Prevalence and Correlates of Metabolic Syndrome and Its Components in Chinese Children and Adolescents Aged 7–17: The China National Nutrition and Health Survey of Children and Lactating Mothers from 2016–2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection and Measurements
2.3. Ethics Approval and Consent to Participate
2.4. Diagnostic Criteria and Definitions
- (1)
- Abdominal obesity: WC ≥ age- and sex-specific 90th percentile, determined by the cut-off points for Chinese children and adolescents [30];
- (2)
- Elevated blood pressure: SBP or DBP ≥ 90th percentile for age, sex and height [31];
- (3)
- High triglycerides: serum TG ≥ 1.24 mmol/L;
- (4)
- Low HDL-C: HDL-C ≤ 1.03 mmol/L;
- (5)
- Elevated fast blood glucose: FBG ≥ 6.1 mmol/L.
2.5. Statistical Analysis
3. Results
3.1. Basic Characteristics of the Research Population
3.2. Prevalence of MetS and Its Component Combinations among Chinese Children and Adolescents
3.3. Prevalence of Individual MetS Components
3.4. Associations between MetS Components and Related Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2005, 365, 1415–1428. [Google Scholar] [CrossRef]
- Pugliese, N.R.; Mengozzi, A.; Virdis, A.; Casiglia, E.; Tikhonoff, V.; Cicero, A.F.G.; Ungar, A.; Rivasi, G.; Salvetti, M.; Barbagallo, C.M.; et al. The importance of including uric acid in the definition of metabolic syndrome when assessing the mortality risk. Clin. Res. Cardiol. 2021, 110, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Bao, W.; Srinivasan, S.R.; Valdez, R.; Greenlund, K.J.; Wattigney, W.A.; Berenson, G.S. Longitudinal changes in cardiovascular risk from childhood to young adulthood in offspring of parents with coronary artery disease: The Bogalusa Heart Study. JAMA 1997, 278, 1749–1754. [Google Scholar] [CrossRef]
- Asghari, G.; Eftekharzadeh, A.; Hosseinpanah, F.; Ghareh, S.; Mirmiran, P.; Azizi, F. Instability of different adolescent metabolic syndrome definitions tracked into early adulthood metabolic syndrome: Tehran Lipid and Glucose Study (TLGS). Pediatr. Diabetes 2017, 18, 59–66. [Google Scholar] [CrossRef]
- Cruz, M.L.; Goran, M.I. The metabolic syndrome in children and adolescents. Curr. Diabetes Rep. 2004, 4, 53–62. [Google Scholar] [CrossRef]
- Werner, A.K.; Witte, C.P. The biochemistry of nitrogen mobilization: Purine ring catabolism. Trends Plant Sci. 2011, 16, 381–387. [Google Scholar] [CrossRef]
- Han, Y.; Han, K.; Zhang, Y.; Zeng, X. Serum 25-hydroxyvitamin D might be negatively associated with hyperuricemia in U.S. adults: An analysis of the National Health and Nutrition Examination Survey 2007–2014. J. Endocrinol. Investig. 2022, 45, 719–729. [Google Scholar] [CrossRef]
- Cho, M.H.; Kim, Y.M.; Yoon, J.H.; Kim, D.H.; Lim, J.S. Serum uric acid in Korean children and adolescents: Reference percentiles and association with metabolic syndrome. Ann. Pediatr. Endocrinol. Metab. 2020, 25, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Kim, H.C.; Song, B.M.; Park, J.H.; Lee, J.M.; Yoon, D.L.; Yoon, Y.M.; Rhee, Y.; Youm, Y.; Kim, C.O. Serum uric acid concentration and metabolic syndrome among elderly Koreans: The Korean Urban Rural Elderly (KURE) study. Arch. Gerontol. Geriatr. 2016, 64, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ma, Z.; Li, Q.; Liu, J.; Tao, L.; Han, Y.; Zhang, J.; Guo, X.; Yang, X. Dose-response relationship between distinct serum uric acid trajectories and metabolic syndrome risk: A 5-year prospective cohort study. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1189–1199. [Google Scholar] [CrossRef]
- Kim, T.; Kang, J. Association between Serum Retinol and α-Tocopherol Levels and Metabolic Syndrome in Korean General Population: Analysis of Population-based Nationally Representative Data. Nutrients 2020, 12, 1689. [Google Scholar] [CrossRef]
- Doig, G.S. Obesity-related excess mortality: What should we do now? Crit. Care Med. 2004, 32, 1084–1085. [Google Scholar] [CrossRef]
- Solomon, C.G.; Manson, J.E. Obesity and mortality: A review of the epidemiologic data. Am. J. Clin. Nutr. 1997, 66, 1044s–1050s. [Google Scholar] [CrossRef]
- Beydoun, M.A.; Chen, X.; Jha, K.; Beydoun, H.A.; Zonderman, A.B.; Canas, J.A. Carotenoids, vitamin A, and their association with the metabolic syndrome: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 32–45. [Google Scholar] [CrossRef]
- Elsori, D.H.; Hammoud, M.S. Vitamin D deficiency in mothers, neonates and children. J. Steroid Biochem. Mol. Biol. 2018, 175, 195–199. [Google Scholar] [CrossRef]
- Rosen, C.J. Vitamin D insufficiency. N. Engl. J. Med. 2011, 364, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, P.; Ghosh, S.; Pandit, K.; Chatterjee, P.; Mukherjee, P.S.; Chowdhury, S. Pandemic of Vitamin D Deficiency: Cardiometabolic Concern or Skeletal Biochemical Abnormality? Indian J. Endocrinol. Metab. 2019, 23, 215–221. [Google Scholar] [CrossRef]
- Ganji, V.; Sukik, A.; Alaayesh, H.; Rasoulinejad, H.; Shraim, M. Serum vitamin D concentrations are inversely related to prevalence of metabolic syndrome in Qatari women. Biofactors 2020, 46, 180–186. [Google Scholar] [CrossRef]
- Liu, L.; Cao, Z.; Lu, F.; Liu, Y.; Lv, Y.; Qu, Y.; Gu, H.; Li, C.; Cai, J.; Ji, S.; et al. Vitamin D deficiency and metabolic syndrome in elderly Chinese individuals: Evidence from CLHLS. Nutr. Metab. 2020, 17, 58. [Google Scholar] [CrossRef] [PubMed]
- Pott-Junior, H.; Nascimento, C.M.C.; Costa-Guarisco, L.P.; Gomes, G.A.O.; Gramani-Say, K.; Orlandi, F.S.; Gratão, A.C.M.; Orlandi, A.; Pavarini, S.C.I.; Vasilceac, F.A.; et al. Vitamin D Deficient Older Adults Are More Prone to Have Metabolic Syndrome, but Not to a Greater Number of Metabolic Syndrome Parameters. Nutrients 2020, 12, 748. [Google Scholar] [CrossRef]
- Zhu, W.; Heil, D.P. Associations of vitamin D status with markers of metabolic health: A community-based study in Shanghai, China. Diabetes Metab. Syndr. Clin. Res. Rev. 2018, 12, 727–732. [Google Scholar] [CrossRef]
- Melguizo-Rodríguez, L.; Costela-Ruiz, V.J.; García-Recio, E.; De Luna-Bertos, E.; Ruiz, C.; Illescas-Montes, R. Role of Vitamin D in the Metabolic Syndrome. Nutrients 2021, 13, 830. [Google Scholar] [CrossRef]
- WS/T 424-2013; Anthropometric Measurements Method in Health Surveillance. National Health and Family Planning Commission of People’s Republic of China: Beijing, China, 2013.
- WS/T 456-2014; Screening Standard for Malnutrition of School-Age Children and Adolescents. National Health and Family Planning Commission of People’s Republic of China: Beijing, China, 2014.
- WST 586-2018; Screening for Overweight and Obesity among School-Age Children and Adolescents. National Health and Family Planning Commission of People’s Republic of China: Beijing, China, 2018.
- Song, P.; Yu, J.; Chang, X.; Wang, M.; An, L. Prevalence and Correlates of Metabolic Syndrome in Chinese Children: The China Health and Nutrition Survey. Nutrients 2017, 9, 79. [Google Scholar] [CrossRef]
- Cook, S.; Weitzman, M.; Auinger, P.; Nguyen, M.; Dietz, W.H. Prevalence of a metabolic syndrome phenotype in adolescents: Findings from the third National Health and Nutrition Examination Survey, 1988–1994. Arch. Pediatr. Adolesc. Med. 2003, 157, 821–827. [Google Scholar] [CrossRef]
- Reisinger, C.; Nkeh-Chungag, B.N.; Fredriksen, P.M.; Goswami, N. The prevalence of pediatric metabolic syndrome—A critical look on the discrepancies between definitions and its clinical importance. Int. J. Obes. 2021, 45, 12–24. [Google Scholar] [CrossRef]
- WS/T611-2018; High Waist Circumference Screenning Threshold among Children and Adolescents Aged 7–17 Years. National Health and Family Planning Commission of People’s Republic of China: Beijing, China, 2018.
- Writing group of Chinese Guidelines for Management of Hypertension; Chinese Hypertension League; Chinese Society of Cardiology; Chinese Medical Doctor Association Hypertension Committee; Hypertension Branch of China International Exchange and Promotive Association for Medical and Health Care; Hypertension Branch of Chinese Geriatric Medical Association. 2018 Chinese Guidelines for Prevention and Treatment of Hypertension. Chin. J. Cardiovasc. Med. 2018, 24, 24–56. [Google Scholar] [CrossRef]
- World Health Organization. Global Prevalence of Vitamin A Deficiency in Populations at Risk 1995–2005: WHO Global Database on Vitamin A Deficiency; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Del Valle, H.B.; Yaktine, A.L.; Taylor, C.L. Dietary Reference Intakes for Calcium and Vitamin D; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Duncan, G.E.; Li, S.M.; Zhou, X.H. Prevalence and trends of a metabolic syndrome phenotype among u.s. Adolescents, 1999–2000. Diabetes Care 2004, 27, 2438–2443. [Google Scholar] [CrossRef]
- Swarup, S.; Goyal, A.; Grigorova, Y. Metabolic Syndrome; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Gui, Z.H.; Yang, B.Y.; Zou, Z.Y.; Ma, J.; Jing, J.; Wang, H.J.; Dong, G.H.; Ma, Y.H.; Guo, Y.M.; Chen, Y.J. Exposure to ambient air pollution and blood lipids in children and adolescents: A national population based study in China. Environ. Pollut. 2020, 266, 115422. [Google Scholar] [CrossRef]
- O’Neill, M.S.; Veves, A.; Zanobetti, A.; Sarnat, J.A.; Gold, D.R.; Economides, P.A.; Horton, E.S.; Schwartz, J. Diabetes enhances vulnerability to particulate air pollution-associated impairment in vascular reactivity and endothelial function. Circulation 2005, 111, 2913–2920. [Google Scholar] [CrossRef]
- Moran, A.; Jacobs, D.R., Jr.; Steinberger, J.; Hong, C.P.; Prineas, R.; Luepker, R.; Sinaiko, A.R. Insulin resistance during puberty: Results from clamp studies in 357 children. Diabetes 1999, 48, 2039–2044. [Google Scholar] [CrossRef] [PubMed]
- Moran, A.; Jacobs, D.R., Jr.; Steinberger, J.; Cohen, P.; Hong, C.P.; Prineas, R.; Sinaiko, A.R. Association between the insulin resistance of puberty and the insulin-like growth factor-I/growth hormone axis. J. Clin. Endocrinol. Metab. 2002, 87, 4817–4820. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; So, W.Y. Prevalence of Metabolic Syndrome among Korean Adolescents According to the National Cholesterol Education Program, Adult Treatment Panel III and International Diabetes Federation. Nutrients 2016, 8, 588. [Google Scholar] [CrossRef]
- Fitzpatrick, S.L.; Lai, B.S.; Brancati, F.L.; Golden, S.H.; Hill-Briggs, F. Metabolic syndrome risk profiles among African American adolescents: National health and nutrition examination survey, 2003–2010. Diabetes Care 2013, 36, 436–442. [Google Scholar] [CrossRef]
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef]
- Zimmet, P.; Magliano, D.; Matsuzawa, Y.; Alberti, G.; Shaw, J. The metabolic syndrome: A global public health problem and a new definition. J. Atheroscler. Thromb. 2005, 12, 295–300. [Google Scholar] [CrossRef]
- de Magalhães, E.L.G.; Juvanhol, L.L.; da Silva, D.C.G.; Ferreira, F.G.; Roberto, D.M.T.; Hinnig, P.F.; Longo, G.Z. Uric acid: A new marker for metabolic syndrome? Results of a population-based study with adults. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2077–2080. [Google Scholar] [CrossRef]
- Li, L.; Song, Q.; Yang, X. Lack of Associations between Elevated Serum Uric Acid and Components of Metabolic Syndrome Such as Hypertension, Dyslipidemia, and T2DM in Overweight and Obese Chinese Adults. J. Diabetes Res. 2019, 2019, 3175418. [Google Scholar] [CrossRef] [PubMed]
- Moulin-Mares, S.R.A.; Oliosa, P.R.; Faria, E.R.; Zago-Gomes, M.P.; Mill, J.G. Association of uric acid with cardiovascular risk in Brazilian children and adolescents. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 314–321. [Google Scholar] [CrossRef]
- Isnuwardana, R.; Bijukchhe, S.; Thadanipon, K.; Ingsathit, A.; Thakkinstian, A. Association between Vitamin D and Uric Acid in Adults: A Systematic Review and Meta-Analysis. Horm. Metab. Res. 2020, 52, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, J.; Wang, R.; Li, M.; Yun, C.; Li, W.; Yang, Y.; Piao, J.; Yang, X.; Yang, L. Vitamin D Nutritional Status and its Related Factors for Chinese Children and Adolescents in 2010–2012. Nutrients 2017, 9, 1024. [Google Scholar] [CrossRef]
- Vranić, L.; Mikolašević, I.; Milić, S. Vitamin D Deficiency: Consequence or Cause of Obesity? Medicina 2019, 55, 541. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.S.; Bowles, S.; Evans, A.L. Vitamin D in obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Han, L.; Zhao, Y.; Li, G.; Zhu, Y.; Li, Y.; Li, M.; Gao, S.; Willi, S.M. Vitamin D levels are associated with metabolic syndrome in adolescents and young adults: The BCAMS study. Clin. Nutr. 2019, 38, 2161–2167. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Y.; Weng, P.; Xia, F.; Li, Q.; Zhai, H.; Wang, N.; Lu, Y. Association of 25-hydroxyvitamin D with cardiometabolic risk factors and metabolic syndrome: A mendelian randomization study. Nutr. J. 2019, 18, 61. [Google Scholar] [CrossRef]
- Lee, K.; Kim, J. Serum vitamin D status and metabolic syndrome: A systematic review and dose-response meta-analysis. Nutr. Res. Pract. 2021, 15, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Brzeziński, M.; Jankowska, A.; Słomińska-Frączek, M.; Metelska, P.; Wiśniewski, P.; Socha, P.; Szlagatys-Sidorkiewicz, A. Long-Term Effects of Vitamin D Supplementation in Obese Children During Integrated Weight-Loss Programme-A Double Blind Randomized Placebo-Controlled Trial. Nutrients 2020, 12, 1093. [Google Scholar] [CrossRef]
- Abboud, M. Vitamin D Supplementation and Blood Pressure in Children and Adolescents: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1163. [Google Scholar] [CrossRef]
- Tian, T.; Wang, Y.; Xie, W.; Zhang, J.; Ni, Y.; Peng, X.; Sun, G.; Dai, Y.; Zhou, Y. Associations between Serum Vitamin A and Metabolic Risk Factors among Eastern Chinese Children and Adolescents. Nutrients 2022, 14, 610. [Google Scholar] [CrossRef]
- Dal-Pizzol, F.; Klamt, F.; Benfato, M.S.; Bernard, E.A.; Moreira, J.C. Retinol supplementation induces oxidative stress and modulates antioxidant enzyme activities in rat sertoli cells. Free Radic. Res. 2001, 34, 395–404. [Google Scholar] [CrossRef]
- Wakil, S.J.; Abu-Elheiga, L.A. Fatty acid metabolism: Target for metabolic syndrome. J. Lipid Res. 2009, 50, S138–S143. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvadó, J.; Guasch-Ferré, M.; Lee, C.H.; Estruch, R.; Clish, C.B.; Ros, E. Protective Effects of the Mediterranean Diet on Type 2 Diabetes and Metabolic Syndrome. J. Nutr. 2015, 146, 920S–927S. [Google Scholar] [CrossRef]
- Asghari, G.; Yuzbashian, E.; Mirmiran, P.; Hooshmand, F.; Najafi, R.; Azizi, F. Dietary Approaches to Stop Hypertension (DASH) Dietary Pattern Is Associated with Reduced Incidence of Metabolic Syndrome in Children and Adolescents. J. Pediatr. 2016, 174, 178–184.el. [Google Scholar] [CrossRef] [PubMed]
- Stewart, K.J. Exercise training and the cardiovascular consequences of type 2 diabetes and hypertension: Plausible mechanisms for improving cardiovascular health. JAMA 2002, 288, 1622–1631. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Alves, C.R.R.; Stanford, K.I.; Middelbeek, R.J.W.; Nigro, P.; Ryan, R.E.; Xue, R.; Sakaguchi, M.; Lynes, M.D.; So, K.; et al. TGF-β2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nat. Metab. 2019, 1, 291–303. [Google Scholar] [CrossRef]
- Steinberger, J.; Daniels, S.R.; Eckel, R.H.; Hayman, L.; Lustig, R.H.; McCrindle, B.; Mietus-Snyder, M.L. Progress and challenges in metabolic syndrome in children and adolescents: A scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular Nursing; and Council on Nutrition, Physical Activity, and Metabolism. Circulation 2009, 119, 628–647. [Google Scholar] [CrossRef]
Variables | Total (n = 54,269) | Percentage (%) |
---|---|---|
Sex | ||
male | 26,678 | 49.16 |
female | 27,591 | 50.84 |
Living area | ||
urban | 26,561 | 48.94 |
rural | 27,708 | 51.06 |
Age group | ||
prepubertal | 25,558 | 47.10 |
pubertal | 15,743 | 29.01 |
post-pubertal | 12,968 | 23.90 |
Nutritional status | ||
normal | 42,258 | 77.87 |
overweight | 6656 | 12.26 |
obesity | 5355 | 9.87 |
Hyperuricemia | ||
no | 38,435 | 70.82 |
yes | 15,834 | 29.18 |
Vitamin A | ||
sufficiency | 45,710 | 84.23 |
inadequacy | 8071 | 14.87 |
deficiency | 488 | 0.90 |
Vitamin D | ||
sufficiency | 19,142 | 35.27 |
inadequacy | 24,294 | 44.77 |
deficiency | 10,833 | 19.96 |
Variables | All (n = 54,269) | With MetS (n = 3244) | With Abdominal Obesity (n = 9391) | With Elevated FBG (n = 934) | With Elevated BP (n = 21,446) | With High TG (n = 8945) | With Low HDL-C (n = 6285) |
---|---|---|---|---|---|---|---|
Age | 11.77 (9.39, 14.19) | 12.38 (10.23, 15.02) # | 12.06 (9.75, 14.76) $ | 12.57 (10.22, 14.27) ¥ | 11.53 (9.18, 13.98) § | 12.11 (10.09, 14.21) £ | 12.79 (10.36, 15.43) € |
BMI | 18.19 (16.19, 20.71) | 24.18 (21.27, 27.31) # | 23.44 (21.07, 26.14) $ | 19.07 (16.92, 22.15) ¥ | 18.73 (16.47, 21.77) § | 19.66 (17.15, 23.03) £ | 19.71 (17.26, 23.05) € |
Anthropometric measurements | |||||||
Height (cm) | 150 (136, 161) | 156 (146, 166) # | 156 (143, 165) $ | 154 (142, 164) ¥ | 149 (135, 161) § | 152 (141, 161) £ | 155 (142, 166) € |
Weight (kg) | 41.65 (30.54, 52.64) | 58.40 (46.34, 73.31) # | 56.60 (44.87, 69.30) $ | 46.30 (36.10, 57.72) ¥ | 42.57 (31.00, 54.80) § | 46.28 (35.90, 57.20) £ | 48.92 (36.75, 60.00) € |
WC (cm) | 63.15 (56.65, 70.45) | 80.00 (72.45, 88.00) # | 79.30 (73.95, 85.60) $ | 65.20 (58.85, 74.00) ¥ | 64.35 (57.10, 72.95) § | 67.15 (59.75, 76.40) £ | 68.00 (60.20, 76.50) € |
SBP (mmHg) | 111.33 (104.00, 119.67) | 123.17 (117.00, 130.33) # | 118.00 (110.00, 126.00) $ | 116.50 (109.00, 124.00) ¥ | 120.67 (114.67, 126.67) § | 113.67 (105.67, 122.00) £ | 114.00 (105.67, 122.00) € |
DBP (mmHg) | 66.00 (60.67, 71.67) | 71.67 (66.00, 77.00) # | 68.00 (62.67, 74.00) $ | 68.00 (62.67, 74.33) ¥ | 72.33 (66.67, 77.33) § | 67.00 (61.67, 73.00) £ | 66.33 (61.33, 72.33) € |
Blood test | |||||||
FBG (mmol/L) | 5.02 (4.68, 5.34) | 5.07 (4.72, 5.45) # | 5.09 (4.75, 5.41) $ | 6.29 (6.18, 6.54) ¥ | 5.08 (4.74, 5.39) § | 5.04 (4.71, 5.36) £ | 4.89 (4.51, 5, 23) € |
TG (mmol/L) | 0.81 (0.63, 1.08) | 1.52 (1.28, 1.90) # | 0.98 (0.74, 1.34) $ | 0.90 (0.66, 1.20) ¥ | 0.84 (0.65, 1.13) § | 1.51 (1.35, 1.81) £ | 1.03 (0.76, 1.43) € |
HDL-C (mmol/L) | 1.38 (1.18, 1.62) | 1.00 (0.90, 1.20) # | 1.26 (1.08, 1.47) $ | 1.41 (1.19, 1.67) ¥ | 1.38 (1.17, 1.62) | 1.22 (1.04, 1.42) £ | 0.94 (0.85, 0.99) € |
Serum uric acid (µmol/L) | 308.00 (259.00, 369.00) | 358 (297.0, 431.0) # | 344.00 (288.00, 411.00) $ | 349.50 (287.36, 408.00) ¥ | 310.00 (260.00, 373.00) § | 326.00 (274.00, 392.00) £ | 321.00 (261.00, 391.43) € |
Vitamin A (µg/mL) | 0.40 (0.33, 0.48) | 0.46 (0.38, 0.55) # | 0.43 (0.36, 0.52) $ | 0.40 (0.33, 0.50) ¥ | 0.40 (0.33, 0.49) § | 0.45 (0.38, 0.54) £ | 0.40 (0.33, 0.49) |
Vitamin D (ng/mL) | 17.3 (12.9, 22.2) | 15.50 (11.90, 20.36) # | 16.4 (12.4, 21.1) $ | 16.55 (12.30, 21.90) ¥ | 16.9 (12.7, 21.9) § | 16.5 (12.3, 21.4) £ | 15, 60 (11.50, 20.37) € |
Variables | Number of Risk Factors | |||
---|---|---|---|---|
≥1 | ≥2 | ≥3 (MetS) | ≥4 | |
All | 31,671 (58.36) | 11,417 (21.04) | 3244 (5.98) | 648 (1.19) |
Sex | a | a | a | |
male | 15,367 (57.60) | 5582 (20.92) | 1681 (6.30) | 374 (1.40) |
female | 16,304 (59.09) | 5835 (21.15) | 1563 (5.66) | 274 (0.99) |
Living area | a | a | a | |
urban | 15,529 (58.47) | 5933 (22.34) | 1771 (6.68) | 369 (1.39) |
rural | 16,142 (58.26) | 5484 (19.79) | 1471 (5.31) | 279 (1.01) |
Age group | b | b | b | b |
prepubertal | 14,641 (57.29) | 4797 (18.77) | 1270 (4.97) | 201 (0.79) |
pubertal | 9441 (59.97) | 3685 (23.41) | 1080 (6.86) | 238 (1.51) |
post-pubertal | 7589 (58.52) | 2935 (22.63) | 894 (6.89) | 209 (1.61) |
Nutritional status | b | b | b | b |
normal | 21,284 (50.37) | 4832 (11.43) | 685 (1.62) | 45 (0.11) |
overweight | 5272 (79.21) | 2646 (39.75) | 793 (11.91) | 151 (2.27) |
obesity | 5115 (95.52) | 3939 (73.56) | 1766 (32.98) | 452 (8.44) |
Hyperuricemia | a | a | a | a |
no | 21,578 (56.14) | 6787 (17.66) | 1602 (4.17) | 246 (0.64) |
yes | 10,093 (63.74) | 4630 (29.24) | 1642 (10.37) | 402 (2.54) |
Vitamin A | b | b | b | b |
sufficiency | 27,083 (59.25) | 10,234 (22.39) | 2994 (6.55) | 613 (1.34) |
inadequacy | 4330 (53.65) | 1117 (13.84) | 241 (2.99) | 35 (0.43) |
deficiency | 258 (52.87) | 66 (13.52) | 9 (1.84) | 0 (0.00) |
Vitamin D | b | b | b | b |
sufficiency | 10,385 (54.25) | 3306 (17.27) | 852 (4.45) | 154 (0.80) |
inadequacy | 14,451 (59.48) | 5345 (22.00) | 1574 (6.48) | 321 (1.32) |
deficiency | 6835 (63.09) | 2766 (25.53) | 818 (7.55) | 173 (1.60) |
Variables | Abdominal Obesity | Elevated FBG | Elevated BP | High TG | Low HDL-C |
---|---|---|---|---|---|
All | 9391 (17.30) | 934 (1.72) | 21,446 (39.52) | 8945 (16.48) | 6285 (11.58) |
Sex | a | a | a | a | |
male | 4752 (17.81) | 589 (2.21) | 10,529 (39.47) | 3864 (14.48) | 3286 (12.32) |
female | 4639 (16.81) | 345 (1.25) | 10,917 (39.57) | 5081 (18.42) | 2999 (10.87) |
Living area | a | a | a | ||
urban | 5600 (21.08) | 552 (2.08) | 10,117 (38.09) | 4308 (16.22) | 3043 (11.46) |
rural | 3791 (13.68) | 382 (1.38) | 11,329 (40.89) | 4637 (16.74) | 3242 (11.70) |
Age group | b | b | b | b | b |
prepubertal | 4130 (16.16) | 358 (1.40) | 10,602 (41.48) | 3617 (14.15) | 2207 (8.64) |
pubertal | 2747 (17.45) | 357 (2.27) | 6102 (38.76) | 3122 (19.83) | 2123 (13.49) |
post-pubertal | 2514 (19.39) | 219 (1.69) | 4742 (36.57) | 2206 (17.01) | 1955 (15.08) |
Nutritional status | b | b | b | b | b |
normal | 1791 (4.24) | 634 (1.50) | 14,738 (34.88) | 5572 (13.19) | 4112 (9.73) |
overweight | 2970 (44.62) | 147 (2.21) | 3291 (49.44) | 1454 (21.84) | 1006 (15.11) |
obesity | 4630 (86.46) | 153 (2.86) | 3417 (63.81) | 1919 (35.84) | 1167 (21.79) |
Hyperuricemia | a | a | a | a | a |
no | 5163 (13.43) | 498 (1.30) | 14,916 (38.81) | 5633 (14.66) | 4010 (10.43) |
yes | 4228 (26.70) | 436 (2.75) | 6530 (41.24) | 3312 (20.92) | 2275 (14.37) |
Vitamin A | b | b | b | b | |
sufficiency | 8495 (18.58) | 787 (1.72) | 18,198 (39.81) | 8278 (18.11) | 5185 (11.34) |
inadequacy | 854 (10.58) | 134 (1.66) | 3071 (38.05) | 635 (7.87) | 1031 (12.77) |
deficiency | 42 (8.61) | 13 (2.66) | 177 (36.27) | 32 (6.56) | 69 (14.14) |
Vitamin D | b | b | b | b | b |
sufficiency | 2801 (14.63) | 300 (1.57) | 7147 (37.34) | 2793 (14.59) | 1661 (8.68) |
inadequacy | 4464 (18.37) | 420 (1.73) | 9796 (40.32) | 4111 (16.92) | 2909 (11.97) |
deficiency | 2126 (19.63) | 214 (1.98) | 4503 (41.57) | 2041 (18.84) | 1715 (15.83) |
Variables | MetS | Abdominal Obesity | Elevated FBG | Elevated BP | High TG | Low HDL-C | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR (95%CI) | p | OR (95%CI) | p | OR (95%CI) | p | OR (95%CI) | p | OR (95%CI) | p | OR (95%CI) | p | |
Living area | ||||||||||||
urban | ref | ref | ref | ref | ref | ref | ||||||
rural | 1.171 (1.080, 1.268) | 0.0001 | 0.787 (0.738, 0.839) | <0.0001 | 0.694 (0.607, 0.793) | <0.0001 | 1.249 (1.206, 1.295) | <0.0001 | 1.223 (1.167, 1.283) | <0.0001 | 1.106 (1.048, 1.167) | 0.0003 |
Age group | ||||||||||||
prepubertal | ref | ref | ref | ref | ref | ref | ||||||
pubertal | 1.529 (1.384, 1.689) | <0.0001 | 1.519 (1.398, 1.650) | <0.0001 | 1.485 (1.265, 1.743) | <0.0001 | 0.875 (0.837, 0.914) | <0.0001 | 1.329 (1.255, 1.408) | <0.0001 | 1.668 (1.558, 1.786) | <0.0001 |
post-pubertal | 1.596 (1.433, 1.777) | <0.0001 | 2.048 (1.878, 2.233) | <0.0001 | 1.078 (0.896, 1.298) | 0.4249 | 0.794 (0.756, 0.833) | <0.0001 | 1.055 (0.989, 1.124) | 0.1019 | 1.943 (1.807, 2.088) | <0.0001 |
Nutritional status | ||||||||||||
normal | ref | ref | ref | ref | ref | ref | ||||||
overweight | 8.049 (7.227, 8.966) | <0.0001 | 20.420 (18.997, 21.950) | <0.0001 | 1.277 (1.062, 1.535) | 0.0093 | 1.866 (1.770, 1.967) | <0.0001 | 1.859 (1.740, 1.987) | <0.0001 | 1.654 (1.533, 1.785) | <0.0001 |
obesity | 31.905 (28.839, 35.296) | <0.0001 | 200.284 (180.901, 221.743) | <0.0001 | 1.554 (1.290, 1.872) | <0.0001 | 3.344 (3.146, 3.554) | <0.0001 | 3.839 (3.593, 4.103) | <0.0001 | 2.826 (2.618, 3.051) | <0.0001 |
Hyperuricemia | ||||||||||||
no | ref | ref | ref | ref | ref | ref | ||||||
yes | 1.560 (1.430, 1.703) | <0.0001 | 1.610 (1.498, 1.731) | <0.0001 | 1.739 (1.501, 2.015) | <0.0001 | 1.049 (1.005, 1.094) | 0.0293 | 1.326 (1.257, 1.400) | <0.0001 | 1.084 (1.018, 1.154) | 0.0117 |
Vitamin A | ||||||||||||
sufficiency | ref | ref | ref | ref | ref | ref | ||||||
inadequacy | 0.647 (0.560, 0.748) | <0.0001 | 0.745 (0.671, 0.827) | <0.0001 | 1.186 (0.980, 1.435) | 0.0803 | 0.931 (0.885, 0.980) | 0.0059 | 0.432 (0.396, 0.471) | <0.0001 | 1.378 (1.279, 1.486) | <0.0001 |
deficiency | 0.359 (0.180, 0.716) | 0.0036 | 0.413 (0.267, 0.639) | <0.0001 | 1.917 (1.096, 3.356) | 0.0226 | 0.853 (0.705, 1.030) | 0.0988 | 0.357 (0.248, 0.514) | <0.0001 | 1.570 (1.209, 2.038) | 0.0007 |
Vitamin D | ||||||||||||
sufficiency | ref | ref | ref | ref | ref | ref | ||||||
inadequacy | 1.364 (1.240, 1.500) | <0.0001 | 1.270 (1.178, 1.369) | <0.0001 | 1.102 (0.947, 1.283) | 0.2094 | 1.146 (1.100, 1.193) | <0.0001 | 1.120 (1.060, 1.183) | <0.0001 | 1.315 (1.232, 1.404) | <0.0001 |
deficiency | 1.646 (1.468, 1.845) | <0.0001 | 1.428 (1.302, 1.565) | <0.0001 | 1.283 (1.067, 1.543) | 0.0081 | 1.256 (1.193, 1.322) | <0.0001 | 1.269 (1.186, 1.357) | <0.0001 | 1.712 (1.587, 1.848) | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; He, L.; Yu, D.; Ju, L.; Guo, Q.; Piao, W.; Xu, X.; Zhao, L.; Yuan, X.; Cao, Q.; et al. Prevalence and Correlates of Metabolic Syndrome and Its Components in Chinese Children and Adolescents Aged 7–17: The China National Nutrition and Health Survey of Children and Lactating Mothers from 2016–2017. Nutrients 2022, 14, 3348. https://doi.org/10.3390/nu14163348
Shi J, He L, Yu D, Ju L, Guo Q, Piao W, Xu X, Zhao L, Yuan X, Cao Q, et al. Prevalence and Correlates of Metabolic Syndrome and Its Components in Chinese Children and Adolescents Aged 7–17: The China National Nutrition and Health Survey of Children and Lactating Mothers from 2016–2017. Nutrients. 2022; 14(16):3348. https://doi.org/10.3390/nu14163348
Chicago/Turabian StyleShi, Jia, Li He, Dongmei Yu, Lahong Ju, Qiya Guo, Wei Piao, Xiaoli Xu, Liyun Zhao, Xiaolin Yuan, Qiuye Cao, and et al. 2022. "Prevalence and Correlates of Metabolic Syndrome and Its Components in Chinese Children and Adolescents Aged 7–17: The China National Nutrition and Health Survey of Children and Lactating Mothers from 2016–2017" Nutrients 14, no. 16: 3348. https://doi.org/10.3390/nu14163348
APA StyleShi, J., He, L., Yu, D., Ju, L., Guo, Q., Piao, W., Xu, X., Zhao, L., Yuan, X., Cao, Q., & Fang, H. (2022). Prevalence and Correlates of Metabolic Syndrome and Its Components in Chinese Children and Adolescents Aged 7–17: The China National Nutrition and Health Survey of Children and Lactating Mothers from 2016–2017. Nutrients, 14(16), 3348. https://doi.org/10.3390/nu14163348