Impact of Early Nutrient Intake and First Year Growth on Neurodevelopment of Very Low Birth Weight Newborns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Nutritional Practices
2.3. Anthropometric Measurements
2.4. Neurodevelopment
2.5. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. First Year Growth and Neurodevelopment
3.3. Relationship between Nutrition, Growth, and Neurodevelopment
4. Discussion
4.1. First Year Growth and Neurodevelopment
4.2. Early Nutrient Intake and Neurodevelopment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horbar, J.D.; Ehrenkranz, R.A.; Badger, G.J.; Edwards, E.M.; Morrow, K.A.; Soll, R.F.; Buzas, J.S.; Bertino, E.; Gagliardi, L.; Bellù, R. Weight Growth Velocity and Postnatal Growth Failure in Infants 501 to 1500 Grams: 2000–2013. Pediatrics 2015, 136, e84–e92. [Google Scholar] [CrossRef]
- Marlow, N.; Ni, Y.; Lancaster, R.; Suonpera, E.; Bernardi, M.; Fahy, A.; Larsen, J.; Trickett, J.; Hurst, J.R.; Morris, J.; et al. No change in neurodevelopment at 11 years after extremely preterm birth. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, F418–F424. [Google Scholar] [CrossRef]
- Aarnoudse-Moens, C.S.H.; Weisglas-Kuperus, N.; Van Goudoever, J.B.; Oosterlaan, J. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics 2009, 124, 717–728. [Google Scholar] [CrossRef]
- Villar, J.; Restrepo-Méndez, M.C.; McGready, R.; Barros, F.C.; Victora, C.G.; Munim, S.; Papageorghiou, A.T.; Ochieng, R.; Craik, R.; Barsosio, H.C.; et al. Association between Preterm-Birth Phenotypes and Differential Morbidity, Growth, and Neurodevelopment at Age 2 Years. JAMA Pediatr. 2021, 175, 483. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.; Hennessy, E.M.; Myles, J.; Johnson, S.; Draper, E.; Costeloe, K.L.; Marlow, N. Neurological and developmental outcome in extremely preterm children born in England in 1995 and 2006: The EPICure studies. BMJ 2012, 345, e7961. [Google Scholar] [CrossRef] [PubMed]
- Ehrenkranz, R.A.; Dusick, A.M.; Vohr, B.R.; Wright, L.L.; Wrage, L.A.; Poole, W.K. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 2006, 117, 1253–1261. [Google Scholar] [CrossRef]
- Gallini, F.; Coppola, M.; De Rose, D.U.; Maggio, L.; Arena, R.; Romano, V.; Cota, F.; Ricci, D.; Romeo, D.M.; Mercuri, E.M.; et al. Neurodevelopmental outcomes in very preterm infants: The role of severity of Bronchopulmonary Dysplasia. Early Hum. Dev. 2021, 152, 105275. [Google Scholar] [CrossRef]
- Malavolti, A.M.; Bassler, D.; Arlettaz-Mieth, R.; Faldella, G.; Latal, B.; Natalucci, G. Bronchopulmonary dysplasia-impact of severity and timing of diagnosis on neurodevelopment of preterm infants: A retrospective cohort study. BMJ Paediatr. Open 2018, 2, e000165. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.S.; Kim, E.-K.; Shin, S.H.; Choi, Y.-H.; Jung, Y.H.; Kim, S.Y.; Koh, J.W.; Choi, E.K.; Cheon, J.-E.; Kim, H.-S. Factors associated with neurodevelopment in preterm infants with systematic inflammation. BMC Pediatr. 2021, 21, 114. [Google Scholar] [CrossRef]
- Ortgies, T.; Rullmann, M.; Ziegelhöfer, D.; Bläser, A.; Thome, U.H. The role of early-onset-sepsis in the neurodevelopment of very low birth weight infants. BMC Pediatr. 2021, 21, 289. [Google Scholar] [CrossRef]
- Greenbury, S.F.; Angelini, E.D.; Ougham, K.; Battersby, C.; Gale, C.; Uthaya, S.; Modi, N. Birthweight and patterns of postnatal weight gain in very and extremely preterm babies in England and Wales, 2008–2019: A cohort study. Lancet Child Adolesc. Health 2021, 5, 719–728. [Google Scholar] [CrossRef]
- Ong, K.K.; Kennedy, K.; Castañeda-Gutiérrez, E.; Forsyth, S.; Godfrey, K.M.; Koletzko, B.; Latulippe, M.E.; Ozanne, S.E.; Rueda, R.; Schoemaker, M.H.; et al. Postnatal growth in preterm infants and later health outcomes: A systematic review. Acta Paediatr. Int. J. Paediatr. 2015, 104, 974–986. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-S.; Han, J.; Shin, J.E.; Lee, S.M.; Eun, H.S.; Park, M.-S.; Park, K.-I.; Namgung, R. Postdischarge growth assessment in very low birth weight infants. Korean J. Pediatr. 2017, 60, 64–69. [Google Scholar] [CrossRef]
- Niklasson, A.; Albertsson-Wikland, K. Continuous growth reference from 24th week of gestation to 24 months by gender. BMC Pediatr. 2008, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Fenton, T.R.; Kim, J.H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013, 13, 59. [Google Scholar] [CrossRef]
- Roelants, J.A.; Vlaardingerbroek, H.; van den Akker, C.H.P.; de Jonge, R.C.J.; van Goudoever, J.B.; Vermeulen, M.J. Two-Year Follow-up of a Randomized Controlled Nutrition Intervention Trial in Very Low-Birth-Weight Infants. J. Parenter. Enter. Nutr. 2018, 42, 122–131. [Google Scholar] [CrossRef]
- Yang, J.; Chang, S.S.Y.; Poon, W.B. Relationship Between Amino Acid and Energy Intake and Long-Term Growth and Neurodevelopmental Outcomes in Very Low Birth Weight Infants. J. Parenter. Enter. Nutr. 2016, 40, 820–826. [Google Scholar] [CrossRef]
- Burattini, I.; Bellagamba, M.P.; Spagnoli, C.; D’Ascenzo, R.; Mazzoni, N.; Peretti, A.; Cogo, P.E.; Carnielli, V.P. Targeting 2.5 versus 4 g/kg/day of amino acids for extremely low birth weight infants: A randomized clinical trial. J. Pediatr. 2013, 163, 1278–1282.e1. [Google Scholar] [CrossRef]
- Mihatsch, W.A.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; Carnielli, V.; ESPGHAN/ESPEN/ESPR/CSPEN Working Group on Pediatric Parenteral Nutrition. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition. Clin. Nutr. 2018, 37, 2303–2305. [Google Scholar] [CrossRef]
- Moltu, S.J.; Bronsky, J.; Embleton, N.; Gerasimidis, K.; Indrio, F.; Köglmeier, J.; de Koning, B.; Lapillonne, A.; Norsa, L.; Verduci, E.; et al. Nutritional Management of the Critically Ill Neonate: A Position Paper of the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2021, 73, 274–289. [Google Scholar] [CrossRef]
- Coviello, C.; Keunen, K.; Kersbergen, K.J.; Groenendaal, F.; Leemans, A.; Peels, B.; Isgum, I.; Viergever, M.A.; De Vries, L.S.; Buonocore, G.; et al. Effects of early nutrition and growth on brain volumes, white matter microstructure, and neurodevelopmental outcome in preterm newborns. Pediatr. Res. 2018, 83, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Terrin, G.; Boscarino, G.; Gasparini, C.; Di Chiara, M.; Faccioli, F.; Onestà, E.; Parisi, P.; Spalice, A.; De Nardo, M.C.; Dito, L.; et al. Energy-enhanced parenteral nutrition and neurodevelopment of preterm newborns: A cohort study. Nutrition 2021, 89, 111219. [Google Scholar] [CrossRef]
- Boscarino, G.; Di Chiara, M.; Cellitti, R.; De Nardo, M.C.; Conti, M.G.; Parisi, P.; Spalice, A.; Di Mario, C.; Ronchi, B.; Russo, A.; et al. Effects of early energy intake on neonatal cerebral growth of preterm newborn: An observational study. Sci. Rep. 2021, 11, 18457. [Google Scholar] [CrossRef]
- Cormack, B.E.; Jiang, Y.; Harding, J.E.; Crowther, C.A.; Bloomfield, F.H. Relationships between Neonatal Nutrition and Growth to 36 Weeks’ Corrected Age in ELBW Babies—Secondary Cohort Analysis from the Provide Trial. Nutrients 2020, 12, 760. [Google Scholar] [CrossRef]
- Boscarino, G.; Conti, M.G.; Di Chiara, M.; Bianchi, M.; Onestà, E.; Faccioli, F.; Deli, G.; Repole, P.; Oliva, S.; Cresi, F.; et al. Early enteral feeding improves tolerance of parenteral nutrition in preterm newborns. Nutrients 2021, 13, 3886. [Google Scholar] [CrossRef] [PubMed]
- Boscarino, G.; Conti, M.G.; Gasparini, C.; Onestà, E.; Faccioli, F.; Dito, L.; Regoli, D.; Spalice, A.; Parisi, P.; Terrin, G. Neonatal hyperglycemia related to parenteral nutrition affects long-term neurodevelopment in preterm newborn: A prospective cohort study. Nutrients 2021, 13, 1930. [Google Scholar] [CrossRef]
- Hay, W.W. Optimizing nutrition of the preterm infant. Chin. J. Contemp. Pediatr. 2017, 19, 1–21. [Google Scholar] [CrossRef]
- Thoene, M.; Anderson-Berry, A. Early enteral feeding in preterm infants: A narrative review of the nutritional, metabolic, and developmental benefits. Nutrients 2021, 13, 2289. [Google Scholar] [CrossRef]
- Lucas, A.; Fewtrell, M.S.; Morley, R.; Lucas, P.J.; Baker, B.A.; Lister, G.; Bishop, N.J. Randomized outcome trial of human milk fortification and developmental outcome in preterm infants. Am. J. Clin. Nutr. 1996, 64, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Biasini, A.; Monti, F.; Laguardia, M.C.; Stella, M.; Marvulli, L.; Neri, E. High protein intake in human/maternal milk fortification for ≤1250 gr infants: Intrahospital growth and neurodevelopmental outcome at two years. Acta Biomed. 2017, 88, 470–476. [Google Scholar]
- Amissah, E.A.; Brown, J.; Harding, J.E. Protein supplementation of human milk for promoting growth in preterm infants. Cochrane Database Syst. Rev. 2020, 9, CD000433. [Google Scholar] [CrossRef] [PubMed]
- Amissah, E.A.; Brown, J.; Harding, J.E. Carbohydrate supplementation of human milk to promote growth in preterm infants. Cochrane Database Syst. Rev. 2020, 9, CD000280. [Google Scholar] [CrossRef]
- Amissah, E.A.; Brown, J.; Harding, J.E. Fat supplementation of human milk for promoting growth in preterm infants. Cochrane Database Syst. Rev. 2020, 8, CD000341. [Google Scholar] [CrossRef]
- Brinkis, R.; Albertsson-Wikland, K.; Tamelienė, R.; Vinskaitė, A.; Šmigelskas, K.; Verkauskienė, R. Nutrient Intake with Early Progressive Enteral Feeding and Growth of Very Low-Birth-Weight Newborns. Nutrients 2022, 14, 1181. [Google Scholar] [CrossRef]
- Agostoni, C.; Buonocore, G.; Carnielli, V.P.; De Curtis, M.; Darmaun, D.; Decsi, T.; Domellöf, M.; Embleton, N.D.; Fusch, C.; Genzel-Boroviczeny, O.; et al. Enteral Nutrient Supply for Preterm Infants: Commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Brinkis, R.; Albertsson-Wikland, K.; Tamelienė, R.; Vinskaitė, A.; Šmigelskas, K.; Verkauskienė, R. Reply to Manzar, S. Comment on “Brinkis et al. Nutrient Intake with Early Progressive Enteral Feeding and Growth of Very Low-Birth-Weight Newborns. Nutrients 2022, 14, 1181”. Nutrients 2022, 14, 2653. [Google Scholar] [CrossRef]
- The International Fetal and Newborn Growth Consortium International Fetal and Newborn Growth Standards for the 21st Century Anthropometry Handbook. 2012. Available online: https://www.medscinet.net/Interbio/Uploads/ProtocolDocs/Draft%20Anthropometry%20Handbook.pdf (accessed on 29 November 2021).
- Bayley, N. Bayley Scales of Infant Development: Manual; The Psychological Corporation: New York, NY, USA, 1993. [Google Scholar]
- Chou, J.H.; Roumiantsev, S.; Singh, R. PediTools electronic growth chart calculators: Applications in clinical care, research, and quality improvement. J. Med. Internet Res. 2020, 22, e16204. [Google Scholar] [CrossRef] [PubMed]
- Onis, M. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr. 2007, 95, 76–85. [Google Scholar]
- Goldberg, D.L.; Becker, P.J.; Brigham, K.; Carlson, S.; Fleck, L.; Gollins, L.; Sandrock, M.; Fullmer, M.; Van Poots, H.A. Identifying Malnutrition in Preterm and Neonatal Populations: Recommended Indicators. J. Acad. Nutr. Diet. 2018, 118, 1571–1582. [Google Scholar] [CrossRef]
- Singhal, A. Long-Term Adverse Effects of Early Growth Acceleration or Catch-Up Growth. Ann. Nutr. Metab. 2017, 70, 236–240. [Google Scholar] [CrossRef]
- Belfort, M.B.; Ehrenkranz, R.A. Neurodevelopmental outcomes and nutritional strategies in very low birth weight infants. Semin. Fetal Neonatal Med. 2017, 22, 42–48. [Google Scholar] [CrossRef]
- Shim, S.Y.; Ahn, H.M.; Cho, S.J.; Park, E.A. Early aggressive nutrition enhances language development in very low-birthweight infants. Pediatr. Int. 2014, 56, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Tottman, A.C.; Alsweiler, J.M.; Bloomfield, F.H.; Gamble, G.D.; Jiang, Y.; Leung, M.; Poppe, T.; Thompson, B.; Wouldes, T.A.; Harding, J.E.; et al. Relationships between Early Neonatal Nutrition and Neurodevelopment at School Age in Children Born Very Preterm. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 72–78. [Google Scholar] [CrossRef]
- Gonzalez Villamizar, J.D.; Haapala, J.L.; Scheurer, J.M.; Rao, R.; Ramel, S.E. Relationships between Early Nutrition, Illness, and Later Outcomes among Infants Born Preterm with Hyperglycemia. J. Pediatr. 2020, 223, 29–33.e2. [Google Scholar] [CrossRef]
- Belfort, M.B.; Anderson, P.J.; Nowak, V.A.; Lee, K.J.; Molesworth, C.; Thompson, D.K.; Doyle, L.W.; Inder, T.E. Breast Milk Feeding, Brain Development, and Neurocognitive Outcomes: A 7-Year Longitudinal Study in Infants Born at Less Than 30 Weeks’ Gestation. J. Pediatr. 2016, 177, 133–139.e1. [Google Scholar] [CrossRef] [PubMed]
- Belfort, M.; Cherkerzian, S.; Bell, K.; Soldateli, B.; Ramos, E.C.; Palmer, C.; Steele, T.; Pepin, H.; Ellard, D.; Drouin, K.; et al. Macronutrient intake from human milk, infant growth, and body composition at term equivalent age: A longitudinal study of hospitalized very preterm infants. Nutrients 2020, 12, 2249. [Google Scholar] [CrossRef]
- Collins, C.T.; Gibson, R.A.; Miller, J.; McPhee, A.J.; Willson, K.; Smithers, L.G.; Makrides, M. Carbohydrate intake is the main determinant of growth in infants born <33 weeks’ gestation when protein intake is adequate. Nutrition 2008, 24, 451–457. [Google Scholar] [CrossRef]
- Hortensius, L.M.; Janson, E.; van Beek, P.E.; Groenendaal, F.; Claessens, N.H.P.; de Veye, H.F.N.S.; Eijsermans, M.J.C.; Koopman-Esseboom, C.; Dudink, J.; van Elburg, R.M.; et al. Nutritional intake, white matter integrity, and neurodevelopment in extremely preterm born infants. Nutrients 2021, 13, 3409. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.; Fumeaux, C.J.F.; Duerden, E.G.; Guo, T.; Foong, J.; Graz, M.B.; Hagmann, P.; Chakravarty, M.M.; Hüppi, P.S.; Beauport, L.; et al. Nutrient intake in the first two weeks of life and brain growth in preterm neonates. Pediatrics 2018, 141, e20172169. [Google Scholar] [CrossRef]
- Pang, W.W.; Tan, P.T.; Cai, S.; Fok, D.; Chua, M.C.; Lim, S.B.; Shek, L.P.; Chan, S.-Y.; Tan, K.H.; Yap, F.; et al. Nutrients or nursing? Understanding how breast milk feeding affects child cognition. Eur. J. Nutr. 2020, 59, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Rozé, J.-C.; Darmaun, D.; Boquien, C.-Y.; Flamant, C.; Picaud, J.-C.; Savagner, C.; Claris, O.; Lapillonne, A.; Mitanchez, D.; Branger, B.; et al. The apparent breastfeeding paradox in very preterm infants: Relationship between breast feeding, early weight gain and neurodevelopment based on results from two cohorts, EPIPAGE and LIFT. BMJ Open 2012, 2, e000834. [Google Scholar] [CrossRef] [PubMed]
- Picciolini, O.; Squarza, C.; Fontana, C.; Giannì, M.L.; Cortinovis, I.; Gangi, S.; Gardon, L.; Presezzi, G.; Fumagalli, M.; Mosca, F. Neurodevelopmental outcome of extremely low birth weight infants at 24 months corrected age: A comparison between Griffiths and Bayley Scales. BMC Pediatr. 2015, 15, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | Returned to Follow-Up (n = 95) | No Follow-Up (n = 14) | p | |
---|---|---|---|---|
Birth weight, g | 1134 (930–1300) | 1194 (1022–1322) | 0.562 | |
Gestational age, weeks | 28 (26–29) | 28.5 (27.5–30) | 0.39 | |
Male, n (%) | 48 (50.5) | 3 (21) | 0.042 | |
Female, n (%) | 47 (49.5) | 11 (79) | ||
Apgar score | 1 min. | 7 (5–8) | 8 (5–8) | 0.672 |
5 min. | 8 (7–9) | 8 (8–9) | 0.690 | |
IVH ≥ III, n (%) | 4 (4.2) | 1 (7.1) | 0.624 | |
Sepsis, n (%) * | 33 (34.7) | 2 (14.3) | 0.126 | |
NEC, n (%) | 3 (3.2) | 0 (0) | N/A | |
BPD, n (%) | 7 (7.4) | 0 (0) | N/A |
Characteristics | Extremely Preterm (n = 41) | Very/Moderately Preterm (n = 53) | p |
---|---|---|---|
Growth before discharge | |||
Weight SDS at birth | −0.58 (−1.59–0.11) | −1.29 (−2.66–−0.64) | 0.002 |
Length SDS at birth | −1.42 (−2.77–−0.44) | −1.77 (−3.34–−0.86) | 0.109 |
HC SDS at birth | −0.95 (−1.57–−0.22) | −0.97 (−1.61–−0.36) | 0.499 |
Change in weight SDS birth to discharge | −0.44 (−1.08–0.30) | 0.01 (−0.48–0.61) | 0.007 |
Change in length SDS birth to discharge | −0.06 (−0.85–0.84) | 0.32 (−0.42–0.96) | 0.151 |
Change in HC SDS birth to discharge | −0.06 (−0.05–0.43) | 0.38 (−0.29–0.89) | 0.021 |
Weight SDS at discharge | −1.16 (−2.12–−0.31) | −1.34 (−2.50–−0.62) | 0.199 |
Length SDS at discharge | −1.70 (−2.38–−0.42) | −1.25 (−2.64–−0.61) | 0.775 |
HC SDS at discharge | −1.05 (−1.72–−0.23) | −0.75 (−1.28–−0.06) | 0.151 |
Growth after discharge | |||
Change in weight SDS discharge to 12 months CGA | −0.05 (−0.86–0.71) | 0.45 (−0.28–1.35) | 0.07 |
Change in length SDS discharge to 12 months CGA | 1.36 (0.78–2.17) | 1.78 (0.51–2.64) | 0.462 |
Change in HC SDS discharge to 12 months CGA | 0.25 (−0.23–1.28) | 0.18 (−0.34–0.89) | 0.435 |
Weight SDS at 12 months CGA | −0.96 (−2.12–−0.08) | −1.18 (−1.98–−0.35) | 0.645 |
Length SDS at 12 months CGA | 0.32 (−0.89–0.90) | −0.03 (−0.63–0.87) | 0.945 |
HC SDS at 12 months CGA | −0.63 (−1.31–0.53) | −0.54 (−0.94–0.19) | 0.623 |
Weight at 12 months CGA, g Boys Girls | 9500 (8630–10,400) 8965 (7690–9883) | 9480 (8415–10,110) 8700 (8100–9595) | 0.536 0.784 |
Length at 12 months CGA, cm Boys Girls | 77.8 (74.0–79.0) 75.0 (72.4–77.0) | 77.0 (75–78.8) 74.0 (73.0–77.0) | 0.992 0.809 |
HC at 12 months CGA, cm Boys Girls | 46.5 (45.5–48.0) 45.7 (44.9–47.0) | 46.5 (46.0–47.5) 45.3 (45.0–46.3) | 0.526 0.739 |
Nutrition | |||
Duration of parenteral nutrition, days | 7 (6–9) | 5 (4–6) | <0.001 |
HM fortification started, days after birth | 9 (7–11) | 7 (6–8) | <0.001 |
Total protein, g/kg/day | 3.1 (2.9–3.4) | 3.2 (2.9–3.4) | 0.747 |
Total carbohydrates, g/kg/day | 13.3 (11.5–14.1) | 13.0 (12.4–13.8) | 0.863 |
Total fat, g/kg/day | 5.1 (4.6–5.9) | 5.0 (4.4–5.6) | 0.641 |
Total energy, kcal/kg/day | 115 (102–125) | 114 (107–121) | 0.839 |
Neurodevelopment at 12 months CGA | |||
MDI | 94.6 (±11.4) | 94.2 (±11.6) | 0.991 |
PDI | 86.2 (±13.6) | 86.5 (±12.2) | 0.868 |
Bayley II Scores | Mental Development Index | Psychomotor Development Index | ||
---|---|---|---|---|
Extremely Preterm (n = 40 *) | Very/Moderately Preterm (n = 52 *) | Extremely Preterm (n = 40 *) | Very/Moderately Preterm (n = 53 *) | |
Normal (≥85) | 31 (75.6) | 40 (74.1) | 24 (58.5) | 29 (53.7) |
Mild (70–84) | 8 (19.5) | 11 (20.4) | 14 (34.1) | 20 (37.0) |
Moderate/severe (<70) | 2.4 (1) | 1.9 (1) | 2 (4.9) | 4 (7.4) |
Model 1 | MDI | PDI | ||||
---|---|---|---|---|---|---|
R = 0.629, R2 = 0.395 | R = 0.526, R2 = 0.277 | |||||
23–27 Weeks | B | βs | p | B | βs | p |
Sex | −3.19 | −0.14 | 0.407 | −0.50 | −0.02 | 0.921 |
Gestational age, weeks | −0.36 | −0.04 | 0.847 | 2.10 | 0.17 | 0.386 |
Birth weight SDS | −2.97 | −0.32 | 0.081 | 0.15 | 0.01 | 0.944 |
Change of weight SDS birth to discharge | −0.11 | −0.01 | 0.963 | −0.94 | −0.08 | 0.757 |
Change of length SDS birth to discharge | 1.11 | 0.14 | 0.488 | 1.99 | 0.20 | 0.341 |
Change of HC SDS birth to discharge | 1.10 | 0.07 | 0.696 | 0.85 | 0.05 | 0.817 |
Total protein, g/kg/day | −3.23 | −0.12 | 0.635 | −2.48 | −0.08 | 0.779 |
Total carbohydrates, g/kg/day | 4.12 | 0.60 | 0.017 | 2.20 | 0.27 | 0.308 |
Total fat, g/kg/day | 0.52 | 0.04 | 0.838 | 2.58 | 0.17 | 0.434 |
MDI | PDI | |||||
R = 0.376, R2 = 0.142 | R = 0.396, R2 = 0.156 | |||||
28–34 Weeks | B | βs | p | B | βs | p |
Sex | 4.92 | 0.21 | 0.207 | −0.27 | −0.01 | 0.946 |
Gestational age, weeks | −1.14 | −0.16 | 0.619 | −0.33 | −0.05 | 0.887 |
Birth weight SDS | −2.35 | −0.31 | 0.373 | −0.88 | −0.11 | 0.741 |
Change of weight SDS birth to discharge | −1.96 | −0.13 | 0.607 | −7.38 | −0.47 | 0.063 |
Change of length SDS birth to discharge | 1.88 | 0.17 | 0.437 | 4.16 | 0.38 | 0.096 |
Change of HC SDS birth to discharge | 2.19 | 0.14 | 0.475 | 2.01 | 0.12 | 0.520 |
Total protein, g/kg/day | −3.76 | −0.15 | 0.538 | 6.78 | 0.25 | 0.279 |
Total carbohydrates, g/kg/day | 1.99 | 0.24 | 0.344 | 0.47 | 0.06 | 0.827 |
Total fat, g/kg/day | −1.19 | −0.11 | 0.590 | −1.24 | −0.11 | 0.581 |
Model 2 | MDI | PDI | ||||
---|---|---|---|---|---|---|
R = 0.648, R2 = 0.420 | R = 0.602, R2 = 0.362 | |||||
23–27 Weeks | B | βs | p | B | βs | p |
Sex | −2.58 | −0.11 | 0.476 | 1.12 | 0.04 | 0.804 |
Gestational age, weeks | 0.88 | 0.09 | 0.644 | 3.32 | 0.27 | 0.167 |
Birth weight SDS | −2.08 | −0.22 | 0.218 | 2.31 | 0.21 | 0.273 |
Change of weight SDS discharge to 12 months | −2.02 | −0.29 | 0.300 | −0.62 | −0.08 | 0.797 |
Change of length SDS discharge to 12 months | 1.67 | 0.18 | 0.420 | 3.11 | 0.28 | 0.231 |
Change of HC SDS discharge to 12 months | 3.08 | 0.28 | 0.227 | 2.73 | 0.21 | 0.387 |
Total protein, g/kg/day | 1.96 | 0.07 | 0.767 | 6.37 | 0.20 | 0.443 |
Total carbohydrates, g/kg/day | 3.38 | 0.49 | 0.053 | 0.54 | 0.07 | 0.799 |
Total fat, g/kg/day | 0.08 | 0.01 | 0.973 | 1.07 | 0.07 | 0.722 |
MDI | PDI | |||||
R = 0.431, R2 = 0.186 | R = 0.376, R2 = 0.141 | |||||
28–34 Weeks | B | βs | p | B | βs | p |
Sex | 6.39 | 0.28 | 0.096 | 2.33 | 0.10 | 0.565 |
Gestational age, weeks | −1.18 | −0.17 | 0.566 | 1.13 | 0.16 | 0.605 |
Birth weight SDS | −2.97 | −0.39 | 0.247 | 2.09 | 0.27 | 0.444 |
Change of weight SDS discharge to 12 months | −1.99 | −0.22 | 0.331 | −1.53 | −0.16 | 0.483 |
Change of length SDS discharge to 12 months | −2.00 | −0.22 | 0.39 | −0.19 | −0.02 | 0.939 |
Change of HC SDS discharge to 12 months | 5.55 | 0.37 | 0.056 | 6.01 | 0.39 | 0.053 |
Total protein, g/kg/day | −7.02 | −0.27 | 0.248 | 2.98 | 0.11 | 0.644 |
Total carbohydrates, g/kg/day | 1.84 | 0.23 | 0.365 | 0.41 | 0.05 | 0.849 |
Total fat, g/kg/day | −1.77 | −0.16 | 0.368 | −2.97 | −0.26 | 0.161 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brinkis, R.; Albertsson-Wikland, K.; Tamelienė, R.; Aldakauskienė, I.; Rimdeikienė, I.; Marmienė, V.; Šmigelskas, K.; Verkauskienė, R. Impact of Early Nutrient Intake and First Year Growth on Neurodevelopment of Very Low Birth Weight Newborns. Nutrients 2022, 14, 3682. https://doi.org/10.3390/nu14183682
Brinkis R, Albertsson-Wikland K, Tamelienė R, Aldakauskienė I, Rimdeikienė I, Marmienė V, Šmigelskas K, Verkauskienė R. Impact of Early Nutrient Intake and First Year Growth on Neurodevelopment of Very Low Birth Weight Newborns. Nutrients. 2022; 14(18):3682. https://doi.org/10.3390/nu14183682
Chicago/Turabian StyleBrinkis, Rasa, Kerstin Albertsson-Wikland, Rasa Tamelienė, Ilona Aldakauskienė, Inesa Rimdeikienė, Vitalija Marmienė, Kastytis Šmigelskas, and Rasa Verkauskienė. 2022. "Impact of Early Nutrient Intake and First Year Growth on Neurodevelopment of Very Low Birth Weight Newborns" Nutrients 14, no. 18: 3682. https://doi.org/10.3390/nu14183682
APA StyleBrinkis, R., Albertsson-Wikland, K., Tamelienė, R., Aldakauskienė, I., Rimdeikienė, I., Marmienė, V., Šmigelskas, K., & Verkauskienė, R. (2022). Impact of Early Nutrient Intake and First Year Growth on Neurodevelopment of Very Low Birth Weight Newborns. Nutrients, 14(18), 3682. https://doi.org/10.3390/nu14183682