Association of Dietary Patterns with Metabolic Syndrome in Chinese Children and Adolescents Aged 7–17: The China National Nutrition and Health Surveillance of Children and Lactating Mothers in 2016–2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Ethics Approval and Consent to Participate
2.3. Metabolic Syndrome
- (1)
- Abdominal obesity: WC ≥ age- and sex-specific 90th percentile, determined by the cutoff points for Chinese children and adolescents [18];
- (2)
- Elevated blood pressure: SBP or DBP ≥ 90th percentile for age, sex and height [19];
- (3)
- High triglycerides: serum TG ≥ 1.24 mmol/L;
- (4)
- Low HDL-C: HDL-C ≤ 1.03 mmol/L;
- (5)
- Elevated fast blood glucose: FBG ≥ 6.1 mmol/L.
2.4. Anthropometric Measurements and Clinical Examinations
2.5. Assessment of Other Variables
2.6. Dietary Assessment
2.7. Dietary Pattern Analysis
2.8. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Dietary Patterns and Its Distribution among Children and Adolescents Aged 7–17
3.3. Associations between Dietary Patterns with MetS and Its Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cornier, M.A.; Dabelea, D.; Hernandez, T.L.; Lindstrom, R.C.; Steig, A.J.; Stob, N.R.; Van Pelt, R.E.; Wang, H.; Eckel, R.H. The metabolic syndrome. Endocr. Rev. 2008, 29, 777–822. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Zimmet, P.; Shaw, J. The metabolic syndrome–A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Ye, P.; Yan, Y.; Ding, W.; Dong, H.; Liu, Q.; Huang, G.; Mi, J. Prevalence of metabolic syndrome in Chinese children and adolescents: A Meta-analysis. Zhonghua Liu Xing Bing Xue Za Zhi 2015, 36, 884–888. [Google Scholar] [PubMed]
- Ji, C.Y.; Chen, T.J. Empirical changes in the prevalence of overweight and obesity among Chinese students from 1985 to 2010 and corresponding preventive strategies. Biomed. Environ. Sci. 2013, 26, 1–12. [Google Scholar] [CrossRef]
- Ford, E.S.; Li, C.; Cook, S.; Choi, H.K. Serum concentrations of uric acid and the metabolic syndrome among US children and adolescents. Circulation 2007, 115, 2526–2532. [Google Scholar] [CrossRef]
- Kim, S.; So, W.Y. Prevalence of Metabolic Syndrome among Korean Adolescents According to the National Cholesterol Education Program, Adult Treatment Panel III and International Diabetes Federation. Nutrients 2016, 8, 588. [Google Scholar] [CrossRef]
- Song, P.; Yu, J.; Chang, X.; Wang, M.; An, L. Prevalence and Correlates of Metabolic Syndrome in Chinese Children: The China Health and Nutrition Survey. Nutrients 2017, 9, 79. [Google Scholar] [CrossRef]
- Lind, P.M.; Risérus, U.; Salihovic, S.; Bavel, B.; Lind, L. An environmental wide association study (EWAS) approach to the metabolic syndrome. Environ. Int. 2013, 55, 1–8. [Google Scholar] [CrossRef]
- Asghari, G.; Yuzbashian, E.; Mirmiran, P.; Hooshmand, F.; Najafi, R.; Azizi, F. Dietary Approaches to Stop Hypertension (DASH) Dietary Pattern Is Associated with Reduced Incidence of Metabolic Syndrome in Children and Adolescents. J. Pediatr. 2016, 174, 178–184.e1. [Google Scholar] [CrossRef]
- Drake, I.; Sonestedt, E.; Ericson, U.; Wallström, P.; Orho-Melander, M. A Western dietary pattern is prospectively associated with cardio-metabolic traits and incidence of the metabolic syndrome. Br. J. Nutr. 2018, 119, 1168–1176. [Google Scholar] [CrossRef] [Green Version]
- Jennings, A.; Berendsen, A.M.; de Groot, L.; Feskens, E.J.M.; Brzozowska, A.; Sicinska, E.; Pietruszka, B.; Meunier, N.; Caumon, E.; Malpuech-Brugère, C.; et al. Mediterranean-Style Diet Improves Systolic Blood Pressure and Arterial Stiffness in Older Adults. Hypertension 2019, 73, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Ambrosini, G.L.; Huang, R.C.; Mori, T.A.; Hands, B.P.; O’Sullivan, T.A.; de Klerk, N.H.; Beilin, L.J.; Oddy, W.H. Dietary patterns and markers for the metabolic syndrome in Australian adolescents. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Pan, K.; Aragaki, A.K.; Neuhouser, M.L.; Simon, M.S.; Luo, J.; Caan, B.; Snetselaar, L.; Mortimer, J.E.; Manson, J.E.; Kroenke, C.; et al. Low-fat dietary pattern and breast cancer mortality by metabolic syndrome components: A secondary analysis of the Women’s Health Initiative (WHI) randomised trial. Br. J. Cancer 2021, 125, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Rocha, N.P.; Milagres, L.C.; Longo, G.Z.; Ribeiro, A.Q.; Novaes, J.F. Association between dietary pattern and cardiometabolic risk in children and adolescents: A systematic review. J. Pediatr. 2017, 93, 214–222. [Google Scholar] [CrossRef]
- Yu, D.; Zhao, L.; Zhang, J.; Yang, Z.; Yang, L.; Huang, J.; Fang, H.; Guo, Q.; Xu, X.; Ju, L.; et al. China Nutrition and Health Surveys (1982–2017). China CDC Wkly. 2021, 3, 193–195. [Google Scholar] [CrossRef]
- Cook, S.; Weitzman, M.; Auinger, P.; Nguyen, M.; Dietz, W.H. Prevalence of a metabolic syndrome phenotype in adolescents: Findings from the third National Health and Nutrition Examination Survey, 1988–1994. Arch. Pediatr. Adolesc. Med. 2003, 157, 821–827. [Google Scholar] [CrossRef]
- WS/T611-2018; High Waist Circumference Screenning Threshold among Children and Adolescents Aged 7–17 Years. National Health and Family Planning Commission of People’s Republic of China: Beijing, China, 2018.
- Writing Group of Chinese Guidelines for Management of Hypertension; Chinese Hypertension League, Chinese Society of Cardiology; Chinese Medical Doctor Association Hypertension Committee; Hypertension Branch of China International Exchange and Promotive Association for Medical and Health Care; Hypertension Branch of Chinese Geriatric Medical Association. 2018 Chinese Guidelines for Prevention and Treatment of Hypertension. Chin. J. Cardiovasc. Med. 2018, 24, 24–56. [Google Scholar] [CrossRef]
- Tian, T.; Wang, Y.; Xie, W.; Zhang, J.; Ni, Y.; Peng, X.; Sun, G.; Dai, Y.; Zhou, Y. Multilevel Analysis of the Nutritional and Health Status among Children and Adolescents in Eastern China. Nutrients 2022, 14, 758. [Google Scholar] [CrossRef]
- Yang, Y.X. Chinese Food Composition Table; Peking University Medical Press: Beijing, China, 2018; ISBN 978-7-5659-1699-1. [Google Scholar]
- Yang, Y.X. Chinese Food Composition Table; Peking University Medical Press: Beijing, China, 2019; ISBN 978-7-5659-1978-7. [Google Scholar]
- Pearson, K.E.; Wadley, V.G.; McClure, L.A.; Shikany, J.M.; Unverzagt, F.W.; Judd, S.E. Dietary patterns are associated with cognitive function in the REasons for Geographic And Racial Differences in Stroke (REGARDS) cohort. J. Nutr. Sci. 2016, 5, e38. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Dai, Y.; Tian, T.; Zhang, J.; Xie, W.; Pan, D.; Xu, D.; Lu, Y.; Wang, S.; Xia, H.; et al. The Effects of Dietary Pattern on Metabolic Syndrome in Jiangsu Province of China: Based on a Nutrition and Diet Investigation Project in Jiangsu Province. Nutrients 2021, 13, 4451. [Google Scholar] [CrossRef]
- Xu, X.; Hall, J.; Byles, J.; Shi, Z. Dietary Pattern Is Associated with Obesity in Older People in China: Data from China Health and Nutrition Survey (CHNS). Nutrients 2015, 7, 8170–8188. [Google Scholar] [CrossRef]
- Zhen, S.; Ma, Y.; Zhao, Z.; Yang, X.; Wen, D. Dietary pattern is associated with obesity in Chinese children and adolescents: Data from China Health and Nutrition Survey (CHNS). Nutr. J. 2018, 17, 68. [Google Scholar] [CrossRef] [PubMed]
- Christ, A.; Lauterbach, M.; Latz, E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef] [PubMed]
- Kelishadi, R.; Hovsepian, S.; Djalalinia, S.; Jamshidi, F.; Qorbani, M. A systematic review on the prevalence of metabolic syndrome in Iranian children and adolescents. J. Res. Med. Sci. 2016, 21, 90. [Google Scholar] [CrossRef]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Ushula, T.W.; Mamun, A.; Darssan, D.; Wang, W.Y.S.; Williams, G.M.; Whiting, S.J.; Najman, J.M. Dietary patterns and the risks of me.etabolic syndrome and insulin resistance among young adults: Evidence from a longitudinal study. Clin. Nutr. 2022, 41, 1523–1531. [Google Scholar] [CrossRef]
- Partula, V.; Deschasaux, M.; Druesne-Pecollo, N.; Latino-Martel, P.; Desmetz, E.; Chazelas, E.; Kesse-Guyot, E.; Julia, C.; Fezeu, L.K.; Galan, P.; et al. Associations between consumption of dietary fibers and the risk of cardiovascular diseases, cancers, type 2 diabetes, and mortality in the prospective NutriNet-Santé cohort. Am. J. Clin. Nutr. 2020, 112, 195–207. [Google Scholar] [CrossRef] [PubMed]
- López-Contreras, I.N.; Vilchis-Gil, J.; Klünder-Klünder, M.; Villalpando-Carrión, S.; Flores-Huerta, S. Dietary habits and metabolic response improve in obese children whose mothers received an intervention to promote healthy eating: Randomized clinical trial. BMC Public Health 2020, 20, 1240. [Google Scholar] [CrossRef]
- Shen, J.; Wilmot, K.A.; Ghasemzadeh, N.; Molloy, D.L.; Burkman, G.; Mekonnen, G.; Gongora, M.C.; Quyyumi, A.A.; Sperling, L.S. Mediterranean Dietary Patterns and Cardiovascular Health. Annu. Rev. Nutr. 2015, 35, 425–449. [Google Scholar] [CrossRef]
- Hong, S.; Song, Y.; Lee, K.H.; Lee, H.S.; Lee, M.; Jee, S.H.; Joung, H. A fruit and dairy dietary pattern is associated with a reduced risk of metabolic syndrome. Metabolism 2012, 61, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Cocores, J.A.; Gold, M.S. The Salted Food Addiction Hypothesis may explain overeating and the obesity epidemic. Med. Hypotheses 2009, 73, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shi, M.; Dolan, J.; He, J. Sodium sensitivity of blood pressure in Chinese populations. J. Hum. Hypertens. 2020, 34, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Pilic, L.; Pedlar, C.R.; Mavrommatis, Y. Salt-sensitive hypertension: Mechanisms and effects of dietary and other lifestyle factors. Nutr. Rev. 2016, 74, 645–658. [Google Scholar] [CrossRef] [PubMed]
- Asp, M.L.; Collene, A.L.; Norris, L.E.; Cole, R.M.; Stout, M.B.; Tang, S.Y.; Hsu, J.C.; Belury, M.A. Time-dependent effects of safflower oil to improve glycemia, inflammation and blood lipids in obese, post-menopausal women with type 2 diabetes: A randomized, double-masked, crossover study. Clin. Nutr. 2011, 30, 443–449. [Google Scholar] [CrossRef]
- Norris, L.E.; Collene, A.L.; Asp, M.L.; Hsu, J.C.; Liu, L.F.; Richardson, J.R.; Li, D.; Bell, D.; Osei, K.; Jackson, R.D.; et al. Comparison of dietary conjugated linoleic acid with safflower oil on body composition in obese postmenopausal women with type 2 diabetes mellitus. Am. J. Clin. Nutr. 2009, 90, 468–476. [Google Scholar] [CrossRef]
- Rosqvist, F.; Iggman, D.; Kullberg, J.; Cedernaes, J.; Johansson, H.E.; Larsson, A.; Johansson, L.; Ahlström, H.; Arner, P.; Dahlman, I.; et al. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes 2014, 63, 2356–2368. [Google Scholar] [CrossRef]
- Julibert, A.; Bibiloni, M.D.M.; Tur, J.A. Dietary fat intake and metabolic syndrome in adults: A systematic review. Nutr Metab Cardiovasc. Dis. 2019, 29, 887–905. [Google Scholar] [CrossRef]
- Mente, A.; Dehghan, M.; Rangarajan, S.; McQueen, M.; Dagenais, G.; Wielgosz, A.; Lear, S.; Li, W.; Chen, H.; Yi, S.; et al. Association of dietary nutrients with blood lipids and blood pressure in 18 countries: A cross-sectional analysis from the PURE study. Lancet Diabetes Endocrinol. 2017, 5, 774–787. [Google Scholar] [CrossRef]
- Njike, V.Y.; Smith, T.M.; Shuval, O.; Shuval, K.; Edshteyn, I.; Kalantari, V.; Yaroch, A.L. Snack Food, Satiety, and Weight. Adv. Nutr. 2016, 7, 866–878. [Google Scholar] [CrossRef] [Green Version]
- Kelishadi, R.; Heshmat, R.; Mansourian, M.; Motlagh, M.E.; Ziaodini, H.; Taheri, M.; Ahadi, Z.; Aminaee, T.; Goodarzi, A.; Mansourian, M.; et al. Association of dietary patterns with continuous metabolic syndrome in children and adolescents; a nationwide propensity score-matched analysis: The CASPIAN-V study. Diabetol. Metab. Syndr. 2018, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.A.; Kartashov, A.I.; Ebbeling, C.B.; Van Horn, L.; Slattery, M.L.; Jacobs, D.R., Jr.; Ludwig, D.S. Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet 2005, 365, 36–42. [Google Scholar] [CrossRef]
- Kelishadi, R.; Mansourian, M.; Heidari-Beni, M. Association of fructose consumption and components of metabolic syndrome in human studies: A systematic review and meta-analysis. Nutrition 2014, 30, 503–510. [Google Scholar] [CrossRef]
- Schmidt, K.A.; Cromer, G.; Burhans, M.S.; Kuzma, J.N.; Hagman, D.K.; Fernando, I.; Murray, M.; Utzschneider, K.M.; Holte, S.; Kraft, J.; et al. Impact of low-fat and full-fat dairy foods on fasting lipid profile and blood pressure: Exploratory endpoints of a randomized controlled trial. Am. J. Clin. Nutr. 2021, 114, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Julibert, A.; Del Mar Bibiloni, M.; Gallardo-Alfaro, L.; Abbate, M.; Martínez-González, M.; Salas-Salvadó, J.; Corella, D.; Fitó, M.; Martínez, J.A.; Alonso-Gómez, M.; et al. Metabolic Syndrome Features and Excess Weight Were Inversely Associated with Nut Consumption after 1-Year Follow-Up in the PREDIMED-Plus Study. J. Nutr. 2020, 150, 3161–3170. [Google Scholar] [CrossRef] [PubMed]
- McKeown, N.M.; Meigs, J.B.; Liu, S.; Saltzman, E.; Wilson, P.W.; Jacques, P.F. Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care 2004, 27, 538–546. [Google Scholar] [CrossRef]
- Zhang, J.G. Changes in Dietary Patterns and Their Associations with General and Central Obesity among Adults in China (1991–2009). Ph.D. Thesis, Chinese Center for Disease Control and Prevention, Beijing, China, 2013. [Google Scholar]
- Fritsch, J.; Garces, L.; Quintero, M.A.; Pignac-Kobinger, J.; Santander, A.M.; Fernández, I.; Ban, Y.J.; Kwon, D.; Phillips, M.C.; Knight, K.; et al. Low-Fat, High-Fiber Diet Reduces Markers of Inflammation and Dysbiosis and Improves Quality of Life in Patients With Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2021, 19, 1189–1199.e30. [Google Scholar] [CrossRef]
- Glynn, E.L.; Fleming, S.A.; Edwards, C.G.; Wilson, M.J.; Evans, M.; Leidy, H.J. Consuming a Protein and Fiber-Based Supplement Preload Promotes Weight Loss and Alters Metabolic Markers in Overweight Adults in a 12-Week, Randomized, Double-Blind, Placebo-Controlled Trial. J. Nutr. 2022, 152, 1415–1425. [Google Scholar] [CrossRef]
- Park, S.; Ahn, J.; Kim, N.S.; Lee, B.K. High carbohydrate diets are positively associated with the risk of metabolic syndrome irrespective to fatty acid composition in women: The KNHANES 2007–2014. Int. J. Food Sci. Nutr. 2017, 68, 479–487. [Google Scholar] [CrossRef]
- Ramdath, D.D.; Padhi, E.M.; Sarfaraz, S.; Renwick, S.; Duncan, A.M. Beyond the Cholesterol-Lowering Effect of Soy Protein: A Review of the Effects of Dietary Soy and Its Constituents on Risk Factors for Cardiovascular Disease. Nutrients 2017, 9, 324. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; He, T.; Xu, S.; Li, H.; Wu, M.; Lin, Z.; Huang, F.; Zhu, Y. Soy Food Intake Associated with Obesity and Hypertension in Children and Adolescents in Guangzhou, Southern China. Nutrients 2022, 14, 425. [Google Scholar] [CrossRef] [PubMed]
- Bhathena, S.J.; Velasquez, M.T. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am. J. Clin. Nutr. 2002, 76, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.H.; Shin, W.K.; Kim, Y. Association of Soybean Food Intake and Cardiometabolic Syndrome in Korean Women: Korea National Health and Nutrition Examination Survey (2007 to 2011). Diabetes Metab. J. 2020, 44, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Salari Moghaddam, A.; Entezari, M.H.; Iraj, B.; Askari, G.; Sharifi Zahabi, E.; Maracy, M.R. The effects of soy bean flour enriched bread intake on anthropometric indices and blood pressure in type 2 diabetic women: A crossover randomized controlled clinical trial. Int. J. Endocrinol. 2014, 2014, 240760. [Google Scholar] [CrossRef]
- Byun, M.S.; Yu, O.K.; Cha, Y.S.; Park, T.S. Korean traditional Chungkookjang improves body composition, lipid profiles and atherogenic indices in overweight/obese subjects: A double-blind, randomized, crossover, placebo-controlled clinical trial. Eur. J. Clin. Nutr. 2016, 70, 1116–1122. [Google Scholar] [CrossRef]
- Barańska, A.; Błaszczuk, A.; Polz-Dacewicz, M.; Kanadys, W.; Malm, M.; Janiszewska, M.; Jędrych, M. Effects of Soy Isoflavones on Glycemic Control and Lipid Profile in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 1886. [Google Scholar] [CrossRef]
- Lynch, H.M.; Buman, M.P.; Dickinson, J.M.; Ransdell, L.B.; Johnston, C.S.; Wharton, C.M. No Significant Differences in Muscle Growth and Strength Development When Consuming Soy and Whey Protein Supplements Matched for Leucine Following a 12 Week Resistance Training Program in Men and Women: A Randomized Trial. Int. J. Environ. Res. Public Health 2020, 17, 3871. [Google Scholar] [CrossRef]
Characteristics | Without MetS | With MetS | All |
---|---|---|---|
Sex # | |||
Male | 6171 (50.24) | 361 (3.14) | 6532 (53.38) |
Female | 6220 (44.40) | 319 (2.22) | 6539 (46.62) |
Residence area * | |||
Urban | 5745 (43.65) | 378 (2.93) | 6123 (46.58) |
Rural | 6646 (50.99) | 302 (2.42) | 6948 (53.42) |
Age group * | |||
Prepubertal | 5697 (34.89) | 254 (1.53) | 5951 (36.42) |
Pubertal | 3484 (24.66) | 216 (1.51) | 3700 (26.17) |
Post-pubertal | 3210 (35.08) | 210 (2.32) | 3420 (37.41) |
Engel’s coefficient | |||
≥60% | 209 (1.53) | 11 (0.09) | 220 (1.62) |
50–59% | 282 (2.17) | 15 (0.12) | 297 (2.29) |
40–49% | 281 (2.25) | 22 (0.18) | 303 (2.43) |
30–39% | 716 (5.38) | 40 (0.33) | 756 (5.71) |
<30% | 1844 (14.00) | 94 (0.74) | 1938 (14.74) |
Unknown | 9059 (69.32) | 498 (3.89) | 9557 (73.20) |
Physical activity | |||
0–3 days/week | 4317 (33.38) | 256 (2.07) | 4573 (35.45) |
≥4 days/week | 5240 (40.50) | 275 (2.16) | 5515 (42.67) |
Unknown | 2834 (20.75) | 149 (1.12) | 2983 (21.88) |
Smoking | |||
Everyday | 1375 (10.36) | 78 (0.62) | 1453 (10.98) |
4–6 days/week | 525 (4.19) | 30 (0.26) | 555 (4.44) |
1–3 days/week | 1674 (13.08) | 87 (0.70) | 1761 (13.78) |
<1 day/week | 1831 (14.96) | 105 (0.87) | 1936 (15.83) |
No | 6986 (52.06) | 380 (2.91) | 7366 (54.97) |
Alcohol drinking | |||
Within 30 days | 509 (4.95) | 27 (0.29) | 536 (5.23) |
30 days ago | 1155 (11.09) | 64 (0.63) | 1219 (11.71) |
Never | 10,727 (78.61) | 589 (4.44) | 11,316 (83.05) |
All | 12,391 (94.64) | 680 (5.36) | 13,071 |
Characteristics | DP1 | DP2 | DP3 | DP4 | DP5 |
---|---|---|---|---|---|
Sex * | |||||
Male | 1298 (10.35) | 1050 (8.59) | 1183 (9.28) | 1618 (13.33) | 1383 (11.82) |
Female | 1294 (8.89) | 1066 (7.73) | 1437 (10.11) | 1547 (11.05) | 1195 (8.84) |
Residence area * | |||||
Urban | 1678 (12.33) | 765 (6.05) | 1461 (10.57) | 1178 (9.16) | 1041 (8.47) |
Rural | 914 (6.92) | 1351 (10.27) | 1159 (8.83) | 1987 (15.22) | 1537 (12.18) |
Age group * | |||||
Prepubertal | 1259 (7.53) | 966 (6.01) | 1324 (7.93) | 1440 (8.97) | 962 (5.98) |
Pubertal | 761 (5.22) | 588 (4.25) | 660 (4.51) | 890 (6.37) | 801 (5.82) |
Post-pubertal | 572 (6.49) | 562 (6.07) | 636 (6.95) | 835 (9.04) | 815 (8.86) |
Engel’s coefficient * | |||||
≥60% | 53 (0.36) | 30 (0.23) | 34 (0.23) | 44 (0.32) | 59 (0.48) |
50–59% | 54 (0.42) | 57 (0.44) | 58 (0.44) | 64 (0.48) | 64 (0.52) |
40–49% | 60 (0.45) | 62 (0.53) | 53 (0.43) | 63 (0.49) | 65 (0.54) |
30–39% | 149 (1.06) | 131 (1.01) | 175 (1.25) | 156 (1.17) | 145 (1.22) |
<30% | 323 (2.45) | 349 (2.69) | 406 (2.97) | 516 (3.93) | 344 (2.70) |
Unknown | 1953 (14.51) | 1487 (11.43) | 1894 (14.07) | 2322 (17.99) | 1901 (15.20) |
Physical activity * | |||||
0–3 days/week | 938 (7.07) | 703 (5.43) | 931 (7.01) | 1046 (8.19) | 955 (7.74) |
≥4 days/week | 1182 (8.77) | 866 (6.92) | 1136 (8.47) | 1315 (10.30) | 1016 (8.22) |
Unknown | 472 (3.41) | 547 (3.97) | 553 (3.91) | 804 (5.89) | 607 (4.70) |
Smoking * | |||||
Everyday | 311 (2.31) | 209 (1.55) | 300 (2.20) | 349 (2.68) | 284 (2.23) |
4–6 days/week | 93 (0.71) | 87 (0.67) | 125 (1.01) | 133 (1.10) | 117 (0.95) |
1–3 days/week | 335 (2.57) | 302 (2.33) | 300 (2.25) | 412 (3.24) | 412 (3.39) |
<1 day/week | 374 (2.95) | 334 (2.81) | 396 (3.07) | 437 (3.60) | 395 (3.38) |
No | 1479 (10.70) | 1184 (8.96) | 1499 (10.86) | 1834 (13.75) | 1370 (10.70) |
Alcohol drinking * | |||||
Within 30 days | 95 (0.96) | 105 (0.98) | 96 (0.93) | 103 (1.01) | 137 (1.35) |
30 days ago | 241 (2.30) | 203 (1.89) | 216 (2.11) | 257 (2.44) | 302 (2.97) |
Never | 2256 (15.98) | 1808 (13.45) | 2308 (16.35) | 2805 (20.93) | 2139 (16.34) |
All | 2592 (19.24) | 2116 (16.32) | 2620 (19.39) | 3165 (24.38) | 2578 (20.66) |
DP | MetS | Abdominal Obesity | Elevated FBG | Elevated BP | High TG | Low HDL-C |
---|---|---|---|---|---|---|
OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) | |
DP1 | ||||||
Q1 | ref | ref | ref | ref | ref | ref |
Q2 | 1.256 (1.003, 1.572) | 1.094 (0.954, 1.254) | 1.020 (0.693, 1.502) | 1.045 (0.945, 1.156) | 0.994 (0.870, 1.136) | 0.857 (0.737, 0.997) |
Q3 | 1.225 (0.975, 1.538) | 1.036 (0.901, 1.190) | 0.827 (0.550, 1.244) | 1.020 (0.920, 1.130) | 1.023 (0.894, 1.171) | 0.668 (0.569, 0.784) |
Q4 | 1.079 (0.851, 1.367) | 1.028 (0.893, 1.183) | 0.893 (0.592, 1.349) | 0.980 (0.882, 1.089) | 1.030 (0.897, 1.183) | 0.627 (0.530, 0.741) |
p for trend | 0.1546 | 0.5018 | 0.5009 | 0.9304 | 0.7114 | <0.0001 |
DP2 | ||||||
Q1 | ref | ref | ref | ref | ref | ref |
Q2 | 0.922 (0.744, 1.143) | 0.868 (0.761, 0.991) | 0.709 (0.481, 1.045) | 0.981 (0.887, 1.084) | 0.951 (0.833, 1.085) | 0.940 (0.801, 1.103) |
Q3 | 0.882 (0.708, 1.097) | 0.914 (0.801, 1.043) | 0.681 (0.457, 1.013) | 0.897 (0.810, 0.992) | 0.920 (0.805, 1.051) | 0.883 (0.750, 1.039) |
Q4 | 0.920 (0.737, 1.147) | 0.819 (0.713, 0.939) | 0.902 (0.618, 1.315) | 0.946 (0.855, 1.048) | 0.933 (0.816, 1.067) | 1.172 (1.002, 1.370) |
p for trend | 0.2905 | 0.0067 | 0.1350 | 0.1197 | 0.2096 | 0.6832 |
DP3 | ||||||
Q1 | ref | ref | ref | ref | ref | ref |
Q2 | 1.226 (0.973, 1.543) | 1.184 (1.024, 1.368) | 1.403 (0.955, 2.063) | 1.093 (0.987, 1.211) | 1.128 (0.985, 1.292) | 0.972 (0.829, 1.140) |
Q3 | 1.191 (0.942, 1.505) | 1.345 (1.166, 1.553) | 0.840 (0.541, 1.304) | 1.026 (0.925, 1.138) | 1.126 (0.981, 1.292) | 1.054 (0.899, 1.236) |
Q4 | 1.367 (1.079, 1.732) | 1.536 (1.329, 1.776) | 1.176 (0.769, 1.799) | 1.087 (0.977, 1.210) | 1.156 (1.003, 1.332) | 0.833 (0.700, 0.991) |
p for trend | 0.0159 | <0.0001 | 0.6634 | 0.1487 | 0.0287 | 0.2733 |
DP4 | ||||||
Q1 | ref | ref | ref | ref | ref | ref |
Q2 | 1.012 (0.805, 1.272) | 0.915 (0.795, 1.053) | 1.392 (0.945, 2.050) | 1.033 (0.933, 1.143) | 1.046 (0.914, 1.198) | 1.104 (0.935, 1.304) |
Q3 | 1.119 (0.893, 1.403) | 1.107 (0.965, 1.271) | 0.969 (0.635, 1.480) | 1.025 (0.925, 1.135) | 1.049 (0.915, 1.202) | 1.243 (1.054, 1.465) |
Q4 | 1.315 (1.057, 1.636) | 1.357 (1.188, 1.551) | 1.157 (0.769, 1.741) | 1.100 (0.993, 1.218) | 1.165 (1.019, 1.332) | 1.371 (1.166, 1.612) |
p for trend | 0.0651 | 0.0030 | 0.5030 | 0.1637 | 0.0843 | 0.0005 |
DP5 | ||||||
Q1 | ref | ref | ref | ref | ref | ref |
Q2 | 0.993 (0.798, 1.235) | 0.960 (0.837, 1.100) | 1.055 (0.717, 1.553) | 0.970 (0.875, 1.075) | 1.124 (0.979, 1.290) | 0.985 (0.836, 1.160) |
Q3 | 0.889 (0.708, 1.117) | 0.995 (0.867, 1.143) | 0.965 (0.645, 1.446) | 0.910 (0.820, 1.011) | 1.182 (1.029, 1.357) | 0.942 (0.797, 1.113) |
Q4 | 0.837 (0.669, 1.048) | 0.862 (0.751, 0.989) | 0.724 (0.472, 1.112) | 0.957 (0.864, 1.060) | 1.047 (0.912, 1.201) | 0.935 (0.792, 1.102) |
p for trend | 0.1725 | 0.1565 | 0.3482 | 0.1839 | 0.0991 | 0.4296 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Fang, H.; Guo, Q.; Yu, D.; Ju, L.; Cheng, X.; Piao, W.; Xu, X.; Li, Z.; Mu, D.; et al. Association of Dietary Patterns with Metabolic Syndrome in Chinese Children and Adolescents Aged 7–17: The China National Nutrition and Health Surveillance of Children and Lactating Mothers in 2016–2017. Nutrients 2022, 14, 3524. https://doi.org/10.3390/nu14173524
Shi J, Fang H, Guo Q, Yu D, Ju L, Cheng X, Piao W, Xu X, Li Z, Mu D, et al. Association of Dietary Patterns with Metabolic Syndrome in Chinese Children and Adolescents Aged 7–17: The China National Nutrition and Health Surveillance of Children and Lactating Mothers in 2016–2017. Nutrients. 2022; 14(17):3524. https://doi.org/10.3390/nu14173524
Chicago/Turabian StyleShi, Jia, Hongyun Fang, Qiya Guo, Dongmei Yu, Lahong Ju, Xue Cheng, Wei Piao, Xiaoli Xu, Zizi Li, Di Mu, and et al. 2022. "Association of Dietary Patterns with Metabolic Syndrome in Chinese Children and Adolescents Aged 7–17: The China National Nutrition and Health Surveillance of Children and Lactating Mothers in 2016–2017" Nutrients 14, no. 17: 3524. https://doi.org/10.3390/nu14173524
APA StyleShi, J., Fang, H., Guo, Q., Yu, D., Ju, L., Cheng, X., Piao, W., Xu, X., Li, Z., Mu, D., Zhao, L., & He, L. (2022). Association of Dietary Patterns with Metabolic Syndrome in Chinese Children and Adolescents Aged 7–17: The China National Nutrition and Health Surveillance of Children and Lactating Mothers in 2016–2017. Nutrients, 14(17), 3524. https://doi.org/10.3390/nu14173524