Can Overnutrition Lead to Wasting?—The Paradox of Diabetes Mellitus in End-Stage Renal Disease Treated with Maintenance Hemodialysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Measurements
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Studied Subgroups
3.2. Laboratory Analysis
3.3. Body Composition Based on Bioimpedance Analysis
3.4. Nutritional Components Evaluation
3.5. Correlations between cTnT and Markers of Nutritional State
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saran, R.; Robinson, B.; Abbott, K.C.; Bragg-Gresham, J.; Chen, X.; Gipson, D.; Gu, H.; Hirth, R.A.; Hutton, D.; Jin, Y.; et al. US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2019, 75, A6–A7. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Alberti, K.G.M.M.; Shaw, J. Global and societal implications of the diabetes epidemic. Nature 2001, 414, 782–787. [Google Scholar] [CrossRef]
- Weiner, D.E.; Tighiouart, H.; Amin, M.G.; Stark, P.C.; MacLeod, B.; Griffith, J.L.; Salem, D.N.; Levey, A.S.; Sarnak, M.J. Chronic Kidney Disease as a Risk Factor for Cardiovascular Disease and All-Cause Mortality: A Pooled Analysis of Community-Based Studies. J. Am. Soc. Nephrol. 2004, 15, 1307–1315. [Google Scholar] [CrossRef]
- Fouque, D.; Kalantar-Zadeh, K.; Kopple, J.; Cano, N.; Chauveau, P.; Cuppari, L.; Franch, H.; Guarnieri, G.; Ikizler, T.A.; Kaysen, G.; et al. A proposed nomenclature and diagnostic criteria for protein–energy wasting in acute and chronic kidney disease. Kidney Int. 2008, 73, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Stenvinkel, P.; Heimbürger, O.; Paultre, F.; Diczfalusy, U.; Wang, T.; Berglund, L.; Jogestrand, T. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 1999, 55, 1899–1911. [Google Scholar] [CrossRef] [Green Version]
- Stenvinkel, P.; Heimbürger, O.; Lindholm, B. Wasting, but not malnutrition, predicts cardiovascular mortality in end-stage renal disease. Nephrol. Dial. Transplant. 2004, 19, 2181–2183. [Google Scholar] [CrossRef]
- Hanna, R.M.; Ghobry, L.; Wassef, O.; Rhee, C.M.; Kalantar-Zadeh, K. A Practical Approach to Nutrition, Protein-Energy Wasting, Sarcopenia, and Cachexia in Patients with Chronic Kidney Disease. Blood Purif. 2020, 49, 202–211. [Google Scholar] [CrossRef]
- Sahathevan, S.; Khor, B.-H.; Ng, H.-M.; Gafor, A.H.A.; Daud, Z.A.M.; Mafra, D.; Karupaiah, T. Understanding Development of Malnutrition in Hemodialysis Patients: A Narrative Review. Nutrients 2020, 12, 3147. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef]
- Tattersall, J. Bioimpedance Analysis in Dialysis: State of the Art and What We Can Expect. Blood Purif. 2009, 27, 70–74. [Google Scholar] [CrossRef]
- Johansen, K.L.; Dalrymple, L.S.; Delgado, C.; Kaysen, G.A.; Kornak, J.; Grimes, B.; Chertow, G.M. Association between Body Composition and Frailty among Prevalent Hemodialysis Patients: A US Renal Data System Special Study. J. Am. Soc. Nephrol. 2013, 25, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Arias-Guillén, M.; Perez, E.; Herrera, P.; Romano, B.; Ojeda, R.; Vera, M.; Ríos, J.; Fontseré, N.; Maduell, F. Bioimpedance Spectroscopy as a Practical Tool for the Early Detection and Prevention of Protein-Energy Wasting in Hemodialysis Patients. J. Ren. Nutr. 2018, 28, 324–332. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Kleiner, M.; Dunne, E.; Lee, G.H.; Luft, F. A modified quantitative subjective global assessment of nutrition for dialysis patients. Nephrol. Dial. Transplant. 1999, 14, 1732–1738. [Google Scholar] [CrossRef] [Green Version]
- Lukowsky, L.R.; Kheifets, L.; Arah, O.; Nissenson, A.R.; Kalantar-Zadeh, K. Nutritional predictors of early mortality in incident hemodialysis patients. Int. Urol. Nephrol. 2013, 46, 129–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locatelli, F.; Del Vecchio, L.; Manzoni, C. Morbidity and mortality on maintenance haemodialysis. Nephron 1998, 80, 380–400. [Google Scholar] [CrossRef]
- Boaz, M.; Azoulay, O.; Kaufman-Shriqui, V.; Weinstein, T. Status of Nutrition in Hemodialysis Patients Survey (SNIPS): Malnutrition risk by diabetes status. Diabet. Med. 2021, 38, e14543. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, M.C.; Rocha, N.; Bandeira, E.; Dantas, I.; Chaves, C.; Oliveira, M.; Bandeira, F. Serum Sclerostin, Body Composition, and Sarcopenia in Hemodialysis Patients with Diabetes. Int. J. Nephrol. 2020, 2020, 4596920. [Google Scholar] [CrossRef] [Green Version]
- Mori, K.; Nishide, K.; Okuno, S.; Shoji, T.; Emoto, M.; Tsuda, A.; Nakatani, S.; Imanishi, Y.; Ishimura, E.; Yamakawa, T.; et al. Impact of diabetes on sarcopenia and mortality in patients undergoing hemodialysis. BMC Nephrol. 2019, 20, 105. [Google Scholar] [CrossRef]
- Pupim, L.B.; Heimburger, O.; Qureshi, A.R.; Ikizler, T.; Stenvinkel, P. Accelerated lean body mass loss in incident chronic dialysis patients with diabetes mellitus. Kidney Int. 2005, 68, 2368–2374. [Google Scholar] [CrossRef] [Green Version]
- Charlson, M.; Szatrowski, T.P.; Peterson, J.; Gold, J. Validation of a combined comorbidity index. J. Clin. Epidemiol. 1994, 47, 1245–1251. [Google Scholar] [CrossRef]
- Frankenfield, D.; Roth-Yousey, L.; Compher, C. Comparison of Predictive Equations for Resting Metabolic Rate in Healthy Nonobese and Obese Adults: A Systematic Review. J. Am. Diet. Assoc. 2005, 105, 775–789. [Google Scholar] [CrossRef]
- Rutishauser, I.H.E. Dietary intake measurements. Public Heal. Nutr. 2005, 8, 1100–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahuja, J.K.; Moshfegh, A.J.; Holden, J.M.; Harris, E. USDA Food and Nutrient Databases Provide the Infrastructure for Food and Nutrition Research, Policy, and Practice. J. Nutr. 2012, 143, 241S–249S. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.D.; Lee, J.H.; Lee, S.W.; Kim, J.K.; Kim, M.-J.; Song, J.H. Risk of overhydration and low lean tissue index as measured using a body composition monitor in patients on hemodialysis: A systemic review and meta-analysis. Ren. Fail. 2018, 40, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broers, N.J.H.; Canaud, B.; Dekker, M.J.E.; van der Sande, F.M.; Stuard, S.; Wabel, P.; Kooman, J.P. Three compartment bioimpedance spectroscopy in the nutritional assessment and the outcome of patients with advanced or end stage kidney disease: What have we learned so far? Hemodial. Int. 2020, 24, 148–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isoyama, N.; Qureshi, A.R.; Avesani, C.M.; Lindholm, B.; Bàràny, P.; Heimbürger, O.; Cederholm, T.; Stenvinkel, P.; Carrero, J.J. Comparative Associations of Muscle Mass and Muscle Strength with Mortality in Dialysis Patients. Clin. J. Am. Soc. Nephrol. 2014, 9, 1720–1728. [Google Scholar] [CrossRef]
- Park, S.W.; Goodpaster, B.H.; Strotmeyer, E.S.; de Rekeneire, N.; Harris, T.B.; Schwartz, A.V.; Tylavsky, F.A.; Newman, A.B. Decreased muscle strength and quality in older adults with type 2 diabetes: The health, aging, and body composition study. Diabetes 2006, 55, 1813–1818. [Google Scholar] [CrossRef] [Green Version]
- Kalantar-Zadeh, K.; Block, G.; Humphreys, M.H.; Kopple, J.D. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int. 2003, 63, 793–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukowsky, L.R.; Kheifets, L.; Arah, O.; Nissenson, A.R.; Kalantar-Zadeh, K. Patterns and Predictors of Early Mortality in Incident Hemodialysis Patients: New Insights. Am. J. Nephrol. 2012, 35, 548–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcelli, D.; Brand, K.; Ponce, P.; Milkowski, A.; Marelli, C.; Ok, E.; Godino, J.-I.M.; Gurevich, K.; Jirka, T.; Rosenberger, J.; et al. Longitudinal Changes in Body Composition in Patients After Initiation of Hemodialysis Therapy: Results from an International Cohort. J. Ren. Nutr. 2016, 26, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Visser, W.; Egmond, A.M.D.M.-V.; Timman, R.; Severs, D.; Hoorn, E.J. Risk Factors for Muscle Loss in Hemodialysis Patients with High Comorbidity. Nutrients 2020, 12, 2494. [Google Scholar] [CrossRef] [PubMed]
- Cepeda Marte, J.L.; Javier, A.; Ruiz-Matuk, C.; Paulino-Ramirez, R. Quality of Life and Nutritional Status in diabetic patients on hemodialysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 576–580. [Google Scholar] [CrossRef] [PubMed]
- Siew, E.; Pupim, L.; Majchrzak, K.; Shintani, A.; Flakoll, P.; Ikizler, T. Insulin resistance is associated with skeletal muscle protein breakdown in non-diabetic chronic hemodialysis patients. Kidney Int. 2007, 71, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Siew, E.D.; Ikizler, T.A. Determinants of Insulin Resistance and Its Effects on Protein Metabolism in Patients with Advanced Chronic Kidney Disease. Hemodial. Basic Res. Clin. Trials 2008, 161, 138–144. [Google Scholar] [CrossRef]
- Lecker, S.H.; Goldberg, A.L.; Mitch, W.E. Protein Degradation by the Ubiquitin–Proteasome Pathway in Normal and Disease States. J. Am. Soc. Nephrol. 2006, 17, 1807–1819. [Google Scholar] [CrossRef] [PubMed]
- Della Guardia, L.; Thomas, M.A.; Cena, H. Insulin Sensitivity and Glucose Homeostasis Can Be Influenced by Metabolic Acid Load. Nutrients 2018, 10, 618. [Google Scholar] [CrossRef] [Green Version]
- Plomgaard, P.; Bouzakri, K.; Krogh-Madsen, R.; Mittendorfer, B.; Zierath, J.R.; Pedersen, B.K. Tumor Necrosis Factor- Induces Skeletal Muscle Insulin Resistance in Healthy Human Subjects via Inhibition of Akt Substrate 160 Phosphorylation. Diabetes 2005, 54, 2939–2945. [Google Scholar] [CrossRef] [Green Version]
- Mak, R.H. 1,25-Dihydroxyvitamin D3 corrects insulin and lipid abnormalities in uremia. Kidney Int. 1998, 53, 1353–1357. [Google Scholar] [CrossRef] [Green Version]
- Honda, H.; Qureshi, A.R.; Axelsson, J.; Heimburger, O.; Suliman, M.E.; Barany, P.; Stenvinkel, P.; Lindholm, B. Obese sarcopenia in patients with end-stage renal disease is associated with inflammation and increased mortality. Am. J. Clin. Nutr. 2007, 86, 633–638. [Google Scholar] [CrossRef] [Green Version]
- Koefoed, M.; Kromann, C.B.; Juliussen, S.R.; Hvidtfeldt, D.; Ekelund, B.; Frandsen, N.E.; Marckmann, P. Nutritional Status of Maintenance Dialysis Patients: Low Lean Body Mass Index and Obesity Are Common, Protein-Energy Wasting Is Uncommon. PLoS ONE 2016, 11, e0150012. [Google Scholar] [CrossRef]
Parameter | Group DM | Control | p Value |
---|---|---|---|
n | 198 | 317 | |
Age, years | 68.7 (59.3–76.4) | 67.0 (57.3–76.4) | 0.48 |
Male Gender, n (%) | 120 (60.6) | 190 (59.9) | 0.88 |
Duration of MHD, months | 48.2 (31.4–69.4) | 51.8 (33.0–85.9) | 0.09 |
Smoking, n (%) | 59 (29.8) | 115 (36.3) | 0.16 |
Alcohol intake, n (%) | 53 (26.8) | 82 (25.9) | 0.95 |
Additive salt, n (%) | 92 (46.5) | 143 (45.1) | 0.92 |
SGA score, points | 12.0 (10.0–15.0) | 11.0 (9.0–13.0) | 0.00054 |
CCI, points | 5 (4–6) | 3 (2–4) | <0.0001 |
Residual diuresis, ml | 725 (200–1000) | 500 (100–1250) | 0.98 |
Blood pressure, mmHg | 140/80 (130/70–160/90) | 140/80 (125/70–155/90) | 0.45 for systolic/0.11 for diastolic |
Comorbidities: | |||
Hypertension, n (%) | 184 (92.9) | 268 (84.5) | 0.053 |
Chronic heart failure, n (%) | 120 (60.6) | 145 (45.7) | 0.017 |
Coronary artery disease, n (%) | 126 (63.6) | 143 (45.1) | 0.00043 |
Myocardial infarction, n (%) | 65 (32.8) | 58 (18.3) | 0.00024 |
Cerebrovascular incident, n (%) | 37 (18.7) | 25 (7.9) | 0.00022 |
Atrial fibrillation, n (%) | 59 (29.8) | 89 (28.1) | 0.64 |
Death, n (%) | 89 (44.9) | 99 (31.2) | 0.0022 |
Cardiovascular death, n (%) | 59 (29.8) | 60 (18.9) | 0.0073 |
Parameter | Hazard Ratio (HR) | 95% HR Confidence Interval | p-Value |
---|---|---|---|
Age (in decades) | 1.49 | 1.26–1.76 | <0.001 |
Sex. F vs. M | 0.74 | 0.51–1.09 | 0.13 |
Diabetes | 1.65 | 1.11–2.43 | <0.05 |
BMI | 0.95 | 0.91–0.99 | <0.05 |
SGA | 1.09 | 1.03–1.14 | <0.01 |
Albumin | 0.65 | 0.44–0.97 | <0.05 |
Hemoglobin | 0.80 | 0.70–0.90 | 0.001 |
Anuria | 2.45 | 1.64–3.67 | <0.001 |
Serum Parameter | Group DM | Control | p Value |
---|---|---|---|
Hypoalbuminemia *, n (%) | 53 (26.7) | 75 (23.7) | 0.017 |
Albumin, g/dL | 3.93 (3.61–4.20) | 4.10 (3.80–4.30) | 0.0035 |
Creatinine, mg/dL | 6.34 (5.08–7.33) | 7.12 (5.70–8.51) | 0.042 |
hsTnT, ng/ml | 54 (37–101) | 48 (29–81) | 0.018 |
Total cholesterol, mg/dL | 158 (133–196) | 180 (148–206) | 0.0046 |
WBC, ×103/µl | 6.90 (5.57–8.30) | 6.70 (5.50–8.44) | 0.69 |
Hemoglobin, g/dL | 11.0 (10.1–11.8) | 11.0 (10.1–12.0) | 0.92 |
Sodium, mmol/L | 139 (136–141) | 139 (137–142) | 0.18 |
Potassium, mmol/L | 4.90 (4.40–5.40) | 4.90 (4.47–5.50) | 0.62 |
Calcium, mg/dL | 8.53 (7.84–9.04) | 8.60 (8.00–9.10) | 0.64 |
Phosphate, mg/dL | 5.20 (4.22–6.40) | 5.11 (4.14–6.30) | 0.70 |
iPTH, pg/mL | 248 (153–414) | 270 (167–531) | 0.22 |
Iron, µg/dL | 65 (46–85) | 67 (50–84) | 0.69 |
TIBC, µg/dL | 225 (194–256) | 212 (184–245) | 0.082 |
TSAT, % | 27.7 (23.3–39.7) | 32.2 (24.0–41.0) | 0.25 |
Ferritin, ng/mL | 516 (216–1346) | 609 (155–1090) | 0.71 |
C-reactive protein, mg/L | 5.7 (2.1–11.6) | 5.3 (2.0–12.2) | 0.99 |
Parameter | Group DM | Control | p Value |
---|---|---|---|
BMI, kg/m2 | 27.9 (24.4–31.8) | 25.6 (22.9–28.8) | <0.0001 |
BMI < 23, n (%) | 33 (16.7%) | 80 (25.2%) | 0.0081 |
LTM, kg | 32.4 (26.3–38.5) | 32.9 (26.9–41.0) | 0.27 |
LTI, kg/m2 | 11.3 (10.0–13.3) | 11.7 (10.0–13.8) | 0.12 |
FTM, kg | 31.6 (26.3–38.5) | 25.85 (19.7–33.3) | <0.0001 |
FTI, kg/m2 | 15.0 (11.4–19.6) | 12.8 (9.6–16.0) | <0.0001 |
OH, l | 2.1 (1.2–4.1) | 1.8 (0.7–2.7) | 0.00039 |
Relative OH, % | 3.0 (1.5–5.9) | 2.5 (1.0–4.2) | 0.0059 |
Parameter | Group DM | Control | p Value |
---|---|---|---|
Energy, kcal | 2668 (2456–2760) | 2279 (2122–2611) | 0.00084 |
Total metabolic rate, kcal | 2457 (2426–2599) | 2391 (2218–2529) | 0.24 |
Energy, % | 107.8 (97.1–115.1) | 96.7 (89.7–105.3) | 0.016 |
Protein, g | 92 (81–102) | 79 (69–89) | 0.0063 |
Required protein, g | 86.7 (83.2–89.1) | 82.0 (76.0–86.7) | 0.25 |
Protein, % | 112.2 (100.1–120.9) | 96.4 (85.1–110.2) | 0.0063 |
Lipids, g | 82 (79–87) | 75 (68–82) | 0.0033 |
Required lipids, g | 84.3 (80.9–86.6) | 79.7 (73.9–84.3) | 0.25 |
Cholesterol, mg | 352 (321–398) | 309 (221–365) | 0.033 |
Lipids, % | 100.3 (90.0–104.4) | 93.4 (85.3–103.2) | 0.11 |
Carbohydrates, g | 376 (346–403) | 321 (308–375) | 0.00095 |
Required carbohydrates, g | 345.9 (341.3–365.7) | 336.4 (312.0–355.9) | 0.25 |
Carbohydrates, % | 109.9 (97.2–116.5) | 99.5 (89.8–106.8) | 0.024 |
Fiber, g | 14.7 (14.0–17.0) | 16.0 (14.0–18.0) | 0.29 |
Na, mg | 4581 (3879–5328) | 3875 (3210–4501) | 0.034 |
K, mg | 3861 (3451–4351) | 4142 (3502–4532) | 0.55 |
Parameter | Group DM r; p Value | Control r; p Value |
---|---|---|
Body Mass Index | 0.11; 0.21 | −0.20; 0.003 |
Fat Tissue Index | 0.14; 0.12 | −0.16; 0.022 |
Fat Tissue Mass | −0.09; 0.35 | −0.16; 0.016 |
Lean Tissue Index | 0.08; 0.40 | −0.11; 0.11 |
Lean Tissue Mass | 0.14; 0.13 | −0.10; 0.15 |
Albumin | −0.23; 0.016 | −0.23; 0.001 |
Creatinine | −0.17; 0.44 | 0.11; 0.39 |
Total cholesterol | −0.16; 0.18 | −0.22; 0.012 |
Charlson Comorbidity Index | −0.26, 0.54 | 0.36; 0.10 |
Energy | 0.19; 0.52 | −0.23; 0.22 |
Energy% | −0.20; 0.48 | 0.01; 0.94 |
Subjective Global Assessment | 0.24; 0.022 | 0.25; 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoppe, K.; Schwermer, K.; Dopierała, M.; Kałużna, M.; Hoppe, A.; Chou, J.T.-T.; Oko, A.; Pawlaczyk, K. Can Overnutrition Lead to Wasting?—The Paradox of Diabetes Mellitus in End-Stage Renal Disease Treated with Maintenance Hemodialysis. Nutrients 2022, 14, 247. https://doi.org/10.3390/nu14020247
Hoppe K, Schwermer K, Dopierała M, Kałużna M, Hoppe A, Chou JT-T, Oko A, Pawlaczyk K. Can Overnutrition Lead to Wasting?—The Paradox of Diabetes Mellitus in End-Stage Renal Disease Treated with Maintenance Hemodialysis. Nutrients. 2022; 14(2):247. https://doi.org/10.3390/nu14020247
Chicago/Turabian StyleHoppe, Krzysztof, Krzysztof Schwermer, Mikołaj Dopierała, Małgorzata Kałużna, Anna Hoppe, Jadzia Tin-Tsen Chou, Andrzej Oko, and Krzysztof Pawlaczyk. 2022. "Can Overnutrition Lead to Wasting?—The Paradox of Diabetes Mellitus in End-Stage Renal Disease Treated with Maintenance Hemodialysis" Nutrients 14, no. 2: 247. https://doi.org/10.3390/nu14020247
APA StyleHoppe, K., Schwermer, K., Dopierała, M., Kałużna, M., Hoppe, A., Chou, J. T. -T., Oko, A., & Pawlaczyk, K. (2022). Can Overnutrition Lead to Wasting?—The Paradox of Diabetes Mellitus in End-Stage Renal Disease Treated with Maintenance Hemodialysis. Nutrients, 14(2), 247. https://doi.org/10.3390/nu14020247