Polypharmacy and Its Association with Dysphagia and Malnutrition among Stroke Patients with Sarcopenia
Abstract
:1. Introduction
2. Methods
2.1. Participants and Setting
2.2. Data Collection
2.3. Sarcopenia Definition
2.4. Drug Information
2.5. Rehabilitation Program
2.6. Outcomes
2.7. Sample Size Calculation
2.8. Statistical Analysis
2.9. Ethics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoshimura, Y.; Wakabayashi, H.; Bise, T.; Tanoue, M. Prevalence of Sarcopenia and Its Association with Activities of Daily Living and Dysphagia in Convalescent Rehabilitation Ward Inpatients. Clin. Nutr. 2018, 37, 2022–2028. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Wakabayashi, H.; Bise, T.; Nagano, F.; Shimazu, S.; Shiraishi, A.; Yamaga, M.; Koga, H. Sarcopenia Is Associated with Worse Recovery of Physical Function and Dysphagia and a Lower Rate of Home Discharge in Japanese Hospitalized Adults Undergoing Convalescent Rehabilitation. Nutrition 2019, 61, 111–118. [Google Scholar] [CrossRef]
- Kameyama, Y.; Ashizawa, R.; Honda, H.; Take, K.; Yoshizawa, K.; Yoshimoto, Y. Sarcopenia Affects Functional Independence Measure Motor Scores in Elderly Patients with Stroke. J. Stroke Cerebrovasc. Dis. 2022, 31, 106615. [Google Scholar] [CrossRef]
- Shiraishi, A.; Yoshimura, Y.; Wakabayashi, H.; Tsuji, Y. Prevalence of Stroke-Related Sarcopenia and Its Association with Poor Oral Status in Post-Acute Stroke Patients: Implications for Oral Sarcopenia. Clin. Nutr. 2018, 37, 204–207. [Google Scholar] [CrossRef]
- Winstein, C.J.; Stein, J.; Arena, R.; Bates, B.; Cherney, L.R.; Cramer, S.C.; Deruyter, F.; Eng, J.J.; Fisher, B.; Harvey, R.L.; et al. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2016, 47, e98–e169. [Google Scholar] [CrossRef] [PubMed]
- Buntin, M.B.; Colla, C.H.; Deb, P.; Sood, N.; Escarce, J.J. Medicare Spending and Outcomes after Postacute Care for Stroke and Hip Fracture. Med. Care 2010, 48, 776–784. [Google Scholar] [CrossRef] [Green Version]
- Fujishima, I.; Fujiu-Kurachi, M.; Arai, H.; Hyodo, M.; Kagaya, H.; Maeda, K.; Mori, T.; Nishioka, S.; Oshima, F.; Ogawa, S.; et al. Sarcopenia and Dysphagia: Position Paper by Four Professional Organizations. Geriatr. Gerontol. Int. 2019, 19, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Espinosa-Val, C.; Martín-Martínez, A.; Graupera, M.; Arias, O.; Elvira, A.; Cabré, M.; Palomera, E.; Bolívar-Prados, M.; Clavé, P.; Ortega, O. Prevalence, Risk Factors, and Complications of Oropharyngeal Dysphagia in Older Patients with Dementia. Nutrients 2020, 12, 863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pu, D.; Wong, M.C.H.; Yiu, E.M.L.; Chan, K.M.K. Profiles of Polypharmacy in Older Adults and Medication Associations with Signs of Aspiration. Expert Rev. Clin. Pharmacol. 2021, 14, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Barbe, A.G. Medication-Induced Xerostomia and Hyposalivation in the Elderly: Culprits, Complications, and Management. Drugs Aging 2018, 35, 877–885. [Google Scholar] [CrossRef]
- Bath, P.M.; Lee, H.S.; Everton, L.F. Swallowing Therapy for Dysphagia in Acute and Subacute Stroke. Cochrane Database Syst. Rev. 2018, 10, 1465–1858. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Bise, T.; Shimazu, S.; Shiraishi, A. Chair-Stand Exercise Improves Post-Stroke Dysphagia. Geriatr. Gerontol. Int. 2020, 20, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Shimazu, S.; Yoshimura, Y.; Kudo, M.; Nagano, F.; Bise, T.; Shiraishi, A.; Sunahara, T. Frequent and Personalized Nutritional Support Leads to Improved Nutritional Status, Activities of Daily Living, and Dysphagia after Stroke. Nutrition 2021, 83, 111091. [Google Scholar] [CrossRef] [PubMed]
- Shiraisi, A.; Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Bise, T.; Shimazu, S. Improvement in Oral Health Enhances the Recovery of Activities of Daily Living and Dysphagia after Stroke. J. Stroke Cerebrovasc. Dis. 2021, 30, 105961. [Google Scholar] [CrossRef] [PubMed]
- Masnoon, N.; Shakib, S.; Kalisch-Ellett, L.; Caughey, G.E. What Is Polypharmacy? A Systematic Review of Definitions. BMC Geriatr. 2017, 17, 230. [Google Scholar] [CrossRef] [Green Version]
- Salinas-Rodríguez, A.; Manrique-Espinoza, B.; Rivera-Almaraz, A.; Ávila-Funes, J.A. Polypharmacy Is Associated with Multiplem Health-Related Outcomes in Mexican Community-Dwelling Older Adults. Salud Publica Mex. 2020, 62, 246–254. [Google Scholar] [CrossRef]
- Seppala, L.J.; van de Glind, E.M.M.; Daams, J.G.; Ploegmakers, K.J.; de Vries, M.; Wermelink, A.M.A.T.; van der Velde, N.; Blain, H.; Bousquet, J.; Bucht, G.; et al. Fall-Risk-Increasing Drugs: A Systematic Review and Meta-Analysis: III. Others. J. Am. Med. Dir. Assoc. 2018, 19, 372.e1–372.e8. [Google Scholar] [CrossRef] [Green Version]
- Dent, E.; Morley, J.E.; Cruz-Jentoft, A.J.; Arai, H.; Kritchevsky, S.B.; Guralnik, J.; Bauer, J.M.; Pahor, M.; Clark, B.C.; Cesari, M.; et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. J. Nutr. Health Aging 2018, 22, 1148–1161. [Google Scholar] [CrossRef]
- Kose, E.; Maruyama, R.; Okazoe, S.; Hayashi, H. Impact of Polypharmacy on the Rehabilitation Outcome of Japanese Stroke Patients in the Convalescent Rehabilitation Ward. J. Aging Res. 2016, 2016, 7957825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, A.; Yoshimura, Y.; Nagano, F.; Bise, T.; Kido, Y.; Shimazu, S.; Shiraishi, A. Polypharmacy and Potentially Inappropriate Medications in Stroke Rehabilitation: Prevalence and Association with Outcomes. Int. J. Clin. Pharm. 2022, 44, 749–761. [Google Scholar] [CrossRef]
- Kose, E.; Toyoshima, M.; Okazoe, S.; Oka, R.; Shiratsuchi, Y.; Hayashi, H. The Relationship between Polypharmacy and Recovery of Activities of Daily Living among Convalescent Stroke Patients: A Propensity Score-Matched Analysis. Eur. Geriatr. Med. 2017, 8, 250–255. [Google Scholar] [CrossRef]
- Matsumoto, A.; Yoshimura, Y.; Shimazu, S.; Nagano, F.; Bise, T.; Kido, Y.; Shiraishi, A.; Sunahara, T. Association of Polypharmacy at Hospital Discharge with Nutritional Intake, Muscle Strength, and Activities of Daily Living among Older Patients Undergoing Convalescent Rehabilitation after Stroke. Jpn. J. Compr. Rehabil. Sci. 2022, 13, 41–48. [Google Scholar]
- Marcott, S.; Dewan, K.; Kwan, M.; Baik, F.; Lee, Y.-J.; Sirjani, D. Where Dysphagia Begins: Polypharmacy and Xerostomia. Fed. Pract. 2020, 37, 234–241. [Google Scholar] [PubMed]
- Cicala, G.; Barbieri, M.A.; Spina, E.; de Leon, J. A Comprehensive Review of Swallowing Difficulties and Dysphagia Associated with Antipsychotics in Adults. Expert Rev. Clin. Pharmacol. 2019, 12, 219–234. [Google Scholar] [CrossRef]
- Kose, E.; Hirai, T.; Seki, T. Assessment of Aspiration Pneumonia Using the Anticholinergic Risk Scale. Geriatr. Gerontol. Int. 2018, 18, 1230–1235. [Google Scholar] [CrossRef]
- Kose, E.; Hirai, T.; Seki, T.; Okudaira, M.; Yasuno, N. Anticholinergic Load is Associated with Swallowing Dysfunction in Convalescent Older Patients after a Stroke. Nutrients 2022, 14, 2121. [Google Scholar] [CrossRef]
- Castejón-Hernández, S.; Latorre-Vallbona, N.; Molist-Brunet, N.; Cubí-Montanyà, D.; Espaulella-Panicot, J. Association between Anticholinergic Burden and Oropharyngeal Dysphagia among Hospitalized Older Adults. Aging Clin. Exp. Res. 2021, 33, 1981–1985. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Wakabayashi, H.; Yamada, M.; Kim, H.; Harada, A.; Arai, H. Interventions for Treating Sarcopenia: A Systematic Review and Meta-Analysis of Randomized Controlled Studies. J. Am. Med. Dir. Assoc. 2017, 18, 553.e1–553.e16. [Google Scholar] [CrossRef]
- Shigematsu, K.; Nakano, H.; Watanabe, Y. The Eye Response Test Alone is Sufficient to Predict Stroke Outcome—Reintroduction of Japan Coma Scale: A Cohort Study. BMJ Open 2013, 3, e002736. [Google Scholar] [CrossRef] [Green Version]
- Kunieda, K.; Ohno, T.; Fujishima, I.; Hojo, K.; Morita, T. Reliability and Validity of a Tool to Measure the Severity of Dysphagia: The Food Intake LEVEL Scale. J. Pain Symptom Manag. 2013, 46, 201–206. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A New Method of Classifying Prognostic Comorbidity in Longitudinal Studies: Development and Validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Banks, J.L.; Marotta, C.A. Outcomes Validity and Reliability of the Modified Rankin Scale: Implications for Stroke Clinical Trials: A Literature Review and Synthesis. Stroke 2007, 38, 1091–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, M.T.F.; Ferreira, R.C.; Vargas, A.M.D.; Ferreira, E.F.E. Validity and Reproducibility of the Revised Oral Assessment Guide Applied by Community Health Workers. Gerodontology 2014, 31, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Ottenbacher, K.J.; Hsu, Y.; Granger, C.V.; Fiedler, R.C. The Reliability of the Functional Independence Measure: A Quantitative Review. Arch. Phys. Med. Rehabil. 1996, 77, 1226–1232. [Google Scholar] [CrossRef]
- Sawaya, A.L.; Tucker, K.; Tsay, R.; Willett, W.; Saltzman, E.; Dallal, G.E.; Roberts, S.B. Evaluation of Four Methods for Determining Energy Intake in Young and Older Women: Comparison with Doubly Labeled Water Measurements of Total Energy Expenditure. Am. J. Clin. Nutr. 1996, 63, 491–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Kaido, T.; Uemoto, S. Direct Segmental Multi-Frequency Bioelectrical Impedance Analysis is Useful to Evaluate Sarcopenia. Am. J. Transpl. 2013, 13, 2506–2507. [Google Scholar] [CrossRef] [PubMed]
- Fick, D.M.; Semla, T.P.; Steinman, M.; Beizer, J.; Brandt, N.; Dombrowski, R.; Du Beau, C.E.; Pezzullo, L.; Epplin, J.J.; Flanagan, N.; et al. American Geriatrics Society 2019 Updated AGS Beers Criteria® for Potentially Inappropriate Medication Use in Older Adults. J. Am. Geriatr. Soc. 2019, 67, 674–694. [Google Scholar] [CrossRef]
- Miyai, I.; Sonoda, S.; Nagai, S.; Takayama, Y.; Inoue, Y.; Kakehi, A.; Kurihara, M.; Ishikawa, M. Results of New Policies for Inpatient Rehabilitation Coverage in Japan. Neurorehabil. Neural Repair 2011, 25, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Bise, T.; Shimazu, S.; Shiraishi, A.; Kido, Y.; Matsumoto, A. Chair-Stand Exercise Improves Sarcopenia in Rehabilitation Patients after Stroke. Nutrients 2022, 14, 461. [Google Scholar] [CrossRef] [PubMed]
- Nagano, F.; Yoshimura, Y.; Matsumoto, A.; Bise, T.; Kido, Y.; Shimazu, S.; Shiraishi, A. Muscle Strength Gain is Positively Associated with Functional Recovery in Patients with Sarcopenic Obesity After Stroke. J. Stroke Cerebrovasc. Dis. 2022, 31, 106429. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Matsumoto, A.; Momosaki, R. Pharmacotherapy and the Role of Pharmacists in Rehabilitation Medicine. Prog. Rehabil. Med. 2022, 7, 20220025. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y. Recent Advances in Clinical Nutrition in Stroke Rehabilitation. Nutrients 2022, 14, 1130. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Shiraishi, A.; Tsuji, Y.; Momosaki, R. Oral Management and the Role of Dental Hygienists in Convalescent Rehabilitation. Prog. Rehabil. Med. 2022, 7, 20220019. [Google Scholar] [CrossRef]
- Shiraishi, A.; Wakabayashi, H.; Yoshimura, Y. Oral Management in Rehabilitation Medicine: Oral Frailty, Oral Sarcopenia, and Hospital-Associated Oral Problems. J. Nutr. Health Aging 2020, 24, 1094–1099. [Google Scholar] [CrossRef]
- Matsumoto, A.; Yoshimura, Y.; Nagano, F.; Shimazu, S.; Shiraishi, A.; Kido, Y.; Bise, T. Potentially Inappropriate Medications Are Negatively Associated with Functional Recovery in Patients with Sarcopenia after Stroke. Aging Clin. Exp. Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Wakabayashi, H.; Momosaki, R.; Nagano, F.; Bise, T.; Shimazu, S.; Shiraishi, A. Stored Energy Increases Body Weight and Skeletal Muscle Mass in Older, Underweight Patients after Stroke. Nutrients 2021, 13, 3274. [Google Scholar] [CrossRef]
- Sato, Y.; Yoshimura, Y.; Abe, T.; Nagano, F.; Matsumoto, A. Impact of Trunk and Appendicular Skeletal Muscle Mass on Improving Swallowing Function in Acute Stroke Patients. J. Stroke Cerebrovasc. Dis. 2022, 31, 106636. [Google Scholar] [CrossRef] [PubMed]
- Bise, T.; Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Kido, Y.; Shimazu, S.; Shiraishi, A.; Matsumoto, A. Association between BIA-Derived Phase Angle and Sarcopenia and Improvement in Activities of Daily Living and Dysphagia in Patients Undergoing Post-Stroke Rehabilitation. J. Nutr. Health Aging 2022, 26, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Rasu, R.S.; Shrestha, N.; Karpes Matusevich, A.R.; Zalmai, R.; Large, S.; Johnson, L.; O’Bryant, S.E.; Abner, E. Polypharmacy and Cognition Function Among Rural Adults. J. Alzheimers Dis. 2021, 82, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Kusljic, S.; Woolley, A.; Lowe, M.; Manias, E. How Do Cognitive and Functional Impairment Relate to the Use of Anticholinergic Medications in Hospitalised Patients Aged 65 Years and Over? Aging Clin. Exp. Res. 2020, 32, 423–431. [Google Scholar] [CrossRef]
- Shwe, P.S.; Thein, P.M.; Marwaha, P.; Taege, K.; Shankumar, R.; Junckerstorff, R. Anticholinergic Burden and Poor Oral Health Are Associated with Frailty in Geriatric Patients Undergoing Inpatient Rehabilitation: A Cross-Sectional Study. Gerodontology 2022, 12635. [Google Scholar] [CrossRef] [PubMed]
- Okudur, S.K.; Dokuzlar, O.; Aydin, A.E.; Kocyigit, S.E.; Soysal, P.; Isik, A.T. The Evaluation of Relationship between Polypharmacy and Anticholinergic Burden Scales. North Clin. Istanb. 2021, 8, 139–144. [Google Scholar] [CrossRef]
- Ortolani, E.; Landi, F.; Martone, A.M.; Onder, G.; Bernabei, R. Nutritional Status and Drug Therapy in Older Adults. J. Gerontol. Geriat. Res. 2013, 2, 2. [Google Scholar] [CrossRef]
- Jyrkkä, J.; Enlund, H.; Lavikainen, P.; Sulkava, R.; Hartikainen, S. Association of Polypharmacy with Nutritional Status, Functional Ability and Cognitive Capacity over a Three-Year Period in an Elderly Population. Pharmacoepidemiol. Drug Saf. 2011, 20, 514–522. [Google Scholar] [CrossRef]
- Matsumoto, A.; Yoshimura, Y.; Wakabayashi, H.; Kose, E.; Nagano, F.; Bise, T.; Kido, Y.; Shimazu, S.; Shiraishi, A. Deprescribing Leads to Improved Energy Intake among Hospitalized Older Sarcopenic Adults with Polypharmacy after Stroke. Nutrients 2022, 14, 443. [Google Scholar] [CrossRef]
- Gökyer, A.; Küçükarda, A.; Köstek, O.; Hacıoğlu, M.B.; Sunal, B.S.; Demircan, N.C.; Uzunoğlu, S.; Solak, S.; İşsever, K.; Çiçin, I.; et al. Relation between Sarcopenia and Dose-Limiting Toxicity in Patients with Metastatic Colorectal Cancer Who Received Regorafenib. Clin. Transl. Oncol. 2019, 21, 1518–1523. [Google Scholar] [CrossRef]
- Sun, G.-Q.; Zhang, L.; Zhang, L.-N.; Wu, Z.; Hu, D.-F. Benzodiazepines or Related Drugs and Risk of Pneumonia: A Systematic Review and Meta-Analysis. Int. J. Geriatr. Psychiatry 2019, 34, 513–521. [Google Scholar] [CrossRef]
- Clarke, C.L.; Witham, M.D. The Effects of Medication on Activity and Rehabilitation of Older People—Opportunities and Risks. Rehabil. Process Outcome 2017, 6. [Google Scholar] [CrossRef]
- Arai, T.; Yasuda, Y.; Toshima, S.; Yoshimi, N.; Kashiki, Y. ACE Inhibitors and Pneumonia in Elderly People. Lancet 1998, 352, 1937–1938. [Google Scholar] [CrossRef]
- Nakagawa, T.; Wada, H.; Sekizawa, K.; Arai, H.; Sasaki, H. Amantadine and Pneumonia. Lancet 1999, 353, 1157. [Google Scholar] [CrossRef]
- Teramoto, S.; Yamamoto, H.; Yamaguchi, Y.; Ishii, M.; Hibi, S.; Kume, H.; Ouchi, Y. Antiplatelet Cilostazol, an Inhibitor of Type III Phosphodiesterase, Improves Swallowing Function in Patients with a History of Stroke. J. Am. Geriatr. Soc. 2008, 56, 1153–1154. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, K.; Cyong, J.; Kitada, S.; Kitamura, H.; Ozeki, J.; Satoh, Y.; Suzuki, T.; Sasaki, H. A Traditional Chinese Herbal Medicine, Banxia Houpo Tang, Improves Cough Reflex of Patients with Aspiration Pneumonia. J. Am. Geriatr. Soc. 2002, 50, 1751–1752. [Google Scholar] [CrossRef] [PubMed]
- Anttila, S.A.K.; Leinonen, E.V.J. A Review of the Pharmacological and Clinical Profile of Mirtazapine. CNS Drug Rev. 2001, 7, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Nakae, H.; Hiroshima, Y.; Hebiguchi, M. Kampo Medicines for Frailty in Locomotor Disease. Front. Nutr. 2018, 5, 31. [Google Scholar] [CrossRef] [PubMed]
Total (N = 257) | Polypharmacy (+) (N = 163) | Polypharmacy (−) (N = 94) | p Value | |
---|---|---|---|---|
Age, y | 79.3 (10.0) | 79.7 (9.0) | 78.5 (11.5) | 0.346 |
Sex, male | 113 (44.0) | 77 (47.2) | 36 (38.3) | 0.192 |
Stroke type | ||||
Cerebral infarction | 166 (64.6) | 110 (67.5) | 56 (59.6) | 0.224 |
Cerebral hemorrhage | 78 (30.4) | 44 (27.0) | 34 (36.2) | 0.159 |
Subarachnoid hemorrhage | 12 (4.7) | 8 (4.9) | 4 (4.3) | 0.999 |
Stroke history | 80 (31.1) | 61 (37.4) | 19 (20.2) | 0.005 |
Premorbid mRS | 1 (0, 3) | 1 (0, 3) | 0 (0, 2) | 0.001 |
Onset-admission days | 14 (10, 22) | 15 (10, 25) | 13 (9, 19) | 0.074 |
Paralysis | ||||
Right/Left/Both | 114 (44.4)/99 (38.5)/17 (6.6) | 75 (46.0)/57 (35.0)/13 (8.0) | 39 (41.5)/42 (44.7)/4 (4.3) | 0.516/0.144/0.305 |
BRS | ||||
Upper limb/Hand-finger/Lower limb | 4 (2, 6)/4 (2, 5)/5 (2, 6) | 4 (2, 6)/4 (2, 6)/5 (2, 6) | 4 (2, 5)/4.5 (2, 5)/4 (2, 5) | 0.895/0.725/0.757 |
FIM, score | ||||
-Total | 43 (24, 73) | 40 (23, 69) | 46 (29, 80) | 0.105 |
-Motor | 25 (14, 53) | 23 (13, 52) | 27 (14, 55) | 0.249 |
-Cognitive | 15 (9, 24) | 14 (8, 23) | 19 (10, 25) | 0.014 |
FILS, score | 7 (2, 9) | 7 (2, 9) | 7 (7, 10) | 0.121 |
ROAG, score | 11 (10, 14) | 12 (10, 15) | 11 (9, 13) | 0.117 |
CCI, score | 3 (1, 4) | 3 (2, 4) | 3 (1, 3) | 0.189 |
Nutritional status | ||||
GNRI | 89.5 (83.2, 96.4) | 90.4 (84.0, 96.8) | 88.0 (81.3, 95.4) | 0.103 |
BMI, kg/m2 | 20.5 (18.4, 22.6) | 21.2 (19.1, 22.9) | 19.8 (13.7, 31.0) | 0.013 |
Energy intake, kcal/kg/day | 28.8 (24.5, 34.1) | 28.3 (24.2, 33.7) | 29.7 (25.1, 35.1) | 0.259 |
Protein intake, g/kg/day | 1.11 (0.95, 1.30) | 1.09 (0.95, 1.23) | 1.12 (0.94, 1.35) | 0.128 |
Muscle-related variables | ||||
HG, kg | 12.6 (5.4, 17.8) | 12.7 (5.3, 17.7) | 12.5 (6.0, 17.9) | 0.964 |
SMI, kg/m2 | 5.17 (4.63, 5.95) | 5.22 (4.73, 6.06) | 5.10 (4.37, 5.78) | 0.067 |
Laboratory data | ||||
Alb, g/dL | 3.41 (0.50) | 3.41 (0.54) | 3.42 (0.43) | 0.895 |
CRP, mg/dL | 1.40 (2.52) | 1.59 (2.84) | 1.07 (1.79) | 0.113 |
Hb, g/dL | 12.71 (1.69) | 12.58 (1.78) | 12.95 (1.50) | 0.092 |
Length of stay, days | 104 (71, 145) | 101 (67, 144) | 107 (72, 147) | 0.465 |
Rehabilitation a, units/day | 8.1 (7.0, 8.5) | 8.0 (6.9, 8.4) | 8.3 (7.2, 8.6) | 0.498 |
Medication | ||||
No. of total medications | 5 (3, 7) | 7 (5, 9) | 3 (2, 3) | <0.001 |
No. of PIMs | 1 (0, 1) | 1 (1, 2) | 0 (0, 1) | <0.001 |
Drug Category | |
---|---|
Antithrombotics | 165 (64.2) |
PPI | 145 (56.4) |
Antihypertensives | 168 (75.4) |
Diuretic | 42 (16.3) |
Statins | 71 (27.6) |
Antidiabetics | 42 (16.3) |
Antipsychotics | 18 (7.0) |
Benzodiazepines | 16 (6.2) |
NSAIDs | 16 (6.2) |
Antidepressants | 15 (5.8) |
Total (N = 257) | Polypharmacy (+) (N = 163) | Polypharmacy (−) (N = 94) | p Value | |
---|---|---|---|---|
FILS at discharge, score | 9 (8, 10) | 9 (7, 10) | 10 (9, 10) | 0.004 |
GNRI at discharge | 93.4 (87.6, 98.6) | 94.4 (87.5, 98.3) | 91.7 (87.6, 98.5) | 0.616 |
FILS at Discharge | GNRI at Discharge | |||||
---|---|---|---|---|---|---|
β | B (95% CI) | p Value | β | B (95% CI) | p Value | |
Age | −0.173 | −0.042 (−0.071, −0.014) | 0.004 | −0.188 | −0.171 (−0.264, −0.077) | <0.001 |
Sex (Male) | −0.106 | −0.532 (−1.336, 0.271) | 0.193 | −0.145 | −2.737 (−5.421, −0.052) | 0.046 |
Stroke type | ||||||
Cerebral infarction | 0.172 | 0.888 (−0.340, 2.117) | 0.156 | −0.112 | −2.150 (−6.300, 2.000) | 0.308 |
Cerebral hemorrhage | 0.182 | 0.972 (−0.300, 2.243) | 0.134 | −0.152 | −3.006 (−7.295, 1.283) | 0.168 |
Subarachnoid hemorrhage | (reference) | (reference) | ||||
FIM-motor on admission | 0.043 | 0.005 (−0.017, 0.027) | 0.642 | −0.080 | −0.038 (−0.111, 0.036) | 0.313 |
FIM-cognitive on admission | 0.028 | 0.008 (−0.039, 0.055) | 0.730 | 0.024 | 0.026 (−0.130, 0.183) | 0.741 |
FILS on admission | 0.325 | 0.264 (0.132, 0.396) | <0.001 | −0.050 | −0.150 (−0.584, 0.285) | 0.497 |
GNRI on admission | 0.137 | 0.034 (0.002, 0.066) | 0.038 | 0.660 | 0.631 (0.526, 0.737) | <0.001 |
Energy intake on admission | 0.040 | 0.012 (−0.024, 0.047) | 0.518 | −0.004 | −0.004 (−0.118, 0.110) | 0.944 |
ROAG on admission | −0.008 | −0.005 (−0.102, 0.091) | 0.912 | −0.043 | −0.125 (−0.475, 0.224) | 0.480 |
HG on admission | 0.254 | 0.077 (0.028, 0.125) | 0.002 | 0.065 | 0.073 (−0.082, 0.227) | 0.353 |
SMI on admission | 0.005 | 0.013 (−0.414, 0.440) | 0.953 | 0.187 | 1.757 (0.374, 3.141) | 0.013 |
CCI | −0.078 | −0.112 (−0.271, 0.047) | 0.165 | 0.084 | 0.468 (−0.071, 1.007) | 0.088 |
Length of stay | 0.092 | 0.005 (−0.002, 0.012) | 0.163 | 0.083 | 0.017 (−0.006, 0.040) | 0.139 |
Rehabilitation a | 0.025 | 0.018 (−0.063, 0.100) | 0.658 | −0.011 | −0.029 (−0.284, 0.225) | 0.821 |
Number of Drugs on admission | −0.133 | −0.115 (−0.210, −0.021) | 0.017 | −0.145 | −0.471 (−0.783, −0.159) | 0.003 |
R2 | 0.480 | 0.608 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumoto, A.; Yoshimura, Y.; Nagano, F.; Bise, T.; Kido, Y.; Shimazu, S.; Shiraishi, A. Polypharmacy and Its Association with Dysphagia and Malnutrition among Stroke Patients with Sarcopenia. Nutrients 2022, 14, 4251. https://doi.org/10.3390/nu14204251
Matsumoto A, Yoshimura Y, Nagano F, Bise T, Kido Y, Shimazu S, Shiraishi A. Polypharmacy and Its Association with Dysphagia and Malnutrition among Stroke Patients with Sarcopenia. Nutrients. 2022; 14(20):4251. https://doi.org/10.3390/nu14204251
Chicago/Turabian StyleMatsumoto, Ayaka, Yoshihiro Yoshimura, Fumihiko Nagano, Takahiro Bise, Yoshifumi Kido, Sayuri Shimazu, and Ai Shiraishi. 2022. "Polypharmacy and Its Association with Dysphagia and Malnutrition among Stroke Patients with Sarcopenia" Nutrients 14, no. 20: 4251. https://doi.org/10.3390/nu14204251
APA StyleMatsumoto, A., Yoshimura, Y., Nagano, F., Bise, T., Kido, Y., Shimazu, S., & Shiraishi, A. (2022). Polypharmacy and Its Association with Dysphagia and Malnutrition among Stroke Patients with Sarcopenia. Nutrients, 14(20), 4251. https://doi.org/10.3390/nu14204251