Association of Different Malnutrition Parameters and Clinical Outcomes among COVID-19 Patients: An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Data Collection
2.3. Endpoint and Study Objective
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Association of NRS 2002-, BMI-, and Albumin Categories and the Primary Endpoint
3.3. Association of NRS 2002-, BMI- and Albumin Categories and Secondary Endpoints
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Imoberdorf, R.; Meier, R.; Krebs, P.; Hangartner, P.J.; Hess, B.; Staubli, M.; Wegmann, D.; Ruhlin, M.; Ballmer, P.E. Prevalence of undernutrition on admission to swiss hospitals. Clin. Nutr. 2010, 29, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Hiesmayr, M.; Tarantino, S.; Moick, S.; Laviano, A.; Sulz, I.; Mouhieddine, M.; Schuh, C.; Volkert, D.; Simon, J.; Schindler, K. Hospital malnutrition, a call for political action: A public health and NutritionDay perspective. J. Clin. Med. 2019, 8, 2048. [Google Scholar] [CrossRef] [PubMed]
- Felder, S.; Braun, N.; Stanga, Z.; Kulkarni, P.; Faessler, L.; Kutz, A.; Steiner, D.; Laukemann, S.; Haubitz, S.; Huber, A.; et al. Unraveling the link between malnutrition and adverse clinical outcomes: Association of acute and chronic malnutrition measures with blood biomarkers from different pathophysiological states. Ann. Nutr. Metab. 2016, 68, 164–172. [Google Scholar] [CrossRef]
- Felder, S.; Lechtenboehmer, C.; Bally, M.; Fehr, R.; Deiss, M.; Faessler, L.; Kutz, A.; Steiner, D.; Rast, A.C.; Laukemann, S.; et al. Association of nutritional risk and adverse medical outcomes across different medical inpatient populations. Nutrition 2015, 31, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- Hersberger, L.; Bargetzi, L.; Bargetzi, A.; Tribolet, P.; Fehr, R.; Baechli, V.; Geiser, M.; Deiss, M.; Gomes, F.; Kutz, A.; et al. Nutritional risk screening (nrs 2002) is a strong and modifiable predictor risk score for short-term and long-term clinical outcomes: Secondary analysis of a prospective randomised trial. Clin. Nutr. 2020, 39, 2720–2729. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, P.; Seres, D.; Lobo, D.N.; Gomes, F.; Kaegi-Braun, N.; Stanga, Z. Management of disease-related malnutrition for patients being treated in hospital. Lancet 2021, 398, 1927–1938. [Google Scholar] [CrossRef]
- Docherty, A.B.; Harrison, E.M.; Green, C.A.; Hardwick, H.E.; Pius, R.; Norman, L.; Holden, K.A.; Read, J.M.; Dondelinger, F.; Carson, G.; et al. Features of 20,133 UK patients in hospital with COVID-19 using the ISARIC who clinical characterisation protocol: Prospective observational cohort study. BMJ 2020, 369, m1985. [Google Scholar] [CrossRef]
- Wierdsma, N.J.; Kruizenga, H.M.; Konings, L.A.; Krebbers, D.; Jorissen, J.R.; Joosten, M.I.; Van Aken, L.H.; Tan, F.M.; Van Bodegraven, A.A.; Soeters, M.R.; et al. Poor nutritional status, risk of sarcopenia and nutrition related complaints are prevalent in COVID-19 patients during and after hospital admission. Clin. Nutr. ESPEN 2021, 43, 369–376. [Google Scholar] [CrossRef]
- Holdoway, A. Nutritional management of patients during and after COVID-19 illness. Br. J. Community Nurs. 2020, 25, S6–S10. [Google Scholar] [CrossRef]
- Rouget, A.; Vardon-Bounes, F.; Lorber, P.; Vavasseur, A.; Marion, O.; Marcheix, B.; Lairez, O.; Balardy, L.; Fourcade, O.; Conil, J.M.; et al. Prevalence of malnutrition in coronavirus disease 19: The NUTRICOV study. Br. J. Nutr. 2021, 126, 1296–1303. [Google Scholar] [CrossRef]
- Bedock, D.; Bel Lassen, P.; Mathian, A.; Moreau, P.; Couffignal, J.; Ciangura, C.; Poitou-Bernert, C.; Jeannin, A.C.; Mosbah, H.; Fadlallah, J.; et al. Prevalence and severity of malnutrition in hospitalized COVID-19 patients. Clin. Nutr. ESPEN 2020, 40, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Stalder, L.; Kaegi-Braun, N.; Gressies, C.; Gregoriano, C.; Tribolet, P.; Lobo, D.N.; Gomes, F.; Hoess, C.; Pavlicek, V.; Bilz, S.; et al. Prospective validation of five malnutrition screening and assessment instruments among medical inpatients: Secondary analysis of a randomized clinical trial. Clin. Nutr. 2022, 41, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef]
- Kondrup, J.; Allison, S.P.; Elia, M.; Vellas, B.; Plauth, M.; Educational and Clinical Practice Committee; European Society of Parenteral and Enteral Nutrition (ESPEN). ESPEN guidelines for nutrition screening 2002. Clin. Nutr. 2003, 22, 415–421. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Zhu, Y.; Tao, J.; Zhang, Z.; Zhang, Y.; Wang, Y.; Ke, Y.; Ren, C.; Xu, J. Predictive value of nutritional risk screening 2002 and mini nutritional assessment short form in mortality in Chinese hospitalized geriatric patients. Clin. Interv. Aging 2020, 15, 441–449. [Google Scholar] [CrossRef]
- Ali, A.M.; Kunugi, H. Approaches to nutritional screening in patients with coronavirus disease 2019 (COVID-19). Int. J. Environ. Res. Public Health 2021, 18, 2772. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, S.; Mao, Z.; Wang, W.; Hu, H. Clinical significance of nutritional risk screening for older adult patients with COVID-19. Eur. J. Clin. Nutr. 2020, 74, 876–883. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.; Ge, Y.; Shi, Y.; Lv, P.; Zhang, J.; Fu, G.; Zhou, Y.; Jiang, K.; Lin, N.; et al. Evaluation of nutrition risk and its association with mortality risk in severely and critically ill COVID-19 patients. JPEN J. Parenter. Enter. Nutr. 2021, 45, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Del Giorno, R.; Quarenghi, M.; Stefanelli, K.; Capelli, S.; Giagulli, A.; Quarleri, L.; Stehrenberger, D.; Ossola, N.; Monotti, R.; Gabutti, L. Nutritional risk screening and body composition in COVID-19 patients hospitalized in an internal medicine ward. Int. J. Gen. Med. 2020, 13, 1643–1651. [Google Scholar] [CrossRef]
- Martinuzzi, A.L.N.; Manzanares, W.; Quesada, E.; Reberendo, M.J.; Baccaro, F.; Aversa, I.; Kecskes, C.E.; Magnifico, L.; Gonzalez, V.; Bolzico, D.; et al. Nutritional risk and clinical outcomes in critically ill adult patients with COVID-19. Nutr. Hosp. 2021, 38, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
- Bretscher, C.; Boesiger, F.; Kaegi-Braun, N.; Hersberger, L.; Lobo, D.N.; Evans, D.C.; Tribolet, P.; Gomes, F.; Hoess, C.; Pavlicek, V.; et al. Admission serum albumin concentrations and response to nutritional therapy in hospitalised patients at malnutrition risk: Secondary analysis of a randomised clinical trial. eClinicalMedicine 2022, 45, 101301. [Google Scholar] [CrossRef] [PubMed]
- Eckart, A.; Struja, T.; Kutz, A.; Baumgartner, A.; Baumgartner, T.; Zurfluh, S.; Neeser, O.; Huber, A.; Stanga, Z.; Mueller, B.; et al. Relationship of nutritional status, inflammation, and serum albumin levels during acute illness: A prospective study. Am. J. Med. 2020, 133, 713–722.e717. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.D.; Ding, M.; Dong, X.; Zhang, J.J.; Kursat Azkur, A.; Azkur, D.; Gan, H.; Sun, Y.L.; Fu, W.; Li, W.; et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy 2021, 76, 428–455. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yang, H.; Wang, J.; Li, X.; Xue, C.; Niu, C.; Liao, P. Serum albumin levels are a predictor of COVID-19 patient prognosis: Evidence from a single cohort in Chongqing, China. Int. J. Gen. Med. 2021, 14, 2785–2797. [Google Scholar] [CrossRef] [PubMed]
- Gregoriano, C.; Koch, D.; Haubitz, S.; Conen, A.; Fux, C.A.; Mueller, B.; Bernasconi, L.; Hammerer-Lercher, A.; Oberle, M.; Burgermeister, S.; et al. Characteristics, predictors and outcomes among 99 patients hospitalised with COVID-19 in a tertiary care centre in Switzerland: An observational analysis. Swiss Med. Wkly. 2020, 150, w20316. [Google Scholar] [CrossRef]
- World Health Organization. Clinical Management of Severe Acute Respiratory Infection When Novel Coronavirus (nCoV) Infection Is Suspected: Interim Guidance, 25 January 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- World Health Organization. Clinical Management of COVID-19: Interim Guidance, 27 May 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Charlson, M.; Szatrowski, T.P.; Peterson, J.; Gold, J. Validation of a combined comorbidity index. J. Clin. Epidemiol. 1994, 47, 1245–1251. [Google Scholar] [CrossRef]
- Juma, S.; Taabazuing, M.M.; Montero-Odasso, M. Clinical frailty scale in an acute medicine unit: A simple tool that predicts length of stay. Can. Geriatr. J. 2016, 19, 34–39. [Google Scholar] [CrossRef]
- Kondrup, J.; Rasmussen, H.H.; Hamberg, O.; Stanga, Z.; Ad Hoc, E.W.G. Nutritional risk screening (NRS 2002): A new method based on an analysis of controlled clinical trials. Clin. Nutr. 2003, 22, 321–336. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.J.S.; et al. Glim criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. J. Cachexia Sarcopenia Muscle 2019, 10, 207–217. [Google Scholar] [CrossRef]
- Chada, R.R.; Chidrawar, S.; Siddiqua, A.; Medanki, R.; Omer, S.A.; Nagalla, B. Tailoring nutrition therapy amid the COVID-19 pandemic: Does it work? Clin. Nutr. ESPEN 2021, 45, 381–388. [Google Scholar] [CrossRef]
- Sanson, G.; Sadiraj, M.; Barbin, I.; Confezione, C.; De Matteis, D.; Boscutti, G.; Zaccari, M.; Zanetti, M. Prediction of early- and long-term mortality in adult patients acutely admitted to internal medicine: NRS-2002 and beyond. Clin. Nutr. 2020, 39, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Mercadal-Orfila, G.; Lluch-Taltavull, J.; Campillo-Artero, C.; Torrent-Quetglas, M. Association between nutritional risk based on the NRS-2002 test and hospital morbidity and mortality. Nutr. Hosp. 2012, 27, 1248–1254. [Google Scholar] [PubMed]
- Pinzon-Espitia, O.L.; Pardo-Oviedo, J.M.; Murcia Soriano, L.F. Nutritional risk and clinical outcomes in patients diagnosed with COVID-19 in a high-complexity hospital network. Nutr. Hosp. 2022, 39, 93–100. [Google Scholar]
- Mendes, A.; Serratrice, C.; Herrmann, F.R.; Gold, G.; Graf, C.E.; Zekry, D.; Genton, L. Nutritional risk at hospital admission is associated with prolonged length of hospital stay in old patients with COVID-19. Clin. Nutr. 2021, in press. [Google Scholar] [CrossRef]
- Carrero, J.J.; Thomas, F.; Nagy, K.; Arogundade, F.; Avesani, C.M.; Chan, M.; Chmielewski, M.; Cordeiro, A.C.; Espinosa-Cuevas, A.; Fiaccadori, E.; et al. Global prevalence of protein-energy wasting in kidney disease: A meta-analysis of contemporary observational studies from the international society of renal nutrition and metabolism. J. Ren. Nutr. 2018, 28, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Franco, B.B.; Hopman, W.M.; Lamarche, M.C.; Holden, R.M. Protein energy wasting and long-term outcomes in nondialysis dependent chronic kidney disease. J. Ren. Care 2022, 48, 14–23. [Google Scholar] [CrossRef]
- Muller, M.; Dahdal, S.; Saffarini, M.; Uehlinger, D.; Arampatzis, S. Evaluation of nutrition risk screening score 2002 (NRS) assessment in hospitalized chronic kidney disease patient. PLoS ONE 2019, 14, e0211200. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Fiorindi, C.; Campani, F.; Rasero, L.; Campani, C.; Livi, L.; Giovannoni, L.; Amato, C.; Giudici, F.; Bartoloni, A.; Fattirolli, F.; et al. Prevalence of nutritional risk and malnutrition during and after hospitalization for COVID-19 infection: Preliminary results of a single-centre experience. Clin. Nutr. ESPEN 2021, 45, 351–355. [Google Scholar] [CrossRef]
- Gao, M.; Piernas, C.; Astbury, N.M.; Hippisley-Cox, J.; O’Rahilly, S.; Aveyard, P.; Jebb, S.A. Associations between body-mass index and COVID-19 severity in 6.9 million people in England: A prospective, community-based, cohort study. Lancet Diabetes Endocrinol. 2021, 9, 350–359. [Google Scholar] [CrossRef]
- Recinella, G.; Marasco, G.; Serafini, G.; Maestri, L.; Bianchi, G.; Forti, P.; Zoli, M. Prognostic role of nutritional status in elderly patients hospitalized for COVID-19: A monocentric study. Aging Clin. Exp. Res. 2020, 32, 2695–2701. [Google Scholar] [CrossRef] [PubMed]
- Izcovich, A.; Ragusa, M.A.; Tortosa, F.; Lavena Marzio, M.A.; Agnoletti, C.; Bengolea, A.; Ceirano, A.; Espinosa, F.; Saavedra, E.; Sanguine, V.; et al. Prognostic factors for severity and mortality in patients infected with COVID-19: A systematic review. PLoS ONE 2020, 15, e0241955. [Google Scholar] [CrossRef] [PubMed]
- Soetedjo, N.N.M.; Iryaningrum, M.R.; Damara, F.A.; Permadhi, I.; Sutanto, L.B.; Hartono, H.; Rasyid, H. Prognostic properties of hypoalbuminemia in COVID-19 patients: A systematic review and diagnostic meta-analysis. Clin. Nutr. ESPEN 2021, 45, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, S.; Ginoya, S.; Tandon, P.; Gohel, T.D.; Guirguis, J.; Vallabh, H.; Jevenn, A.; Hanouneh, I. Malnutrition: Laboratory markers vs. nutritional assessment. Gastroenterol. Rep. 2016, 4, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Gomes, F.; Baumgartner, A.; Bounoure, L.; Bally, M.; Deutz, N.E.; Greenwald, J.L.; Stanga, Z.; Mueller, B.; Schuetz, P. Association of nutritional support with clinical outcomes among medical inpatients who are malnourished or at nutritional risk: An updated systematic review and meta-analysis. JAMA Netw. Open 2019, 2, e1915138. [Google Scholar] [CrossRef]
- Baumgartner, A.; Hasenboehler, F.; Cantone, J.; Hersberger, L.; Bargetzi, A.; Bargetzi, L.; Kaegi-Braun, N.; Tribolet, P.; Gomes, F.; Hoess, C.; et al. Effect of nutritional support in patients with lower respiratory tract infection: Secondary analysis of a randomized clinical trial. Clin. Nutr. 2021, 40, 1843–1850. [Google Scholar] [CrossRef] [PubMed]
Overall | Survivors | Non-Survivors | p-Value | |
---|---|---|---|---|
n = 305 | n = 261 | n = 44 | ||
Sociodemographics | ||||
Age, median (IQR) | 66.0 (55.0, 75.0) | 63.0 (53.0, 73.0) | 74.5 (68.5, 80.0) | <0.01 |
Male gender, n (%) | 203 (66.6) | 170 (65.1) | 33 (75.0) | 0.20 |
Active smoker, n (%) | 26 (12.4) | 22 (12.6) | 4 (11.4) | 0.85 |
Comorbidities | ||||
Age-adjusted Charlson comorbidity index, median (IQR) | 3.0 (2.0, 5.0) | 3.0 (1.0, 5.0) | 5.0 (4.0, 7.0) | <0.01 |
Clinical Frailty Score, median (IQR) | 3.0 (2.0, 4.0) | 3.0 (2.0, 4.0) | 4.0 (3.0, 5.0) | <0.01 |
Cancer, n (%) | 36 (11.8) | 22 (8.4) | 14 (31.8) | <0.01 |
Hypertension, n (%) | 167 (54.8) | 141 (54.0) | 26 (59.1) | 0.53 |
Coronary artery disease, n (%) | 63 (20.7) | 47 (18.0) | 16 (36.4) | <0.01 |
Chronic heart failure, n (%) | 6 (2.0) | 4 (1.5) | 2 (4.5) | 0.18 |
Asthma, n (%) | 20 (6.6) | 17 (6.5) | 3 (6.8) | 0.94 |
Chronic obstructive pulmonary disease, n (%) | 23 (7.5) | 16 (6.1) | 7 (15.9) | 0.02 |
Obstructive sleep apnea, n (%) | 28 (9.2) | 20 (7.7) | 8 (18.2) | 0.03 |
Solid organ transplant recipient, n (%) | 7 (2.3) | 7 (2.7) | 0 (0.0) | 0.27 |
Kidney transplant, n (%) | 6 (2.0) | 6 (2.3) | 0 (0.0) | |
Kidney–pancreas transplant, n (%) | 1 (0.3) | 1 (0.4) | 0 (0.0) | |
Active rheumatic disease, n (%) | 7 (2.3) | 5 (1.9) | 2 (4.5) | 0.28 |
Chronic kidney disease, n (%) | 68 (22.3) | 45 (17.2) | 23 (52.3) | <0.01 |
Obesity (BMI > 30 kg/m2), n (%) | 97 (32.1) | 84 (32.6) | 13 (29.5) | 0.69 |
Diabetes, n (%) | 81 (26.6) | 68 (26.1) | 13 (29.5) | 0.63 |
Nutritional assessment | ||||
BMI [kg/m2], median (IQR) | 27.6 (24.2, 31.7) | 27.6 (24.2, 31.7) | 27.65 (25.2, 30,3) | 0.96 |
Bodyweight [kg], median (IQR) | 82.7 (70.8, 93.8) | 82.9 (70.1, 94.2) | 81.9 (72.9, 92.4) | 0.95 |
NRS 2002 | ||||
NRS 2002 overall, median (IQR) | 2.0 (1.0, 3.0) | 2.0 (1.0, 2.0) | 2.0 (2.0, 3.0) | <0.01 |
<3 points | 229 (75.1) | 205 (78.5) | 24 (54.5) | <0.01 |
3–4 points | 66 (21.6) | 51 (19.5) | 15 (34.1) | |
≥5 points | 10 (3.3) | 5 (1.9) | 5 (11.4) | |
Initial vital signs | ||||
Blood pressure, systolic [mmHg], median (IQR) | 141.0 (128.0, 156.5) | 141.0 (127.5, 156.0) | 140.0 (130.0, 160.0) | 0.79 |
Blood pressure, diastolic [mmHg], median (IQR) | 81.0 (73.0, 89.0) | 81.0 (73.0, 90.0) | 78.0 (73.5, 87.5) | 0.45 |
Pulse [bpm], median (IQR) | 85.3 (77.0, 94.0) | 85.0 (77.0, 94.0) | 86.2 (77.9, 95.5) | 0.66 |
Respiratory rate [breaths/min], median (IQR) | 21.0 (17.5, 24.7) | 21.0 (17.5, 24.4) | 22.7 (17.9, 26.4) | 0.21 |
Temperature [°C], median (IQR) | 37.6 (36.8, 38.3) | 37.6 (36.8, 38.2) | 37.6 (36.8, 38.5) | 0.67 |
SpO2 [%], median (IQR) | 94.0 (90.1, 96.5) | 94.3 (90.3, 96.6) | 91.7 (84.3, 95.8) | 0.02 |
Initial laboratory findings | ||||
Haemoglobin [G/L], median (IQR) | 134.0 (120.0, 145.0) | 134.5 (120.0, 145.0) | 130.0 (105.0, 140.5) | 0.02 |
Leukocytes [G/L], median (IQR) | 7.4 (5.1, 9.3) | 7.3 (5.1, 9.2) | 7.8 (5.1, 11.1) | 0.41 |
Sodium [mmol/L], median (IQR) | 137.0 (134.0, 139.0) | 137.0 (134.0, 139.0) | 138.0 (133.0, 139.5) | 0.54 |
Glucose [mmol/L], median (IQR) | 6.5 (5.7, 8.1) | 6.4 (5.7, 7.9) | 7.4 (5.8, 9.5) | 0.12 |
Potassium [mmol/L], median (IQR) | 3.8 (3.5, 4.1) | 3.8 (3.5, 4.1) | 4.0 (3.7, 4.2) | 0.03 |
Calcium [mmol/L], median (IQR) | 2.2 (2.1, 2.2) | 2.2 (2.1, 2.2) | 2.2 (2.1, 2.2) | 0.66 |
Albumin [G/L], median (IQR) | 30.2 (27.1, 33.7) | 30.5 (27.6, 33.8) | 28.0 (23.9, 31.7) | <0.01 |
Vitamin D [nmol/L], median (IQR) | 50.1 (22.9, 57.1) | 49.0 (26.8, 56.5) | 57.1 (15.6, 75.9) | 0.81 |
Creatinine [µmol/L], median (IQR) | 91.0 (74.0, 113.0) | 87.0 (72.0, 111.0) | 111.0 (94.5, 170.5) | <0.01 |
Alanine-Aminotransferase [U/L], median (IQR) | 35.0 (25.0, 50.0) | 35.0 (25.5, 51.5) | 33.0 (25.0, 50.0) | 0.78 |
Alkaline phosphatase [IU/L], median (IQR) | 69.0 (55.0, 92.0) | 68.0 (55.0, 90.0) | 77.0 (60.0, 115.0) | 0.18 |
CRP [mg/L], median (IQR) | 76.3 (28.6, 133.0) | 71.0 (25.4, 122.0) | 104.5 (64.6, 176.5) | <0.01 |
PCT [µg/L], median (IQR) | 0.1 (0.1, 0.2) | 0.1 (0.1, 0.2) | 0.1 (0.1, 0.5) | 0.01 |
In-hospital outcomes | ||||
ICU care, n (%) | 44 (14.4) | 31 (11.9) | 13 (29.5) | <0.01 |
Need for mechanic ventilation, n (%) | 22 (7.2) | 11 (4.2) | 11 (25.0) | <0.01 |
Length of hospital stay [day], median (IQR) | 7.0 (4.0, 13.0) | 6.0 (4.0, 11.0) | 14.5 (5.0, 20.5) | <0.01 |
Survivors | Non-Survivors | p-Value | Crude OR (95% CI), p-Value | Adjusted OR * (95% CI), p-Value | |
---|---|---|---|---|---|
n = 261 | n = 44 | ||||
NRS 2002 | |||||
NRS 2002 overall, median (IQR) | 2.0 (1.0, 2.0) | 2.0 (2.0, 3.0) | <0.001 | 1.63 (1.30, 2.10), p < 0.001 | 1.39 (1.07, 1.80), p = 0.013 |
NRS 2002 cut-offs, n (%) | |||||
NRS 2002 < 3 points | 205 (78.5) | 24 (54.5) | <0.001 | Reference | Reference |
NRS 2002 3–4 points | 51 (19.5) | 15 (34.1) | 2.51 (1.23, 5.13), p = 0.011 | 1.64 (0.76, 3.57), p = 0.204 | |
NRS 2002 ≥ 5 points | 5 (1.9) | 5 (11.4) | 8.54 (2.31, 31.65), p = 0.001 | 4.68 (1.18, 18.64), p = 0.029 | |
BMI | |||||
BMI overall, median (IQR) | 27.6 (24.2, 31.7) | 27.6 (25.2, 30.3) | 0.96 | 1.00 (0.94, 1.06), p = 0.944 | 1.04 (0.97, 1.11), p = 0.247 |
BMI cut-offs, n (%) | |||||
BMI < 20 if age < 70, BMI < 22 if age ≥ 70 | 16 (6.5) | 3 (7.9) | 0.75 | Reference | Reference |
BMI ≥ 20 if age < 70, BMI ≥ 22 if age ≥ 70 | 229 (93.5) | 35 (92.1) | 0.82 (0.23, 2.94), p = 0.755 | 1.64 (0.41, 6.53), p = 0.481 | |
Albumin | |||||
Albumin overall, median (IQR) | 30.5 (27.6, 33.8) | 28.0 (23.9, 31.7) | <0.001 | 0.90 (0.83, 0.96), p = 0.002 | 0.92 (0.85, 0.99), p = 0.030 |
Albumin cut-offs, n (%) | |||||
<34.0 g/L | 173 (75.5) | 33 (82.5) | 0.34 | Reference | Reference |
≥34.0 g/L | 56 (24.5) | 7 (17.5) | 0.66 (0.27, 1.56), p = 0.341 | 0.98 (0.39, 2.45), p = 0.964 |
No ICU Admission | ICU Admission | p-Value | Crude OR (95% CI), p-Value | Adjusted OR * (95% CI), p-Value | |
---|---|---|---|---|---|
n = 261 | n = 44 | ||||
NRS 2002 | |||||
NRS 2002 overall, median (IQR) | 2.0 (1.0, 3.0) | 2.0 (1.0, 2.0) | 0.66 | 0.98 (0.77, 1.24), p = 0.845 | 1.14 (0.87, 1.49), p = 0.335 |
NRS 2002 cut-offs, n (%) | |||||
NRS 2002 < 3 points | 193 (73.9) | 36 (81.8) | 0.091 | Reference | Reference |
NRS 2002 3–4 points | 61 (23.4) | 5 (11.4) | 0.44 (0.17, 1.17), p = 0.100 | 0.61 (0.22, 1.70), p = 0.345 | |
NRS 2002 ≥ 5 points | 7 (2.7) | 3 (6.8) | 2.3 (0.57, 9.30), p = 0.244 | 3.58 (0.80, 16.11), p = 0.096 | |
BMI | |||||
BMI overall, median (IQR) | 27.6 (24.0, 31.7) | 27.9 (26.1, 31.4) | 0.63 | 1.00 (0.95, 1.06), p = 0.993 | 0.99 (0.94, 1.06), p = 0.877 |
BMI cut-offs, n (%) | |||||
BMI < 20 if age < 70, BMI < 22 if age ≥ 70 | 19 (7.8) | 0 (0) | 0.067 | NA | NA |
BMI ≥ 20 if age < 70, BMI ≥ 22 if age ≥ 70 | 224 (92.2) | 40 (100) | NA | NA | |
Albumin | |||||
Albumin overall, median (IQR) | 30.4 (27.6, 34.0) | 28.9 (26.0, 31.6) | <0.01 | 0.90 (0.84, 0.97), p = 0.003 | 0.88 (0.82, 0.95), p = 0.001 |
Albumin cut-offs, n (%) | |||||
<34.0 g/L | 171 (75.0) | 35 (85.4) | 0.15 | Reference | Reference |
≥34.0 g/L | 57 (25.0) | 6 (14.6) | 0.51 (0.21, 1.29), p = 0.155 | 0.41 (0.16, 1.06), p = 0.066 |
LOS [Days], Mean (SD) | Unadjusted Coefficient (95% CI), p-Value | Adjusted Coefficient * (95% CI), p-Value | |
---|---|---|---|
NRS 2002 | |||
NRS 2002 overall | 0.52 (−0.22, 1.26), p = 0.168 | 0.26 (−0.56, 1.07), p = 0.534 | |
NRS 2002 cut-offs | |||
NRS 2002 < 3 points | 8.83 ± 8.07 | Reference | Reference |
NRS 2002 3–4 points | 7.47 ± 5.49 | −1.36 (−3.72, 1.00), p = 0.258 | −2.03 (−4.49, 0.43), p = 0.106 |
NRS 2022 ≥ 5 points | 15.40 ± 9.32 | 6.57 (−0.26, 13.40), p = 0.059 | 4.77 (−2.14, 11.67), p = 0.175 |
BMI | |||
BMI overall | −0.10 (−0.26, 0.07), p = 0.244 | −0.05 (−0.22, 0.12), p = 0.543 | |
BMI cut-offs | |||
BMI < 20 if age < 70, BMI < 22 if age ≥ 70 | 8.44 ± 7.57 | Reference | Reference |
BMI ≥ 20 if age < 70, BMI ≥ 22 if age ≥ 70 | 8.79 ± 7.83 | 0.36 (−3.62, 4.34), p = 0.860 | 1.35 (−2.71, 5.40), p = 0.514 |
Albumin | |||
Albumin overall | −0.37 (−0.55, −0.20), p = 0.000 | −0.34 (−0.52, −0.17), p = 0.000 | |
Albumin cut-offs | |||
<34.0 g/L | 8.62 ± 6.46 | Reference | Reference |
≥34.0 g/L | 6.68 ± 5.91 | −1.94 (−3.86, −0.02), p = 0.047 | −1.58 (−3.54, 0.38), p = 0.114 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gregoriano, C.; Voelkle, M.; Koch, D.; Hauser, S.I.; Kutz, A.; Mueller, B.; Schuetz, P. Association of Different Malnutrition Parameters and Clinical Outcomes among COVID-19 Patients: An Observational Study. Nutrients 2022, 14, 3449. https://doi.org/10.3390/nu14163449
Gregoriano C, Voelkle M, Koch D, Hauser SI, Kutz A, Mueller B, Schuetz P. Association of Different Malnutrition Parameters and Clinical Outcomes among COVID-19 Patients: An Observational Study. Nutrients. 2022; 14(16):3449. https://doi.org/10.3390/nu14163449
Chicago/Turabian StyleGregoriano, Claudia, Manyola Voelkle, Daniel Koch, Stephanie Isabelle Hauser, Alexander Kutz, Beat Mueller, and Philipp Schuetz. 2022. "Association of Different Malnutrition Parameters and Clinical Outcomes among COVID-19 Patients: An Observational Study" Nutrients 14, no. 16: 3449. https://doi.org/10.3390/nu14163449
APA StyleGregoriano, C., Voelkle, M., Koch, D., Hauser, S. I., Kutz, A., Mueller, B., & Schuetz, P. (2022). Association of Different Malnutrition Parameters and Clinical Outcomes among COVID-19 Patients: An Observational Study. Nutrients, 14(16), 3449. https://doi.org/10.3390/nu14163449