts, avocado) | 0.13 (0.056–0.174) | Clune 2016 [24] | 883.4 (198–1609) | Mekonnen 2011 [28] |
Ecobase 2015 [26] | ||||
CANDY SUGAR AND OTHER SWEET FOODS (chocolate, snacks, cakes, biscuits). | 0.35 (0.091–0.79) | Wallén 2004 [25] | 1641.6 (1563–1719) | Mekonnen 2011 [28] |
SUGARS (manjar, honey, jam, jelly, ice cream) | 0.24 (0.06–0.42) | Wallén 2004 [25] | 178.2 | Mekonnen 2011 [28] |
NON-NUTRITIVE SWEETENERS | 4.45 | Purecircle 2011 [27] | 1.74 | Purecircle 2011 [27] |
SUGARY DRINKS AND SOFT DRINKS | 0.05 | Wallen 2004 [25] | 47.8 | Ercin 2012 [33] |
CALORIE-FREE DRINKS AND SOFT DRINKS | 0.01 | Own calculation (beverages-sugars) | 28.2 | Own calculation (beverages-sugars) |
ALCOHOLIC BEVERAGES | 0.12 (0.118–0.126) | Ecobase 2015 [26] | 58.3 (29.8–86.9) | Mekonnen 2011 [28] |
References
- Global Panel on Agriculture and Food Systems for Nutrition. Food Systems and Diets: Facing the Challenges of the 21st Century; Global Panel on Agriculture and Food Systems for Nutrition: London, UK, 2016. [Google Scholar]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Springmann, M.; Godfray, H.C.; Rayner, M.; Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl. Acad. Sci. USA 2016, 113, 4146–4151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- FAO. Reflexiones sobre el Sistema Alimentario y Perspectivas para Alcanzar su Sostenibilidad en América Latina y el Caribe; FAO: Santiago, Chile, 2017. [Google Scholar]
- Tukker, A.; Huppes, G.; Guinée, J.; Heijungs, R.; de Koning, A.; van Oers, L.; Suh, S.; Geerken, T.; van Holderbeke, M.; Jansen, B.; et al. Environmental Impact of Products (EIPRO) Analysis of the Life Cycle Environmental Impacts Related to the Final Consumption of the EU-25; European Commission, Joint Research Centre, Institute for Prospective Technological Studies: Brussels, Belgium, 2006. [Google Scholar]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Burlingame, B.; Dernini, S. Sustainable Diets and Biodiversity: Directions and Solutions for Policy, Research and Action, Proceedings of the Intenational Scientific Symposium Biodiversity and Sustainable Diets United against Hunger, Rome, Italy, 3–5 November 2010; FAO Headquarters: Rome, Italy, 2012. [Google Scholar]
- Barilla Foundation. Double Pyramid—Healthy Food for People, Sustainable Food for the Planet. Italy. 2016. Available online: https://www.scribd.com/document/40190645/Double-Pyramid-Healthy-Food-for-People-Sustainable-Food-for-the-Planet (accessed on 1 January 2021).
- Herforth, A.; Arimond, M.; Álvarez-Sánchez, C.; Coates, J.; Christianson, K.; Muehlhoff, E. A Global Review of Food-Based Dietary Guidelines. Adv. Nutr. 2019, 10, 590–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO; FCRN. Plates, Pyramids, Planet—Developments in National Healthy and Sustainable Dietary Guidelines: A State of Play Assessment; Food and Agriculture Organization of the United Nations and The Food Climate Research Network at The University of Oxford: Rome, Italy, 2016. [Google Scholar]
- Rose, D.; Heller, M.C.; Willits-Smith, A.M.; Meyer, R.J. Carbon footprint of self-selected US diets: Nutritional, demographic, and behavioral correlates. Am. J. Clin. Nutr 2019, 109, 526–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werner, L.B.; Flysjö, A.; Tholstrup, T. Greenhouse gas emissions of realistic dietary choices in Denmark: The carbon footprint and nutritional value of dairy products. Food Nutr. Res. 2014, 58, 20687. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Rowe I, Larrea-Gallegos G, Villanueva-Rey P, Gilardino A Climate change mitigation opportunities based on carbon footprint estimates of dietary patterns in Peru. PLoS ONE 2017, 12, e0188182. [CrossRef] [Green Version]
- OECD. The Heavy Burden of Obesity: The Economics of Prevention. In OECD Health Policy Studies; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- Toti, E.; Di Mattia, C.; Serafini, M. Metabolic Food Waste and Ecological Impact of Obesity in FAO World’s Region. Front. Nutr. 2019, 6, 126. [Google Scholar] [CrossRef] [Green Version]
- FAO; OPS/OMS. Alimentos y Bebidas Ultraprocesados en América Latina: Tendencias, Efecto Sobre la Obesidad e Implicaciones para las Políticas Públicas; Pan American Health Organization: Washington, DC, USA, 2015; p. 21. Available online: https://www3.paho.org/hq/index.php?option=com_content&view=article&id=11153:ultra-processed-food-and-drink-products&Itemid=1969&lang=es (accessed on 29 May 2022).
- Oficina de Estudios y Políticas Agrarias, Ministerio de Agricultura, Gobierno de Chile. Caracterización de la Demanda de Carne Bovina y Evaluación de Bienes Sustitutos. July 2007. Available online: https://bibliotecadigital.odepa.gob.cl/handle/20.500.12650/3668 (accessed on 29 May 2022).
- Mbow, C.C.; Rosenzweig, L.G.; Barioni, T.G.; Benton, M.; Herrero, M.; Krishnapillai, E.; Liwenga, P.; Pradhan, M.G.; Rivera-Ferre, T.; Sapkota, F.N.; et al. 2019: Food Security. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Universidad de Chile Home Page. Sequía: El Fenómeno que Afecta casi al 80 por Ciento del país. Available online: https://www.uchile.cl/noticias/132030/sequia-el-fenomeno-que-afecta-casi-al-80-por-ciento-del-pais (accessed on 29 May 2022).
- ISO/TS 14046:2014. Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification and Communication. 2014. Available online: https://www.iso.org/obp/ui#iso:std:iso:14046:ed-1:v1:es (accessed on 29 May 2022).
- ISO/TS 14067:2013. Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification and Communication. Available online: https://www.iso.org/obp/ui#iso:std:iso:ts:14067:ed-1:v1:es (accessed on 29 May 2022).
- Jones, A.D.; Hoey, L.; Blesh, J.; Miller, L.; Green, A.; Shapiro, L.F. A Systematic Review of the Measurement of Sustainable Diets. Adv. Nutr. 2016, 7, 641–664. [Google Scholar] [CrossRef] [Green Version]
- Clune, S.; Crossin, E.; Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 2016, 140, 766–783. [Google Scholar] [CrossRef] [Green Version]
- Wallén, A.; Brandt, N.; Wennersten, R. Does the Swedish consumer’s choice of food influence greenhouse gas emissions? Environ. Sci. Policy 2004, 7, 525–535. [Google Scholar] [CrossRef]
- Pacto Global, ONU. Ecobase Alimentos: La primera Calculadora Ambiental del país para Productos de Exportación. Desarrollo Sostenible. 11 November 2015. Available online: http://pactoglobal.cl/ecobase-alimentos-la-primera-calculadora-ambiental-del-pais-para-productos-de-exportacion/ (accessed on 15 June 2021).
- Stevia, A.M. Nature’s Zero-Calorie Sustainable Sweetener. Nutr. Today 2015, 50, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.; Hoekstra, A. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 8, 763–809. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.; Hoekstra, A. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products; Unesco-IHE Institute for Water Education: Delft, The Netherlands, 2012. [Google Scholar] [CrossRef] [Green Version]
- Chenoweth, J.; Hadjikakou, M.; Zoumides, C. Quantifying the human impact on water resources: A critical review of the waterfootprint concept. Hydrol. Earth Syst. Sci. 2014, 18, 2325–2342. [Google Scholar] [CrossRef] [Green Version]
- Ercin, A.E.; Aldaya, M.M.; Hoekstra, A.Y. Corporate Water Footprint Accounting and Impact Assessment: The Case of the Water Footprint of a Sugar-Containing Carbonated Beverage. Water Resour. Manag. 2011, 25, 721–741. [Google Scholar] [CrossRef]
- Yuan, Q.; Song, G.; Fullana-i-Palmer, P.; Wang, Y.; Semakula, H.M.; Mekonnen, M.M.; Zhang, S. Water footprint of feed required by farmed fish in China based on a Monte Carlo-supported von Bertalanffy growth model: A policy implication. J. Clean. Prod. 2017, 153, 41–50. [Google Scholar] [CrossRef]
- Ercin, A.E.; Aldaya, M.; Hoekstra, A. The water footprint of soy milk and soy burger and equivalent animal products. Ecol. Indic. 2012, 18, 392–402. [Google Scholar] [CrossRef] [Green Version]
- Strid, A.; Hallström, E.; Hjorth, T.; Johansson, I.; Lindahl, B.; Sonesson, U.; Winkvist, A.; Huseinovic, E. Climate Impact from Diet in Relation to Background and Sociodemographic Characteristics in the Västerbotten Intervention Programme. Public Health Nutr. 2019, 22, 3288–3297. [Google Scholar] [CrossRef] [Green Version]
- Arrieta, E.M.; Gonzalez, A.D. Impact of current, National Dietary Guidelines and alternative diets on greenhouse gas emissions in Argentina. Food Policy 2018, 79, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Vieux, F.; Darmon, N.; Touazi, D.; Soler, L.G. Greenhouse gas emissions of self-selected individual diets in France: Changing the diet structure or consuming less? Ecol. Econ. 2012, 75, 91–101. [Google Scholar] [CrossRef]
- Garzillo, J.M.F.; Machado, P.P.; Leite, F.H.M.; Steele, E.M.; Poli, V.F.S.; Louzada, M.L.d.c.; Levy, R.B.; Monteiro, C.A. Pegada de carbono da dieta no Brasil. Rev. Saúde Pública 2021, 55, 90. [Google Scholar] [CrossRef] [PubMed]
- Wyneken, C.L. Informe del Inventario Nacional de Chile 2020: Inventario Nacional de Gases de Efecto Invernadero y otros Contaminantes Climáticos 1990–2018. Área de Mitigación e Iventarios de Contaminantes Climáticos. Oficina de Cambio Climático, Ministerio de Medio Ambiente, Gobierno de Chile. Available online: https://www4.unfccc.int/sites/SubmissionsStaging/NationalReports/Documents/7305681_Chile-BUR4-1-2020_IIN_CL_Anexos%20(1).pdf (accessed on 6 January 2021).
- Hoekstra, A.Y.; Chapagain, A.K. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resour. Manag. 2007, 21, 35–48. [Google Scholar] [CrossRef]
- Vanham, D.; Gawlik, B.M.; Bidoglio, G. Food consumption and related water resources in Nordic cities. Ecol. Indic. 2017, 74, 119–129. [Google Scholar] [CrossRef]
- Travassos, G.F.; Antônio da Cunha, D.; Coelho, A.B. The environmental impact of Brazilian adults’ diet. J. Clean. Prod. 2020, 272, 122622. [Google Scholar] [CrossRef]
- Vanham, D.; Mekonnen, M.M.; Hoekstra, A.Y. The water footprint of the EU for different diets. Ecol. Indic. 2013, 32, 1–8. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022. In Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Arrieta, E.M.; Geri, M.; Coquet, J.B.; Scavuzzo, C.M.; Zapata, M.E.; González, A.D. Quality and environmental footprints of diets by socio-economic status in Argentina. Sci. Total Environ. 2021, 801, 149686. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Gutiérrez, A.; Sánchez-Pimienta, T.G.; Batis, C.; Willett, W.; Rivera, J.A. Toward a healthy and sustainable diet in Mexico: Where are we and how can we move forward? Am. J. Clin. Nutr. 2021, 113, 1177–1184. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gormaz, T.; Cortés, S.; Tiboni-Oschilewski, O.; Weisstaub, G. The Chilean Diet: Is It Sustainable? Nutrients 2022, 14, 3103. https://doi.org/10.3390/nu14153103
Gormaz T, Cortés S, Tiboni-Oschilewski O, Weisstaub G. The Chilean Diet: Is It Sustainable? Nutrients. 2022; 14(15):3103. https://doi.org/10.3390/nu14153103
Chicago/Turabian StyleGormaz, Teresita, Sandra Cortés, Ornella Tiboni-Oschilewski, and Gerardo Weisstaub. 2022. "The Chilean Diet: Is It Sustainable?" Nutrients 14, no. 15: 3103. https://doi.org/10.3390/nu14153103
APA StyleGormaz, T., Cortés, S., Tiboni-Oschilewski, O., & Weisstaub, G. (2022). The Chilean Diet: Is It Sustainable? Nutrients, 14(15), 3103. https://doi.org/10.3390/nu14153103