Effect of Date Fruit Consumption on the Glycemic Control of Patients with Type 2 Diabetes: A Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Methods
2.2. Study Design
2.3. Study Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vayalil, P.K. Date fruits (Phoenix dactylifera Linn): An emerging medicinal food. Crit. Rev. Food Sci. Nutr. 2012, 52, 249–271. [Google Scholar] [CrossRef] [PubMed]
- Federation, I.D. IDF diabetes atlas eighth. IDF Diabetes Atlas 2017, 8, 150. [Google Scholar]
- Hamad, I.; AbdElgawad, H.; Al Jaouni, S.; Zinta, G.; Asard, H.; Hassan, S.; Hegab, M.; Hagagy, N.; Selim, S. Metabolic Analysis of Various Date Palm Fruit (Phoenix dactylifera L.) Cultivars from Saudi Arabia to Assess Their Nutritional Quality. Molecules 2015, 20, 13620–13641. [Google Scholar] [CrossRef] [PubMed]
- Alkaabi, J.M.; Al-Dabbagh, B.; Ahmad, S.; Saadi, H.F.; Gariballa, S.; Ghazali, M.A. Glycemic indices of five varieties of dates in healthy and diabetic subjects. Nutr. J. 2011, 10, 59. [Google Scholar] [CrossRef]
- Alkaabi, J.; Al-Dabbagh, B.; Saadi, H.; Gariballa, S.; Yasin, J. Effect of traditional Arabic coffee consumption on the glycemic index of Khalas dates tested in healthy and diabetic subjects. Asia Pac. J. Clin. Nutr. 2013, 22, 565–573. [Google Scholar] [CrossRef]
- Miller, C.J.; Dunn, E.V.; Hashim, I.B. The glycaemic index of dates and date/yoghurt mixed meals. Are dates ‘the candy that grows on trees’? Eur. J. Clin. Nutr. 2003, 57, 427–430. [Google Scholar] [CrossRef]
- Tseng, J.Y.; Chen, H.H.; Huang, K.C.; Hsu, S.P.; Chen, C.C. Effect of mean HbA1c on the association of HbA1c variability and all-cause mortality in patients with type 2 diabetes. Diabetes Obes. Metab. 2020, 22, 680–687. [Google Scholar] [CrossRef]
- Kilpatrick, E.S.; Rigby, A.S.; Atkin, S.L. Mean blood glucose compared with HbA1c in the prediction of cardiovascular disease in patients with type 1 diabetes. Diabetologia 2008, 51, 365–371. [Google Scholar] [CrossRef]
- Kilpatrick, E.S.; Rigby, A.S.; Atkin, S.L. Effect of glucose variability on the long-term risk of microvascular complications in type 1 diabetes. Diabetes Care 2009, 32, 1901–1903. [Google Scholar] [CrossRef]
- Foshati, S.; Nouripour, F.; Akhlaghi, M. Effect of Date and Raisin Snacks on Glucose Response in Type 2 Diabetes. Nutr. Food Sci. Res. 2015, 2, 19–25. [Google Scholar]
- Thompson, L.U.; Boucher, B.A.; Liu, Z.; Cotterchio, M.; Kreiger, N. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr. Cancer 2006, 54, 184–201. [Google Scholar] [CrossRef] [PubMed]
- Sathyapalan, T.; Aye, M.; Rigby, A.S.; Thatcher, N.J.; Dargham, S.R.; Kilpatrick, E.S.; Atkin, S.L. Soy isoflavones improve cardiovascular disease risk markers in women during the early menopause. Nutr. Metab. Cardiovasc. Dis. NMCD 2018, 28, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Sathyapalan, T.; Dawson, A.J.; Rigby, A.S.; Thatcher, N.J.; Kilpatrick, E.S.; Atkin, S.L. The Effect of Phytoestrogen on Thyroid in Subclinical Hypothyroidism: Randomized, Double Blind, Crossover Study. Front. Endocrinol. 2018, 9, 531. [Google Scholar] [CrossRef] [PubMed]
- 6. Glycemic Targets: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S61–S70. [CrossRef] [PubMed]
- Jayagopal, V.; Albertazzi, P.; Kilpatrick, E.S.; Howarth, E.M.; Jennings, P.E.; Hepburn, D.A.; Atkin, S.L. Beneficial effects of soy phytoestrogen intake in postmenopausal women with type 2 diabetes. Diabetes Care 2002, 25, 1709–1714. [Google Scholar] [CrossRef]
- Legro, R.S.; Arslanian, S.A.; Ehrmann, D.A.; Hoeger, K.M.; Murad, M.H.; Pasquali, R.; Welt, C.K.; Endocrine, S. Diagnosis and treatment of polycystic ovary syndrome: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2013, 98, 4565–4592. [Google Scholar] [CrossRef]
- Niemczyk, S.; Szamotulska, K.; Giers, K.; Jasik, M.; Bartoszewicz, Z.; Romejko-Ciepielewska, K.; Paklerska, E.; Gomolka, M.; Matuszkiewicz-Rowinska, J. Homeostatic model assessment indices in evaluation of insulin resistance and secretion in hemodialysis patients. Med. Sci. Monit. 2013, 19, 592–598. [Google Scholar] [CrossRef]
- Julious, S.A. Sample size of 12 per group rule of thumb for a pilot study. Pharm. Stat. J. Appl. Stat. Pharm. Ind. 2005, 4, 287–291. [Google Scholar] [CrossRef]
- Teare, M.D.; Dimairo, M.; Shephard, N.; Hayman, A.; Whitehead, A.; Walters, S.J. Sample size requirements to estimate key design parameters from external pilot randomised controlled trials: A simulation study. Trials 2014, 15, 264. [Google Scholar] [CrossRef]
- Mirghani, H.O. Dates fruits effects on blood glucose among patients with diabetes mellitus: A review and meta-analysis. Pak. J. Med. Sci. 2021, 37, 1230. [Google Scholar] [CrossRef]
- Alqarni, M.M.; Osman, M.A.; Al-Tamimi, D.S.; Gassem, M.A.; Al-Khalifa, A.S.; Al-Juhaimi, F.; Mohamed Ahmed, I.A. Antioxidant and antihyperlipidemic effects of Ajwa date (Phoenix dactylifera L.) extracts in rats fed a cholesterol-rich diet. J. Food Biochem. 2019, 43, e12933. [Google Scholar] [CrossRef] [PubMed]
- AlGeffari, M.A.; Almogbel, E.S.; Alhomaidan, H.T.; El-Mergawi, R.; Barrimah, I.A. Glycemic indices, glycemic load and glycemic response for seventeen varieties of dates grown in Saudi Arabia. Ann. Saudi Med. 2016, 36, 397–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.; Khan, R.A.; Jamil, S.; Afroz, S. Antidiabetic effects of native date fruit Aseel (Phoenix dactylifera L.) in normal and hyperglycemic rats. Pak. J. Pharm. Sci. 2017, 30, 1797–1802. [Google Scholar]
- Ahmed, S.; Alam Khan, R.; Jamil, S. Anti hyperlipidemic and hepatoprotective effects of native date fruit variety “Aseel” (Phoenix dactylifera). Pak. J. Pharm. Sci. 2016, 29, 1945–1950. [Google Scholar]
- Esfahani, A.; Lam, J.; Kendall, C.W. Acute effects of raisin consumption on glucose and insulin reponses in healthy individuals. J. Nutr. Sci. 2014, 3, e1. [Google Scholar] [CrossRef] [Green Version]
Baseline Demographic and Biochemical Data | ||
---|---|---|
Data Presented at Mean +/− SD | ||
Dates | Raisins | |
Age (years) | 61 (10) | 56 (9) |
BMI (kg/m2) | 31.3 (6.2) | 31.3 (5.7) |
Systolic BP (mmHg) | 133 (20) | 133 (17) |
Diastolic BP (mmHg) | 74 (9) | 79 (15) |
CRP (mg/L) | 7.6 (8.8) | 6.6 (5.8) |
FBG (mmol/L) | 8.1 (2.0) | 8.2 (1.7) |
HbA1c (%) | 7.6 (1.1) | 7.7 (0.8) |
Fasting insulin (μU/mL) | 12.2 (9.2) | 12.4 (8.9) |
Total cholesterol (mmol/L) | 3.9 (1.0) | 3.9 (1.0) |
Triglycerides (mmol/L) | 1.5 (0.7) | 1.6 (0.6) |
LDL cholesterol (mmol/L) | 2.6 (0.9) | 2.6 (1.0) |
HDL cholesterol (mmol/L) | 1.1 (0.2) | 1.0 (0.2) |
HOMA-IR | 4.9 (5.1) | 3.8 (3.5) |
HOMA-S (%) | 39.0 (29.1) | 35.0 (20.1) |
HOMA-B (%) | 61.1 (42.8) | 53.7 (35.8) |
Disposition index | 0.2 (0.4) | 0.2 (0.1) |
Dates | Raisins | Dates vs. Raisins at 12 Weeks | |||||
---|---|---|---|---|---|---|---|
Baseline | 12 weeks | p-value | Baseline | 12 weeks | p-value | p-value | |
BMI (kg/m2) | 31.3 (6.2) | 30.9 (6.4) | 0.79 | 31.3 (5.7) | 32.6 (6.1) | 0.37 | 0.27 |
Systolic BP (mmHg) | 133 (20) | 128 (20) | 0.31 | 133 (17) | 126 (16) | 0.12 | 0.71 |
Diastolic BP (mmHg) | 74 (9) | 76 (11) | 0.49 | 79 (15) | 79 (8) | 0.88 | 0.20 |
CRP (mg/L) | 7.6 (8.8) | 8.3 (8.9) | 0.74 | 6.6 (5.8) | 6.0 (4.0) | 0.64 | 0.20 |
FBG (mmol/L) | 8.1 (2.0) | 8.7 (2.8) | 0.34 | 8.2 (1.7) | 7.8 (1.5) | 0.25 | 0.12 |
HbA1c (%) | 7.6 (1.1) | 7.5 (1.1) | 0.86 | 7.7 (0.8) | 7.8 (0.8) | 0.51 | 0.72 |
Fasting insulin (μU/mL) | 12.2 (9.2) | 9.3 (5.5) | 0.12 | 12.4 (8.9) | 9.5 (4.7‘) | 0.12 | 0.91 |
Total cholesterol (mmol/L) | 3.9 (1.0) | 4.1 (1.4) | 0.48 | 3.9 (1.0) | 3.9 (1.0) | 0.9 | 0.54 |
Triglycerides (mmol/L) | 1.5 (0.7) | 1.6 (1.2) | 0.80 | 1.6 (0.6) | 1.4 (0.7) | 0.22 | 0.40 |
LDL cholesterol (mmol/L) | 2.6 (0.9) | 2.7 (1.4) | 0.54 | 2.6 (1.0) | 2.7 (1.0) | 0.72 | 0.95 |
HDL cholesterol (mmol/L) | 1.1 (0.2) | 1.1 (0.3) | 0.65 | 1.0 (0.2) | 1.0 (0.2) | 0.92 | 0.36 |
HOMA-IR | 4.9 (5.1) | 3.8 (3.5) | 0.30 | 4.2 (3.2) | 3.2 (1.5) | 0.15 | 0.42 |
HOMA-S (%) | 39.0 (29.1) | 41.3 (25.7) | 0.73 | 35.0 (20.1) | 41.2 (24.9) | 0.28 | 0.98 |
HOMA-B (%) | 61.1 (42.8) | 41.6 (24.7) | 0.06 | 53.7 (35.8) | 54.2 (42.4) | 0.96 | 0.17 |
Disposition index | 0.2 (0.4) | 0.2 (0.1) | 0.31 | 0.2 (0.1) | 0.2 (0.2) | 0.30 | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butler, A.E.; Obaid, J.; Wasif, P.; Varghese, J.V.; Abdulrahman, R.; Alromaihi, D.; Atkin, S.L.; Alamuddin, N. Effect of Date Fruit Consumption on the Glycemic Control of Patients with Type 2 Diabetes: A Randomized Clinical Trial. Nutrients 2022, 14, 3491. https://doi.org/10.3390/nu14173491
Butler AE, Obaid J, Wasif P, Varghese JV, Abdulrahman R, Alromaihi D, Atkin SL, Alamuddin N. Effect of Date Fruit Consumption on the Glycemic Control of Patients with Type 2 Diabetes: A Randomized Clinical Trial. Nutrients. 2022; 14(17):3491. https://doi.org/10.3390/nu14173491
Chicago/Turabian StyleButler, Alexandra E., Jenan Obaid, Pearl Wasif, Jean V. Varghese, Rawan Abdulrahman, Dalal Alromaihi, Stephen L. Atkin, and Naji Alamuddin. 2022. "Effect of Date Fruit Consumption on the Glycemic Control of Patients with Type 2 Diabetes: A Randomized Clinical Trial" Nutrients 14, no. 17: 3491. https://doi.org/10.3390/nu14173491
APA StyleButler, A. E., Obaid, J., Wasif, P., Varghese, J. V., Abdulrahman, R., Alromaihi, D., Atkin, S. L., & Alamuddin, N. (2022). Effect of Date Fruit Consumption on the Glycemic Control of Patients with Type 2 Diabetes: A Randomized Clinical Trial. Nutrients, 14(17), 3491. https://doi.org/10.3390/nu14173491