Higher Intake of Dairy Is Associated with Lower Cardiometabolic Risks and Metabolic Syndrome in Asian Indians
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Data Collection
2.2.1. Outcome Ascertainment
General Obesity
Metabolic Syndrome
2.2.2. Dietary Assessment
2.3. Statistical Analyses
3. Results
3.1. Characteristics of the Study Participants
3.2. Association of Total Dairy Consumption and Components of CMR
Hazards Ratio (95% Confidence Interval) | |||
---|---|---|---|
Lowest Intake Q1–Q4 | Medium Intake Q5–Q8 | Highest Intake Q9–Q10 | |
Total Dairy Products (g/Day) | 208 (116) 1.4 Cups | 411 (144) 3 Cups | 755 (228) 5 Cups |
Blood pressure (mmHg) ≥ 140/90 | 1 (ref) | 0.82 (0.63–1.08) | 0.65 (0.43–0.99) * |
BMI (kg/m2) ≥ 22.9 | 1 (ref) | 0.84 (0.66–1.08) | 0.78 (0.53–1.15) |
Waist circumference (cm) (>80: F; >90: M) | 1 (ref) | 0.87 (0.7–1.09) | 0.87 (0.62–1.24) |
Total cholesterol (>200 mg/dL) | 1 (ref) | 0.72 (0.51–1.01) | 0.70 (0.42–1.18) |
Triglyceride (>150 mg/dL) | 1 (ref) | 1.05 (0.76–1.44) | 0.74 (0.45–1.22) |
High-density lipoprotein (mg/dL) (≤40: F; ≤50: M) | 1 (ref) | 0.74 (0.59–0.93) * | 0.63 (0.43–0.92) * |
Low-density lipoprotein (>100 mg/dL) | 1 (ref) | 0.95 (0.77–1.17) | 0.83 (0.61–1.12) |
Fasting plasma glucose (>100 mg/dL) | 1 (ref) | 0.75 (0.6–0.95) * | 0.68 (0.48–0.96) * |
3.3. Association of Unfermented Dairy Consumption and Components of CMR
3.4. Association of Fermented Dairy Consumption and Components of CMR
Hazards Ratio (95% Confidence Interval) | ||||||
---|---|---|---|---|---|---|
Unfermented Dairy Products (g/Day) | Fermented Dairy Products (g/Day) | |||||
Lowest Intake Q1–Q4 | Medium Intake Q5–Q8 | Highest Intake Q9–Q10 | Lowest Intake Q1–Q4 | Medium Intake Q5–Q8 | Highest Intake Q9–Q10 | |
Dairy Product (g/Day) | 138 (86) 1 Cup | 290 (103) 2 Cups | 581 (175) 4 Cups | 11 (23) 0.1 Cup | 86 (54) 0.6 Cup | 300 (116) 2 Cups |
Blood pressure (mmHg) ≥ 140/90 | 1 (ref) | 1.01 (0.73–1.41) | 0.75 (0.45–1.27) | 1 (ref) | 0.83 (0.63–1.10) | 0.71 (0.49–1.03) |
BMI (kg/m2) ≥ 22.9 | 1 (ref) | 0.70 (0.50–0.99) | 0.52 (0.31–0.88) * | 1 (ref) | 0.83 (0.63–1.10) | 0.71 (0.49–1.03) |
WC (cm) (>80: F; >90: M) | 1 (ref) | 0.91 (0.71–1.15) | 0.89 (0.62–1.26) | 1 (ref) | 1.12 (0.92–1.37) | 1.03 (0.81–1.34) |
Total cholesterol (>200 mg/dL) | 1 (ref) | 0.78 (0.5–1.22) | 0.59 (0.3–1.16) | 1 (ref) | 10 (0.72–1.39) | 0.83 (0.54–1.28) |
Triglyceride (>150 mg/dL) | 1 (ref) | 0.83 (0.57–1.2) | 0.68 (0.38–1.22) | 1 (ref) | 1.14 (0.84–1.53) | 0.98 (0.69–1.4) |
HDL (mg/dL) (≤40: F; ≤50: M) | 1 (ref) | 1.02 (0.77–1.34) | 0.93 (0.63–1.37) | 1 (ref) | 0.86 (0.69–1.06) | 0.76 (0.57–1.01) |
LDL (>100 mg/dL) | 1 (ref) | 0.92 (0.71–1.19) | 0.77 (0.53–1.13) | 1 (ref) | 1.09 (0.9–1.33) | 0.88 (0.69–1.13) |
Fasting plasma glucose (>100 mg/dL) | 1 (ref) | 0.62 (0.44–0.88) | 0.57 (0.34–0.94) * | 1 (ref) | 0.96 (0.74–1.24) | 0.64 (0.46–0.90) * |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vimaleswaran, K.S.; Bodhini, D.; Lakshmipriya, N.; Ramya, K.; Anjana, R.M.; Sudha, V.; Lovegrove, J.A.; Kinra, S.; Mohan, V.; Radha, V. Interaction between FTO gene variants and lifestyle factors on metabolic traits in anAsian Indian population. Nutr. Metab. 2016, 13, 39. [Google Scholar] [CrossRef]
- Mohan, V.; Deepa, R. Adipocytokines and the expanding ‘Asian Indian Phenotype’. J Assoc Physicians India 2006, 54, 685–686. [Google Scholar] [PubMed]
- Mohan, V.; Deepa, R. Obesity and abdominal obesity in Asian Indians. Indian J. Med. Res. 2006, 123, 593–596. [Google Scholar]
- Gujral, U.P.; Mohan, V.; Pradeepa, R.; Deepa, M.; Anjana, R.M.; Mehta, N.K.; Gregg, E.W.; Narayan, K. Ethnic Variations in Diabetes and Prediabetes Prevalence and the roles of Insulin Resistance and β-cell Function: The CARRS and NHANES Studies. J. Clin. Transl. Endocrinol. 2016, 4, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Bhavadharini, B.; Dehghan, M.; Mente, A.; Rangarajan, S.; Sheridan, P.; Mohan, V.; Iqbal, R.; Gupta, R.; Lear, S.; Wentzel-Viljoen, E.; et al. Association of dairy consumption with metabolic syndrome, hypertension and diabetes in 147,812 individuals from 21 countries. BMJ Open Diabetes Res. Care 2020, 8, e000826. [Google Scholar] [CrossRef]
- Krishnamoorthy, Y.; Rajaa, S.; Murali, S.; Rehman, T.; Sahoo, J.; Kar, S.S. Prevalence of metabolic syndrome among adult population in India: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0240971. [Google Scholar] [CrossRef]
- Li, X.; Zhai, Y.; Zhao, J.; He, H.; Li, Y.; Liu, Y.; Feng, A.; Li, L.; Huang, T.; Xu, A.; et al. Impact of Metabolic Syndrome and It’s Components on Prognosis in Patients with Cardiovascular Diseases: A Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 704145. [Google Scholar] [CrossRef]
- Chee Cheong, K.; Lim, K.H.; Ghazali, S.M.; Teh, C.H.; Cheah, Y.K.; Baharudin, A.; Lim, H.L.; Abdul Hamid, A.M.; Mustapha, F.I.; Omar, M.A. Association of metabolic syndrome with risk of cardiovascular disease mortality and all-cause mortality among Malaysian adults: A retrospective cohort study. BMJ Open 2021, 11, e047849. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the Metabolic Syndrome. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, P.M.; Tuomilehto, J.; Rydén, L. The metabolic syndrome—What is it and how should it be managed? Eur. J. Prev. Cardiol. 2019, 26, 33–46. [Google Scholar] [CrossRef]
- Cheng, A.Y.Y.; Leiter, L.A.; Verma, S. Metabolic syndrome under fire: Weighing in on the truth. Can. J. Cardiol. 2006, 22, 379–382. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Enriquez, K.; Narvaez-Guerra, O. Discordance of metabolic syndrome and abdominal obesity prevalence according to different criteria in Andean highlanders: A community-based study. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S359–S364. [Google Scholar] [CrossRef]
- Wang, X.; Howell, D.; Tang, L.; Shao, J.; Ye, Z. Comparative study on prevalence of metabolic syndrome based on three criteria among adults in Zhejiang province, China: An observational study. BMJ Open 2020, 10, e035216. [Google Scholar] [CrossRef]
- Vimaleswaran, K.S. A nutrigenetics approach to study the impact of genetic and lifestyle factors on cardiometabolic traits in various ethnic groups: Findings from the GeNuIne Collaboration. Proc. Nutr. Soc. 2020, 79, 194–204. [Google Scholar] [CrossRef]
- Ayyappa, K.A.; Shatwan, I.; Bodhini, D.; Bramwell, L.R.; Ramya, K.; Sudha, V.; Anjana, R.M.; Lovegrove, J.A.; Mohan, V.; Radha, V.; et al. High fat diet modifies the association of lipoprotein lipase gene polymorphism with high density lipoprotein cholesterol in an Asian Indian population. Nutr. Metab. 2017, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Alsulami, S.; Aji, A.S.; Ariyasra, U.; Sari, S.R.; Tasrif, N.; Yani, F.F.; Lovegrove, J.A.; Sudji, I.R.; Lipoeto, N.I.; Vimaleswaran, K.S. Interaction between the genetic risk score and dietary protein intake on cardiometabolic traits in Southeast Asian. Genes Nutr. 2020, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, M.; Mente, A.; Rangarajan, S.; Sheridan, P.; Mohan, V.; Iqbal, R.; Gupta, R.; Lear, S.; Wentzel-Viljoen, E.; Avezum, A. Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): A prospective cohort study. Lancet 2018, 392, 2288–2297. [Google Scholar] [CrossRef]
- Drehmer, M.; Pereira, M.A.; Schmidt, M.I.; Alvim, S.; Lotufo, P.A.; Luft, V.C.; Duncan, B.B. Total and Full-Fat, but Not Low-Fat, Dairy Product Intakes are Inversely Associated with Metabolic Syndrome in Adults. J. Nutr. 2016, 146, 81–89. [Google Scholar] [CrossRef]
- Kim, J. Dairy food consumption is inversely associated with the risk of the metabolic syndrome in Korean adults. J. Hum. Nutr. Diet. 2013, 26, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Fumeron, F.; Lamri, A.; Abi Khalil, C.; Jaziri, R.; Porchay-Baldérelli, I.; Lantieri, O.; Vol, S.; Balkau, B.; Marre, M.; Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) Study Group. Dairy consumption and the incidence of hyperglycemia and the metabolic syndrome: Results from a french prospective study, Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care 2011, 34, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Yoon, Y.S.; Lee, Y.; Kim, C.-i.; Oh, S.W. Dairy product intake is inversely associated with metabolic syndrome in Korean adults: Anseong and Ansan cohort of the Korean Genome and Epidemiology Study. J. Korean Med. Sci. 2013, 28, 1482–1488. [Google Scholar] [CrossRef] [Green Version]
- Lawlor, D.A.; Ebrahim, S.; Timpson, N.; Davey Smith, G. Avoiding milk is associated with a reduced risk of insulin resistance and the metabolic syndrome: Findings from the British Women’s Heart and Health Study. Diabetes Med. 2005, 22, 808–811. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.A.; Marette, A. Novel perspectives on fermented milks and cardiometabolic health with a focus on type 2 diabetes. Nutr. Rev. 2018, 76, 16–28. [Google Scholar] [CrossRef]
- Furse, S.; Torres, A.G.; Koulman, A. Fermentation of milk into yoghurt and cheese leads to contrasting lipid and glyceride profiles. Nutrients 2019, 11, 2178. [Google Scholar] [CrossRef]
- Le Roy, C.I.; Kurilshikov, A.; Leeming, E.R.; Visconti, A.; Bowyer, R.C.E.; Menni, C.; Falchi, M.; Koutnikova, H.; Veiga, P.; Zhernakova, A.; et al. Yoghurt consumption is associated with changes in the composition of the human gut microbiome and metabolome. BMC Microbiol. 2022, 22, 39. [Google Scholar]
- Radhika, G.; Sathya, R.M.; Ganesan, A.; Saroja, R.; Vijayalakshmi, P.; Sudha, V.; Mohan, V. Dietary profile of urban adult population in South India in the context of chronic disease epidemiology (CURES-68). Public Health Nutr. 2011, 14, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Ohlan, R. Dairy Economy of India: Structural Changes in Consumption and Production. South Asia Res. 2016, 36, 241–260. [Google Scholar] [CrossRef]
- Janssen, E.; Swinnen, J. Technology adoption and value chains in developing countries: Evidence from dairy in India. Food Policy 2019, 83, 327–336. [Google Scholar] [CrossRef]
- Harikrishnan, S.; Sarma, S.; Sanjay, G.; Jeemon, P.; Krishnan, M.N.; Venugopal, K.; Mohanan, P.P.; Jeyaseelan, L.; Thankappan, K.R.; Zachariah, G. Prevalence of metabolic syndrome and its risk factors in Kerala, South India: Analysis of a community based cross-sectional study. PLoS ONE 2018, 13, e0192372. [Google Scholar] [CrossRef] [PubMed]
- Khan, Y.; Lalchandani, A.; Gupta, A.C.; Khadanga, S.; Kumar, S. Prevalence of metabolic syndrome crossing 40% in Northern India: Time to act fast before it runs out of proportions. J. Fam. Med. Prim. Care 2018, 7, 118–123. [Google Scholar]
- International Institute for Population Sciences (IIPS). National Family Health Survey (NFHS-5), 2019–2021: India. Available online: https://dhsprogram.com/pubs/pdf/FR375/FR375.pdf (accessed on 6 June 2022).
- Deepa, M.; Pradeepa, R.; Rema, M.; Mohan, A.; Deepa, R.; Shanthirani, S.; Mohan, V. The Chennai Urban Rural Epidemiology Study (CURES)--study design and methodology (urban component) (CURES-I). J Assoc Physicians India 2003, 51, 863–870. [Google Scholar]
- Bodhini, D.; Gaal, S.; Shatwan, I.; Ramya, K.; Ellahi, B.; Surendran, S.; Sudha, V.; Anjana, M.R.; Mohan, V.; Lovegrove, J.A.; et al. Interaction between TCF7L2 polymorphism and dietary fat intake on high density lipoprotein cholesterol. PLoS ONE 2017, 12, e0188382. [Google Scholar] [CrossRef] [PubMed]
- Alsulami, S.; Bodhini, D.; Sudha, V.; Shanthi Rani, C.S.; Pradeepa, R.; Anjana, R.M.; Radha, V.; Lovegrove, J.A.; Gayathri, R.; Mohan, V. Lower dietary intake of plant protein is associated with genetic risk of diabetes-related traits in urban Asian Indian adults. Nutrients 2021, 13, 3064. [Google Scholar] [CrossRef]
- Sudha, V.; Radhika, G.; Sathya, R.M.; Ganesan, A.; Mohan, V. Reproducibility and validity of an interviewer-administered semi-quantitative food frequency questionnaire to assess dietary intake of urban adults in southern India. Int. J. Food Sci. Nutr. 2006, 57, 481–493. [Google Scholar] [CrossRef]
- World Health Organization; Regional Office for the Western Pacific. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment; Health Communications Australia: Sydney, Australia, 2000. [Google Scholar]
- Alberti, K.G.; Zimmet, P.; Shaw, J. The metabolic syndrome—New worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Eckel, R.H.; Kahn, R.; Robertson, R.M.; Rizza, R.A. Preventing cardiovascular disease and diabetes: A call to action from the American Diabetes Association and the American Heart Association. Circulation 2006, 113, 2943–2946. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S, discussion 1229S–1231S. [Google Scholar] [CrossRef]
- Brownstein, N.C.; Cai, J. Tests of trend between disease outcomes and ordinal covariates discretized from underlying continuous variables: Simulation studies and applications to NHANES 2007–2008. BMC Med. Res. Methodol. 2019, 19, 2. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, K.M.; Lovegrove, J.A.; Cockcroft, J.R.; Elwood, P.C.; Pickering, J.E.; Givens, D.I. Does Dairy Food Intake Predict Arterial Stiffness and Blood Pressure in Men? Hypertension 2013, 61, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Srivastava, R.K.; Jain, D. Association of Lifestyle Risk Factors with Metabolic Syndrome Components: A Cross-sectional Study in Eastern India. Int. J. Prev. Med. 2018, 9, 6. [Google Scholar] [CrossRef]
- Anjana, R.; Vijayalakshmi, P.; Bhavadharini, B.; Gayathri, R.; Lakshmipriya, N.; Uthra, S.; Unnikrishnan, R.; Uma, R.; Mohan, V.; Sudha, V. Association of whole grains, dairy and dietary fibre with neonatal outcomes in women with gestational diabetes mellitus: The WINGS project (WINGS-12). J. Diabetol. 2019, 10, 127–133. [Google Scholar]
- Sochol, K.M.; Johns, T.S.; Buttar, R.S.; Randhawa, L.; Sanchez, E.; Gal, M.; Lestrade, K.; Merzkani, M.; Abramowitz, M.K.; Mossavar-Rahmani, Y.; et al. The Effects of Dairy Intake on Insulin Resistance: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients 2019, 11, 2237. [Google Scholar] [CrossRef] [PubMed]
- Machlik, M.L.; Hopstock, L.A.; Wilsgaard, T.; Hansson, P. Associations Between Intake of Fermented Dairy Products and Blood Lipid Concentrations Are Affected by Fat Content and Dairy Matrix—The Tromsø Study: Tromsø7. Front. Nutr. 2021, 8, 773468. [Google Scholar] [CrossRef] [PubMed]
- Healthy Diet. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 6 January 2022).
- Lovegrove, J.A.; Hobbs, D.A. New perspectives on dairy and cardiovascular health. Proc. Nutr. Soc. 2016, 75, 247–258. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Koulman, A.; Sharp, S.J.; Imamura, F.; Kröger, J.; Schulze, M.B.; Crowe, F.L.; Huerta, J.M.; Guevara, M.; Beulens, J.W.; et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: The EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol. 2014, 2, 810–818. [Google Scholar] [CrossRef] [Green Version]
- Yu, E.; Hu, F.B. Dairy Products, Dairy Fatty Acids, and the Prevention of Cardiometabolic Disease: A Review of Recent Evidence. Curr. Atheroscler. Rep. 2018, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Khoo, C.; Furtado, J.; Ikewaki, K.; Sacks, F.M. Dietary monounsaturated fat activates metabolic pathways for triglyceride-rich lipoproteins that involve apolipoproteins E and C-III. Am. J. Clin. Nutr. 2008, 88, 272–281. [Google Scholar] [CrossRef]
- Bergouignan, A.; Momken, I.; Schoeller, D.A.; Simon, C.; Blanc, S. Metabolic fate of saturated and monounsaturated dietary fats: The Mediterranean diet revisited from epidemiological evidence to cellular mechanisms. Prog. Lipid Res. 2009, 48, 128–147. [Google Scholar] [CrossRef]
- Zaid, M.; Miura, K.; Murakami, Y.; Okuda, N.; Okayama, A.; Sakata, K.; Masaki, K.B.; Rodriguez, B.; Stamler, J.; Ueshima, H. Association of Dietary MUFA Intake with HDL Profile Measurements in Japanese Men and Women Living in Japan and Hawaii: INTERLIPID Study. Int. J. Epidemiol. 2015, 44, i9. [Google Scholar] [CrossRef]
- Sjogren, P.; Rosell, M.; Skoglund-Andersson, C.; Zdravkovic, S.; Vessby, B.; de Faire, U.; Hamsten, A.; Hellenius, M.L.; Fisher, R.M. Milk-derived fatty acids are associated with a more favorable LDL particle size distribution in healthy men. J. Nutr. 2004, 134, 1729–1735. [Google Scholar] [CrossRef]
- Wade, A.T.; Guenther, B.A.; Ahmed, F.S.; Elias, M.F. Higher yogurt intake is associated with lower blood pressure in hypertensive individuals: Cross-sectional findings from the Maine-Syracuse Longitudinal study. Int. Dairy J. 2021, 122, 105159. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.A.; Panahi, S.; Daniel, N.; Tremblay, A.; Marette, A. Yogurt and Cardiometabolic Diseases: A Critical Review of Potential Mechanisms. Adv. Nutr. 2017, 8, 812–829. [Google Scholar] [CrossRef] [PubMed]
- Pihlanto-LeppÄLÄ, A.; Koskinen, P.; Piilola, K.; Tupasela, T.; Korhonen, H. Angiotensin I-converting enzyme inhibitory properties of whey protein digests: Concentration and characterization of active peptides. J. Dairy Res. 2000, 67, 53–64. [Google Scholar] [CrossRef] [PubMed]
- McGrane, M.M.; Essery, E.; Obbagy, J.; Lyon, J.; MacNeil, P.; Spahn, J.; Van Horn, L. Dairy Consumption, Blood Pressure, and Risk of Hypertension: An Evidence-Based Review of Recent Literature. Curr. Cardiovasc. Risk Rep. 2011, 5, 287. [Google Scholar] [CrossRef] [PubMed]
- Vimaleswaran, K.S.; Zhou, A.; Cavadino, A.; Hyppönen, E. Evidence for a causal association between milk intake and cardiometabolic disease outcomes using a two-sample Mendelian Randomization analysis in up to 1,904,220 individuals. Int. J. Obes. 2021, 45, 1751–1762. [Google Scholar] [CrossRef] [PubMed]
Variables | Overall Median (Interquartile Range)/ n (%) |
---|---|
Age (years) | 36 (15) |
Gender n (%) | |
Men n (%) | 433 (42) |
Women n (%) | 600 (58) |
Smoking (yes) n (%) | 160 (15) |
Alcohol (yes) n (%) | 242 (23) |
Income per month n (%) | |
INR. < 2000 | 24 (2) |
INR. 2000–5000 | 197 (19) |
INR. 5000–10,000 | 415 (40) |
INR. > 10,000 | 397 (39) |
Family history of diabetes (yes) n (%) | 449 (43) |
Weight (kg) | 58 (17) |
BMI (kg/m2) | 23.2 (6.2) |
Waist circumference (cm) | 84 (16) |
Systolic BP (mmHg) | 113 (19) |
Diastolic BP (mmHg) | 72 (13) |
Fasting blood glucose (mg/dL) | 84 (12) |
Postprandial blood glucose (mg/dL) | 106 (33) |
Total Cholesterol (mg/dL) | 175 (47) |
Triglyceride (mg/dL) | 96 (65) |
High density lipoprotein (mg/dL) | 42 (13) |
Low density lipoprotein (mg/dL) | 109 (39) |
Median (Interquartile Range) | |||
---|---|---|---|
Dairy and Its Products (g/Day) | Lowest Intake Q1–Q4 | Medium Intake Q5–Q8 | Highest Intake Q9–Q10 |
Total dairy products | 208 (116) | 411 (144) | 755 (228) |
Fermented dairy products (curd and buttermilk) | 32 (66) | 75 (119) | 167 (215) |
Milk | 10 (39) | 37 (94) | 74 (148) |
Tea and coffee (contribution by milk) | 118 (118) | 235 (176) | 471 (353) |
Milk sweets and desserts (milk sweets, ice cream, milk shake and other milk beverages) | 2 (8) | 3 (10) | 5 (22) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wuni, R.; Lakshmipriya, N.; Abirami, K.; Ventura, E.F.; Anjana, R.M.; Sudha, V.; Shobana, S.; Unnikrishnan, R.; Krishnaswamy, K.; Vimaleswaran, K.S.; et al. Higher Intake of Dairy Is Associated with Lower Cardiometabolic Risks and Metabolic Syndrome in Asian Indians. Nutrients 2022, 14, 3699. https://doi.org/10.3390/nu14183699
Wuni R, Lakshmipriya N, Abirami K, Ventura EF, Anjana RM, Sudha V, Shobana S, Unnikrishnan R, Krishnaswamy K, Vimaleswaran KS, et al. Higher Intake of Dairy Is Associated with Lower Cardiometabolic Risks and Metabolic Syndrome in Asian Indians. Nutrients. 2022; 14(18):3699. https://doi.org/10.3390/nu14183699
Chicago/Turabian StyleWuni, Ramatu, Nagarajan Lakshmipriya, Kuzhandaivelu Abirami, Eduard Flores Ventura, Ranjit Mohan Anjana, Vasudevan Sudha, Shanmugam Shobana, Ranjit Unnikrishnan, Kamala Krishnaswamy, Karani Santhanakrishnan Vimaleswaran, and et al. 2022. "Higher Intake of Dairy Is Associated with Lower Cardiometabolic Risks and Metabolic Syndrome in Asian Indians" Nutrients 14, no. 18: 3699. https://doi.org/10.3390/nu14183699
APA StyleWuni, R., Lakshmipriya, N., Abirami, K., Ventura, E. F., Anjana, R. M., Sudha, V., Shobana, S., Unnikrishnan, R., Krishnaswamy, K., Vimaleswaran, K. S., & Mohan, V. (2022). Higher Intake of Dairy Is Associated with Lower Cardiometabolic Risks and Metabolic Syndrome in Asian Indians. Nutrients, 14(18), 3699. https://doi.org/10.3390/nu14183699