Metabolic Obesity Phenotypes and Risk of Lung Cancer: A Prospective Cohort Study of 450,482 UK Biobank Participants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measurement of Adiposity and Metabolic Factors
2.3. Assessment of Metabolic Obesity Phenotypes
2.4. Ascertainment of LC
2.5. Covariates
2.6. Genotyping
2.7. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Association of Metabolic Obesity Phenotypes with LC Risk
3.3. MR Analysis of Metabolic Obesity Phenotypes and LC Risk
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body mass index |
BP | Blood pressure |
CI | Confidence interval |
CRP | C-reactive protein |
CSE | Certificate of Secondary Education |
DBP | Diastolic pressure |
GWAS | Genome-wide association study |
HbA1c | Hemoglobin A1c |
HDL-C | High-density lipoprotein cholesterol |
HES | Hospital episodes statistics |
HR | Hazard ratio |
hs-CRP | High-sensitivity C-reactive protein |
ICD | International Classification of Diseases |
IV | Instrumental variable |
LC | Lung cancer |
LDL-C | Low-density lipoprotein cholesterol |
MH | Metabolically health |
MHN | Metabolically healthy normal |
MHO | Metabolically healthy obesity |
MHOW | Metabolically healthy overweight |
MR | Mendelian randomization |
MUN | Metabolically unhealthy normal |
MUO | Metabolically unhealthy obesity |
MUOW | Metabolically unhealthy overweight |
NVQ | National Vocational Qualification |
OR | Odds ratio |
SBP | Systolic pressure |
SD | Standard deviation |
SNP | Single nucleotide polymorphism |
TAG | Triacylglycerols |
2SLS | Two-stage least-squares regression |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Schabath, M.B.; Cote, M.L. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol. Biomarkers Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2019, 28, 1563–1579. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.G.; Cote, M.L. Epidemiology of Lung Cancer. Adv. Exp. Med. Biol. 2016, 893, 21–41. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, J.; Malvezzi, M.; Negri, E.; La Vecchia, C.; Boffetta, P. Risk factors for lung cancer worldwide. Eur. Respir. J. 2016, 48, 889–902. [Google Scholar] [CrossRef] [PubMed]
- Caballero, B. Humans against Obesity: Who Will Win? Adv. Nutr. 2019, 10, S4–S9. [Google Scholar] [CrossRef]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Smith, G.I.; Mittendorfer, B.; Klein, S. Metabolically healthy obesity: Facts and fantasies. J. Clin. Investig. 2019, 129, 3978–3989. [Google Scholar] [CrossRef]
- Cifarelli, V.; Beeman, S.C.; Smith, G.I.; Yoshino, J.; Morozov, D.; Beals, J.W.; Kayser, B.D.; Watrous, J.D.; Jain, M.; Patterson, B.W.; et al. Decreased adipose tissue oxygenation associates with insulin resistance in individuals with obesity. J. Clin. Investig. 2020, 130, 6688–6699. [Google Scholar] [CrossRef]
- Iacobini, C.; Pugliese, G.; Blasetti Fantauzzi, C.; Federici, M.; Menini, S. Metabolically healthy versus metabolically unhealthy obesity. Metab. Clin. Exp. 2019, 92, 51–60. [Google Scholar] [CrossRef]
- Blüher, M. Are metabolically healthy obese individuals really healthy? Eur. J. Endocrinol. 2014, 171, R209–R219. [Google Scholar] [CrossRef] [PubMed]
- van Vliet-Ostaptchouk, J.V.; Nuotio, M.L.; Slagter, S.N.; Doiron, D.; Fischer, K.; Foco, L.; Gaye, A.; Gögele, M.; Heier, M.; Hiekkalinna, T.; et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: A collaborative analysis of ten large cohort studies. BMC Endocr. Disord. 2014, 14, 9. [Google Scholar] [CrossRef] [PubMed]
- Pajunen, P.; Kotronen, A.; Korpi-Hyövälti, E.; Keinänen-Kiukaanniemi, S.; Oksa, H.; Niskanen, L.; Saaristo, T.; Saltevo, J.T.; Sundvall, J.; Vanhala, M.; et al. Metabolically healthy and unhealthy obesity phenotypes in the general population: The FIN-D2D Survey. BMC Public Health 2011, 11, 754. [Google Scholar] [CrossRef] [PubMed]
- Friedenreich, C.M.; Ryder-Burbidge, C.; McNeil, J. Physical activity, obesity and sedentary behavior in cancer etiology: Epidemiologic evidence and biologic mechanisms. Mol. Oncol. 2021, 15, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Majumder, K.; Arora, N.; Mayo, H.G.; Singh, P.P.; Beg, M.S.; Hughes, R.; Singh, S.; Johnson, D.H. Premorbid body mass index and mortality in patients with lung cancer: A systematic review and meta-analysis. Lung Cancer 2016, 102, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Argirion, I.; Weinstein, S.J.; Männistö, S.; Albanes, D.; Mondul, A.M. Serum Insulin, Glucose, Indices of Insulin Resistance, and Risk of Lung Cancer. Cancer Epidemiol. Biomarkers Prev. 2017, 26, 1519–1524. [Google Scholar] [CrossRef]
- Sin, S.; Lee, C.H.; Choi, S.M.; Han, K.D.; Lee, J. Metabolic Syndrome and Risk of Lung Cancer: An Analysis of Korean National Health Insurance Corporation Database. J. Clin. Endocrinol. Metab. 2020, 105, e4102–e4111. [Google Scholar] [CrossRef]
- Kupcikova, Z.; Fecht, D.; Ramakrishnan, R.; Clark, C.; Cai, Y.S. Road traffic noise and cardiovascular disease risk factors in UK Biobank. Eur. Heart J. 2021, 42, 2072–2084. [Google Scholar] [CrossRef]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef]
- Rangel-Huerta, O.D.; Pastor-Villaescusa, B.; Gil, A. Are we close to defining a metabolomic signature of human obesity? A systematic review of metabolomics studies. Metabolomics Off. J. Metabolomic Soc. 2019, 15, 93. [Google Scholar] [CrossRef]
- Boriani, G.; Ruff, C.T.; Kuder, J.F.; Shi, M.; Lanz, H.J.; Rutman, H.; Mercuri, M.F.; Antman, E.M.; Braunwald, E.; Giugliano, R.P. Relationship between body mass index and outcomes in patients with atrial fibrillation treated with edoxaban or warfarin in the ENGAGE AF-TIMI 48 trial. Eur. Heart J. 2019, 40, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.; Peakman, T.C. The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int. J. Epidemiol. 2008, 37, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaran, K.; Dos-Santos-Silva, I.; Leon, D.A.; Douglas, I.J.; Smeeth, L. Association of BMI with overall and cause-specific mortality: A population-based cohort study of 3·6 million adults in the UK. Lancet Diabetes Endocrinol. 2018, 6, 944–953. [Google Scholar] [CrossRef]
- Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [CrossRef] [PubMed]
- Kabat, G.C.; Kim, M.Y.; Stefanick, M.; Ho, G.Y.F.; Lane, D.S.; Odegaard, A.O.; Simon, M.S.; Bea, J.W.; Luo, J.; Wassertheil-Smoller, S.; et al. Metabolic obesity phenotypes and risk of colorectal cancer in postmenopausal women. Int. J. Cancer 2018, 143, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Park, D.I.; Yu, J.; Jung, Y.S.; Park, J.H.; Kim, H.J.; Cho, Y.K.; Sohn, C.I.; Jeon, W.K.; Kim, B.I.; et al. Increased Risk of Advanced Colorectal Neoplasia Among Korean Men With Metabolic Abnormality and Obesity. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2016, 14. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Macpherson, J.; Gray, S.R.; Gill, J.M.R.; Welsh, P.; Celis-Morales, C.; Sattar, N.; Pell, J.P.; Ho, F.K. Are people with metabolically healthy obesity really healthy? A prospective cohort study of 381,363 UK Biobank participants. Diabetologia 2021, 64, 1963–1972. [Google Scholar] [CrossRef]
- Ji, M.; Du, L.; Ma, Z.; Xie, J.; Huang, Y.; Wei, X.; Jiang, X.; Xu, J.; Yin, R.; Wang, Y.; et al. Circulating C-reactive protein increases lung cancer risk: Results from a prospective cohort of UK Biobank. Int. J. Cancer 2022, 150, 47–55. [Google Scholar] [CrossRef]
- Vithayathil, M.; Carter, P.; Kar, S.; Mason, A.M.; Burgess, S.; Larsson, S.C. Body size and composition and risk of site-specific cancers in the UK Biobank and large international consortia: A mendelian randomisation study. PLoS Med. 2021, 18, e1003706. [Google Scholar] [CrossRef]
- Xie, J.; Zhu, M.; Ji, M.; Fan, J.; Huang, Y.; Wei, X.; Jiang, X.; Xu, J.; Yin, R.; Wang, Y.; et al. Relationships between sleep traits and lung cancer risk: A prospective cohort study in UK Biobank. Sleep 2021, 44, zsab089. [Google Scholar] [CrossRef]
- Hung, R.J.; Warkentin, M.T.; Brhane, Y.; Chatterjee, N.; Christiani, D.C.; Landi, M.T.; Caporaso, N.E.; Liu, G.; Johansson, M.; Albanes, D.; et al. Assessing Lung Cancer Absolute Risk Trajectory Based on a Polygenic Risk Model. Cancer Res. 2021, 81, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Lyall, D.M.; Celis-Morales, C.A.; Anderson, J.; Gill, J.M.R.; Mackay, D.F.; McIntosh, A.M.; Smith, D.J.; Deary, I.J.; Sattar, N.; Pell, J.P. Associations between single and multiple cardiometabolic diseases and cognitive abilities in 474,129 UK Biobank participants. Eur. Heart J. 2017, 38, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.J.; Celis-Morales, C.A.; Mackay, D.F.; Iliodromiti, S.; Lyall, D.M.; Sattar, N.; Gill, J.; Pell, J.P. Adiposity among 132,479 UK Biobank participants; contribution of sugar intake vs other macronutrients. Int. J. Epidemiol. 2017, 46, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.R.; Joshu, C.E.; Navas-Acien, A.; Platz, E.A. Racial/Ethnic Differences in Duration of Smoking Among Former Smokers in the National Health and Nutrition Examination Surveys. Nicotine Tob. Res. Off. J. Soc. Res. Nicotine Tob. 2018, 20, 303–311. [Google Scholar] [CrossRef]
- Wain, L.V.; Shrine, N.; Miller, S.; Jackson, V.E.; Ntalla, I.; Soler Artigas, M.; Billington, C.K.; Kheirallah, A.K.; Allen, R.; Cook, J.P.; et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): A genetic association study in UK Biobank. Lancet Respir. Med. 2015, 3, 769–781. [Google Scholar] [CrossRef]
- Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Rees, J.M.B.; Foley, C.N.; Burgess, S. Factorial Mendelian randomization: Using genetic variants to assess interactions. Int. J. Epidemiol. 2020, 49, 1147–1158. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Use of allele scores as instrumental variables for Mendelian randomization. Int. J. Epidemiol. 2013, 42, 1134–1144. [Google Scholar] [CrossRef]
- Xiao, J.; Lv, J.; Wang, S.; Zhou, Y.; Chen, L.; Lu, J.; Zhang, X.; Wang, X.; Gu, Y.; Lu, Q. Association of serum 25-hydroxyvitamin D with metabolic syndrome and type 2 diabetes: A one sample Mendelian randomization study. BMC Geriatr. 2021, 21, 391. [Google Scholar] [CrossRef]
- Wang, Y.; McKay, J.D.; Rafnar, T.; Wang, Z.; Timofeeva, M.N.; Broderick, P.; Zong, X.; Laplana, M.; Wei, Y.; Han, Y.; et al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat. Genet. 2014, 46, 736–741. [Google Scholar] [CrossRef]
- Cao, Z.; Zheng, X.; Yang, H.; Li, S.; Xu, F.; Yang, X.; Wang, Y. Association of obesity status and metabolic syndrome with site-specific cancers: A population-based cohort study. Br. J. Cancer 2020, 123, 1336–1344. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Fares, A.F.; Shepshelovich, D.; Yang, P.; Christiani, D.; Zhang, J.; Shiraishi, K.; Ryan, B.M.; Chen, C.; Schwartz, A.G.; et al. The relationship between body-mass index and overall survival in non-small cell lung cancer by sex, smoking status, and race: A pooled analysis of 20,937 International lung Cancer consortium (ILCCO) patients. Lung Cancer 2021, 152, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Koh, W.P.; Yuan, J.M.; Wang, R.; Lee, H.P.; Yu, M.C. Body mass index and smoking-related lung cancer risk in the Singapore Chinese Health Study. Br. J. Cancer 2010, 102, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.M.; Lee, D.H.; Giovannucci, E.L. Predicted lean body mass, fat mass and risk of lung cancer: Prospective US cohort study. Eur. J. Epidemiol. 2019, 34, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Brinton, L.A.; Spitz, M.R.; Lam, T.K.; Park, Y.; Hollenbeck, A.R.; Freedman, N.D.; Gierach, G.L. Body mass index and risk of lung cancer among never, former, and current smokers. J. Natl. Cancer Inst. 2012, 104, 778–789. [Google Scholar] [CrossRef]
- Shepshelovich, D.; Xu, W.; Lu, L.; Fares, A.; Yang, P.; Christiani, D.; Zhang, J.; Shiraishi, K.; Ryan, B.M.; Chen, C.; et al. Body Mass Index (BMI), BMI Change, and Overall Survival in Patients With SCLC and NSCLC: A Pooled Analysis of the International Lung Cancer Consortium. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2019, 14, 1594–1607. [Google Scholar] [CrossRef]
- Yang, Y.; Dong, J.; Sun, K.; Zhao, L.; Zhao, F.; Wang, L.; Jiao, Y. Obesity and incidence of lung cancer: A meta-analysis. Int. J. Cancer 2013, 132, 1162–1169. [Google Scholar] [CrossRef]
- Jee, S.H.; Sull, J.W.; Park, J.; Lee, S.Y.; Ohrr, H.; Guallar, E.; Samet, J.M. Body-mass index and mortality in Korean men and women. N. Engl. J. Med. 2006, 355, 779–787. [Google Scholar] [CrossRef]
- Kim, E.J.; Hoffmann, T.J.; Nah, G.; Vittinghoff, E.; Delling, F.; Marcus, G.M. Coffee Consumption and Incident Tachyarrhythmias: Reported Behavior, Mendelian Randomization, and Their Interactions. JAMA Intern. Med. 2021, 181, 1185–1193. [Google Scholar] [CrossRef]
- Holmes, M.V.; Ala-Korpela, M.; Smith, G.D. Mendelian randomization in cardiometabolic disease: Challenges in evaluating causality. Nat. Rev. Cardiol. 2017, 14, 577–590. [Google Scholar] [CrossRef]
- Aguilar-Salinas, C.A.; García, E.G.; Robles, L.; Riaño, D.; Ruiz-Gomez, D.G.; García-Ulloa, A.C.; Melgarejo, M.A.; Zamora, M.; Guillen-Pineda, L.E.; Mehta, R.; et al. High adiponectin concentrations are associated with the metabolically healthy obese phenotype. J. Clin. Endocrinol. Metab. 2008, 93, 4075–4079. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.M.; Dillon, C.; Harrington, J.M.; McCarthy, V.J.C.; Kearney, P.M.; Fitzgerald, A.P.; Perry, I.J. Defining metabolically healthy obesity: Role of dietary and lifestyle factors. PLoS ONE 2013, 8, e76188. [Google Scholar] [CrossRef] [PubMed]
- Appleton, S.L.; Seaborn, C.J.; Visvanathan, R.; Hill, C.L.; Gill, T.K.; Taylor, A.W.; Adams, R.J. Diabetes and cardiovascular disease outcomes in the metabolically healthy obese phenotype: A cohort study. Diabetes Care 2013, 36, 2388–2394. [Google Scholar] [CrossRef] [PubMed]
- Camhi, S.M.; Waring, M.E.; Sisson, S.B.; Hayman, L.L.; Must, A. Physical activity and screen time in metabolically healthy obese phenotypes in adolescents and adults. J. Obes. 2013, 2013, 984613. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M. Metabolically Healthy Obesity. Endocr. Rev. 2020, 41, bnaa004. [Google Scholar] [CrossRef] [PubMed]
- Rey-López, J.P.; de Rezende, L.F.; Pastor-Valero, M.; Tess, B.H. The prevalence of metabolically healthy obesity: A systematic review and critical evaluation of the definitions used. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2014, 15, 781–790. [Google Scholar] [CrossRef]
- Dewi, N.U.; Boshuizen, H.C.; Johansson, M.; Vineis, P.; Kampman, E.; Steffen, A.; Tjønneland, A.; Halkjær, J.; Overvad, K.; Severi, G.; et al. Anthropometry and the Risk of Lung Cancer in EPIC. Am. J. Epidemiol. 2016, 184, 129–139. [Google Scholar] [CrossRef]
- Korduner, J.; Bachus, E.; Jujic, A.; Magnusson, M.; Nilsson, P.M. Metabolically healthy obesity (MHO) in the Malmö diet cancer study—Epidemiology and prospective risks. Obes. Res. Clin. Pract. 2019, 13, 548–554. [Google Scholar] [CrossRef]
- Carreras-Torres, R.; Johansson, M.; Haycock, P.C.; Wade, K.H.; Relton, C.L.; Martin, R.M.; Davey Smith, G.; Albanes, D.; Aldrich, M.C.; Andrew, A.; et al. Obesity, metabolic factors and risk of different histological types of lung cancer: A Mendelian randomization study. PLoS ONE 2017, 12, e0177875. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, G.; Hung, R.J.; Haycock, P.C.; Aldrich, M.C.; Andrew, A.S.; Arnold, S.M.; Bickeböller, H.; Bojesen, S.E.; Brennan, P.; et al. Causal relationships between body mass index, smoking and lung cancer: Univariable and multivariable Mendelian randomization. Int. J. Cancer 2021, 148, 1077–1086. [Google Scholar] [CrossRef]
- Park, Y.M.M.; Steck, S.E.; Fung, T.T.; Zhang, J.; Hazlett, L.J.; Han, K.; Lee, S.H.; Kwon, H.S.; Merchant, A.T. Mediterranean diet, Dietary Approaches to Stop Hypertension (DASH) style diet, and metabolic health in U.S. adults. Clin. Nutr. 2017, 36, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total (n = 450,482) | LC (n = 3654) | Non-LC (n = 446,828) | p-Value |
---|---|---|---|---|
Metabolic obesity phenotypes, N (%) | <0.001 | |||
MHUW | 1770 (0.4) | 25 (0.7) | 1745 (0.4) | |
MUUW | 84 (0.0) | 9 (0.2) | 75 (0.0) | |
MHN | 100,371 (22.3) | 618 (16.9) | 99,753 (22.3) | |
MUN | 16,951 (3.8) | 269 (7.4) | 16,682 (3.7) | |
MHOW | 98,811 (21.9) | 596 (16.3) | 98,215 (22.0) | |
MUOW | 55,412 (12.3) | 658 (18.0) | 54,754 (12.3) | |
MHO | 34,117 (7.6) | 228 (6.2) | 33,889 (7.6) | |
MUO | 55,073 (12.2) | 545 (14.9) | 54,528 (12.2) | |
Missing | 87,893 (19.5) | 706 (19.3) | 87,187 (19.5) | |
BMI groups, N (%) | <0.001 | |||
Underweight | 2332 (0.5) | 44 (1.2) | 2288 (0.5) | |
Normal | 145,237 (32.2) | 1113 (30.5) | 144,124 (32.3) | |
Overweight | 189,658 (42.1) | 1514 (41.4) | 188,144 (42.1) | |
Obesity | 110,408 (24.5) | 945 (25.9) | 109,463 (24.5) | |
Missing | 2847 (0.6) | 38 (1.0) | 2809 (0.6) | |
Metabolic phenotypes, N (%) | <0.001 | |||
Healthy | 235,800 (52.3) | 1474 (40.3) | 234,326 (52.4) | |
Unhealthy | 128,167 (28.5) | 1495 (40.9) | 126,672 (28.3) | |
Missing | 86,515 (19.2) | 685 (18.7) | 85,830 (19.2) | |
Age, mean ± SD | 56 ± 8 | 61 ± 6 | 56 ± 8 | <0.001 |
Sex, N (%) | <0.001 | |||
Female | 245,422 (54.5) | 1840 (50.4) | 243,582 (54.5) | |
Male | 205,060 (45.5) | 1814 (49.6) | 203,246 (45.5) | |
Ethnicity, N (%) | 0.007 | |||
White | 405,819 (90.1) | 3316 (90.7) | 402,503 (90.1) | |
Mixed | 17,247 (3.8) | 161 (4.4) | 17,086 (3.8) | |
Asian | 16,150 (3.6) | 117 (3.2) | 16,033 (3.6) | |
Black | 2789 (0.6) | 13 (0.4) | 2776 (0.6) | |
Chinese | 1,524 (0.3) | 9 (0.2) | 1515 (0.3) | |
Other | 4383 (1.0) | 19 (0.5) | 4364 (1.0) | |
Missing | 2570 (0.6) | 19 (0.5) | 2551 (0.6) | |
Education level, N (%) | <0.001 | |||
Degree | 145,661 (32.3) | 586 (16.0) | 145,075 (32.5) | |
No degree | 295,683 (65.6) | 2946 (80.6) | 292,737 (65.5) | |
Missing | 9138 (2.0) | 122 (3.3) | 9016 (2.0) | |
Smoking status, N (%) | <0.001 | |||
Never | 246,380 (54.7) | 499 (13.7) | 245,881 (55.0) | |
Former | 152,785 (33.9) | 1595 (43.7) | 151,190 (33.8) | |
Current | 48,660 (10.8) | 1518 (41.5) | 47,142 (10.6) | |
Missing | 2657 (0.6) | 42 (1.1) | 2615 (0.6) | |
Smoking duration, mean ± SD | 26 ± 13 | 38 ± 12 | 26 ± 13 | <0.001 |
Personal history of emphysema/bronchitis, N (%) | <0.001 | |||
No | 443,241 (98.4) | 3324 (91.0) | 439,917 (98.5) | |
Yes | 5823 (1.3) | 269 (7.4) | 5554 (1.2) | |
Missing | 1418 (0.3) | 61 (1.7) | 1357 (0.3) | |
Family history of LC, N (%) | <0.001 | |||
No | 310,558 (68.9) | 2107 (57.7) | 308,451 (69.0) | |
Yes | 27,383 (6.1) | 402 (11.0) | 26,981 (6.0) | |
Missing | 112,541 (25.0) | 1145 (31.3) | 111,396 (24.9) |
Characteristics | No.SNPs b | F-Statistics | OR (95%CI) | p-Value |
---|---|---|---|---|
Metabolic obesity phenotypes a | ||||
MHUW | 12 | 56 | 0.98 (0.90, 1.06) | 0.55 |
MUUW | 50 | 463 | 1.13 (0.95, 1.35) | 0.17 |
MHN | Reference | |||
MUN | 17 | 281 | 1.00 (0.98, 1.01) | 0.83 |
MHOW | 18 | 44 | 1.00 (0.99, 1.01) | 0.53 |
MUOW | 51 | 153 | 1.00 (1.00, 1.01) | 0.24 |
MHO | 112 | 373 | 1.01 (1.00, 1.02) | 0.07 |
MUO | 207 | 657 | 1.00 (0.99, 1.01) | 0.86 |
Trend1 | 331 | 637 | 1.00 (1.00, 1.01) | 0.44 |
Trend2 | 175 | 619 | 1.00 (1.00, 1.00) | 0.40 |
BMI groups | ||||
Underweight | 10 | 31 | 0.94 (0.85, 1.04) | 0.22 |
Normal | Reference | |||
Overweight | 46 | 61 | 1.01 (1.00, 1.02) | 0.09 |
Obesity | 466 | 260 | 1.01 (0.99, 1.03) | 0.30 |
Trend | 490 | 234 | 1.01 (0.99, 1.03) | 0.29 |
Metabolic phenotypes | ||||
Healthy | Reference | |||
Unhealthy | 128 | 295 | 1.00 (1.00, 1.01) | 0.25 |
Characteristics | No.SNPs b | OR (95%CI) | p-Value | Q Statistic | p-Value for Q |
---|---|---|---|---|---|
Metabolic obesity phenotypes a | |||||
MHUW | 10 | 1.06 (0.93, 1.21) | 0.39 | 22 | |
MUUW | 35 | 0.98 (0.97, 1.00) | 0.04 | 37 | 0.32 |
MHN | Reference | ||||
MUN | 14 | 0.97 (0.88, 1.08) | 0.60 | 20 | 0.10 |
MHOW | 16 | 1.16 (0.90, 1.48) | 0.24 | 24 | 0.07 |
MUOW | 46 | 1.02 (0.93, 1.12) | 0.61 | 56 | 0.12 |
MHO | 97 | 1.07 (1.01, 1.14) | 0.03 | 124 | 0.03 |
MUO | 190 | 1.11 (1.05, 1.17) | 0.001 | 292 | |
Trend1 | 294 | 1.17 (1.07, 1.27) | 408 | ||
Trend2 | 154 | 1.08 (0.99, 1.17) | 0.090.089 | 235 | |
BMI groups | |||||
Underweight | 6 | 1.00 (0.88, 1.13) | 0.96 | 6 | 0.31 |
Normal | Reference | ||||
Overweight | 38 | 1.05 (0.84, 1.31) | 0.65 | 67 | |
Obesity | 422 | 1.09 (1.04, 1.14) | 0.001 | 576 | |
Trend | 440 | 1.35 (1.14, 1.60) | 611 | ||
Metabolic phenotypes | |||||
Healthy | Reference | ||||
Unhealthy | 108 | 1.01 (0.92, 1.11) | 0.80 | 169 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, F.; Chen, Y.; Xu, H.; Chen, X.; Zhou, J.; Wu, Y.; Tang, Y.; Wang, Z.; Zhang, R.; Lange, T.; et al. Metabolic Obesity Phenotypes and Risk of Lung Cancer: A Prospective Cohort Study of 450,482 UK Biobank Participants. Nutrients 2022, 14, 3370. https://doi.org/10.3390/nu14163370
Shao F, Chen Y, Xu H, Chen X, Zhou J, Wu Y, Tang Y, Wang Z, Zhang R, Lange T, et al. Metabolic Obesity Phenotypes and Risk of Lung Cancer: A Prospective Cohort Study of 450,482 UK Biobank Participants. Nutrients. 2022; 14(16):3370. https://doi.org/10.3390/nu14163370
Chicago/Turabian StyleShao, Fang, Yina Chen, Hongyang Xu, Xin Chen, Jiawei Zhou, Yaqian Wu, Yingdan Tang, Zhongtian Wang, Ruyang Zhang, Theis Lange, and et al. 2022. "Metabolic Obesity Phenotypes and Risk of Lung Cancer: A Prospective Cohort Study of 450,482 UK Biobank Participants" Nutrients 14, no. 16: 3370. https://doi.org/10.3390/nu14163370
APA StyleShao, F., Chen, Y., Xu, H., Chen, X., Zhou, J., Wu, Y., Tang, Y., Wang, Z., Zhang, R., Lange, T., Ma, H., Hu, Z., Shen, H., Christiani, D. C., Chen, F., Zhao, Y., & You, D. (2022). Metabolic Obesity Phenotypes and Risk of Lung Cancer: A Prospective Cohort Study of 450,482 UK Biobank Participants. Nutrients, 14(16), 3370. https://doi.org/10.3390/nu14163370