Recovery of ΔF508-CFTR Function by Citrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Computational Studies
2.3. Cell Lines
2.4. Western Blotting of CFTR
2.5. Determination of Hyaluronan Export
2.6. Iodide Efflux
3. Results
3.1. Virtual Docking
3.2. Activation of Hyaluronan Export
3.3. Iodide Efflux
3.4. Recovery of ΔF508-CFTR Cell Surface Expression
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bobadilla, J.L.; Macek, M., Jr.; Fine, J.P.; Farrell, P.M. Cystic fibrosis: A worldwide analysis of CFTR mutations--correlation with incidence data and application to screening. Hum. Mutat. 2002, 19, 575–606. [Google Scholar] [CrossRef] [PubMed]
- Pilewski, J.M.; Frizzell, R.A. Role of CFTR in airway disease. Physiol. Rev. 1999, 79, S215–S255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratt, S.; Shepard, R.L.; Kandasamy, R.A.; Johnston, P.A.; Perry, W., III; Dantzig, A.H. The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites. Mol. Cancer Ther. 2005, 4, 855–863. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Kota, P.; Aleksandrov, A.A.; Cui, L.; Jensen, T.; Dokholyan, N.V.; Riordan, J.R. Correctors of {Delta}F508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein. FASEB J. 2012, 27, 536–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, T.; Schumacher, U.; Prehm, P. Hyaluronan export by the ABC-transporter MRP5 and its modulation by intracellular cGMP. J. Biol. Chem. 2007, 282, 20999–21004. [Google Scholar] [CrossRef] [Green Version]
- Schulz, T.; Schumacher, U.; Prante, C.; Sextro, W.; Prehm, P. Cystic Fibrosis Transmembrane Conductance Regulator Can Export Hyaluronan. Pathobiology 2010, 77, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Lieb, T.; Forteza, R.; Salathe, M. Hyaluronic acid in cultured ovine tracheal cells and its effect on ciliary beat frequency in vitro. J. Aerosol. Med. 2000, 13, 231–237. [Google Scholar] [CrossRef]
- Forteza, R.; Lieb, T.; Aoki, T.; Savani, R.C.; Conner, G.E.; Salathe, M. Hyaluronan serves a novel role in airway mucosal host defense. FASEB J. 2001, 15, 2179–2186. [Google Scholar] [CrossRef] [PubMed]
- Nowakowska, E.; Schulz, T.; Molenda, N.; Schillers, H.; Prehm, P. Recovery of ΔF508-CFTR function by analogs of hyaluronan disaccharide. J. Cell Biochem. 2012, 113, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Mornon, J.P.; Lehn, P.; Callebaut, I. Atomic model of human cystic fibrosis transmembrane conductance regulator: Membrane-spanning domains and coupling interfaces. Cell Mol. Life Sci. 2008, 65, 2594–2612. [Google Scholar] [CrossRef] [PubMed]
- Serohijos, A.W.; Hegedus, T.; Aleksandrov, A.A.; He, L.; Cui, L.; Dokholyan, N.V.; Riordan, J.R. Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function. Proc. Natl. Acad. Sci. USA 2008, 105, 3256–3261. [Google Scholar] [CrossRef] [Green Version]
- Mornon, J.P.; Lehn, P.; Callebaut, I. Molecular models of the open and closed states of the whole human CFTR protein. Cell Mol. Life Sci. 2009, 66, 3469–3486. [Google Scholar] [CrossRef]
- Szellas, T.; Nagel, G. Apparent affinity of CFTR for ATP is increased by continuous kinase activity. FEBS Lett. 2003, 535, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Mills, A.D.; Yoo, C.; Butler, J.D.; Yang, B.; Verkman, A.S.; Kurth, M.J. Design and synthesis of a hybrid potentiator-corrector agonist of the cystic fibrosis mutant protein DeltaF508-CFTR. Bioorg. Med. Chem. Lett. 2010, 20, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Van, G.F.; Hadida, S.; Grootenhuis, P.D.; Burton, B.; Stack, J.H.; Straley, K.S.; Decker, C.J.; Miller, M.; McCartney, J.; Olson, E.R.; et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc. Natl. Acad. Sci. USA 2011, 108, 18843–18848. [Google Scholar]
- Ma, T.; Thiagarajah, J.R.; Yang, H.; Sonawane, N.D.; Folli, C.; Galietta, L.J.; Verkman, A.S. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J. Clin. Investig. 2002, 110, 1651–1658. [Google Scholar] [CrossRef]
- López-Neyra, A.; Suárez, L.; Munoz, M.; de Blas, A.; Ruiz de Valbuena, M.; Garriga, M.; Calvo, J.; Ribes, C.; Giron, M.R.; Máiz, L.; et al. Long-term docosahexaenoic acid (DHA) supplementation in cystic fibrosis patients: A randomized, multi-center, double-blind, placebo-controlled trial. Prostaglandins Leukot. Essent. Fatty Acids 2020, 162, 102186. [Google Scholar] [CrossRef]
- Jojovic, M.; Delpech, B.; Prehm, P.; Schumacher, U. Expression of hyaluronate and hyaluronate synthase in human primary tumours and their metastases in scid mice. Cancer Lett. 2002, 188, 181–189. [Google Scholar] [CrossRef]
- Grskovic, B.; Pollaschek, C.; Mueller, M.M.; Stuhlmeier, K.M. Expression of hyaluronan synthase genes in umbilical cord blood stem/progenitor cells. Biochim. Biophys. Acta 2006, 1760, 890–895. [Google Scholar] [CrossRef]
- Monz, K.; Maas-Kuck, K.; Schumacher, U.; Schulz, T.; Hallmann, R.; Schnaker, E.M.; Schneider, S.W.; Prehm, P. Inhibition of hyaluronan export attenuates cell migration and metastasis of human melanoma. J. Cell Biochem. 2008, 105, 1260–1266. [Google Scholar] [CrossRef]
- Lansdell, K.A.; Kidd, J.F.; Delaney, S.J.; Wainwright, B.J.; Sheppard, D.N. Regulation of murine cystic fibrosis transmembrane conductance regulator Cl- channels expressed in Chinese hamster ovary cells. J. Physiol. 1998, 512, 751–764. [Google Scholar] [CrossRef]
- Huang, S.Y.; Bolser, D.; Liu, H.Y.; Hwang, T.C.; Zou, X. Molecular modeling of the heterodimer of human CFTR’s nucleotide-binding domains using a protein-protein docking approach. J. Mol. Graph. Model. 2009, 27, 822–828. [Google Scholar] [CrossRef] [Green Version]
- Strickland, K.M.; Stock, G.; Cui, G.; Hwang, H.; Infield, D.T.; Schmidt-Krey, I.; McCarty, N.A.; Gumbart, J.C. ATP-Dependent Signaling in Simulations of a Revised Model of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). J. Phys. Chem. B 2019, 123, 3177–3188. [Google Scholar] [CrossRef]
- Shimizu, H.; Yu, Y.C.; Kono, K.; Kubota, T.; Yasui, M.; Li, M.; Hwang, T.C.; Sohma, Y. A stable ATP binding to the nucleotide binding domain is important for reliable gating cycle in an ABC transporter CFTR. J. Physiol. Sci. 2010, 60, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.F.; Li, M.; Hwang, T.C. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel. J. Gen. Physiol. 2010, 135, 399–414. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Wang, X.; Liu, H.Y.; Zou, X.; Li, M.; Hwang, T.C. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics. J. Gen. Physiol. 2006, 128, 413–422. [Google Scholar] [CrossRef] [Green Version]
- Eckford, P.D.; Li, C.; Ramjeesingh, M.; Bear, C.E. Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner. J. Biol. Chem. 2012, 287, 36639–36649. [Google Scholar] [CrossRef] [Green Version]
- Jih, K.Y.; Hwang, T.C. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle. Proc. Natl. Acad. Sci. USA 2013, 110, 4404–4409. [Google Scholar] [CrossRef] [Green Version]
- Sies, H.; Akerboom, T.P.; Tager, J.M. Mitochondrial and cytosolic NADPH systems and isocitrate dehydrogenase indicator metabolites during ureogensis from ammonia in isolated rat hepatocytes. Eur. J. Biochem. 1977, 72, 301–307. [Google Scholar] [CrossRef]
- Kauppinen, R.A.; Hiltunen, J.K.; Hassinen, I.E. Compartmentation of citrate in relation to the regulation of glycolysis and the mitochondrial transmembrane proton electrochemical potential gradient in isolated perfused rat heart. Biochim. Biophys. Acta 1982, 681, 286–291. [Google Scholar] [CrossRef]
- Lin, C.C.; Cheng, T.L.; Tsai, W.H.; Tsai, H.J.; Hu, K.H.; Chang, H.C.; Yeh, C.W.; Chen, Y.C.; Liao, C.C.; Chang, W.T. Loss of the respiratory enzyme citrate synthase directly links the Warburg effect to tumor malignancy. Sci. Rep. 2012, 2, 785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campuzano, S.; Diaz, J.J.; Bousono, C.; Rodriguez, M.; Campos, C.; Malaga, S. Risk of urolithiasis in patients with cystic fibrosis. Nefrologia 2009, 29, 61–66. [Google Scholar]
- Gibney, E.M.; Goldfarb, D.S. The association of nephrolithiasis with cystic fibrosis. Am. J. Kidney Dis. 2003, 42, 1–11. [Google Scholar] [CrossRef]
- Wiley, W.J. The dissociation of calcium citrate. Biochem. J. 1930, 24, 856–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, G.K.; Wong, K.S.; Kim, J.J. Binding of calcium to glycosaminoglycans: An equilibrium dialysis study. Arch. Biochem. Biophys. 1988, 260, 161–167. [Google Scholar] [CrossRef]
- Antigny, F.; Norez, C.; Cantereau, A.; Becq, F.; Vandebrouck, C. Abnormal spatial diffusion of Ca2+ in F508del-CFTR airway epithelial cells. Respir. Res. 2008, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Norez, C.; Antigny, F.; Becq, F.; Vandebrouck, C. Maintaining low Ca2+ level in the endoplasmic reticulum restores abnormal endogenous F508del-CFTR trafficking in airway epithelial cells. Traffic 2006, 7, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C. Cystic fibrosis-related diabetes. Nat. Rev. Endocrinol. 2011, 7, 375. [Google Scholar] [CrossRef]
- Terribile, M.; Capuano, M.; Cangiano, G.; Carnovale, V.; Ferrara, P.; Petrarulo, M.; Marangella, M. Factors increasing the risk for stone formation in adult patients with cystic fibrosis. Nephrol. Dial. Transpl. 2006, 21, 1870–1875. [Google Scholar] [CrossRef]
- von der Heiden, R.; Balestra, A.P.; Bianchetti, M.G.; Casaulta, A.C.; Mullis, P.E.; Lippuner, K.; Jaeger, P. Which factors account for renal stone formation in cystic fibrosis? Clin. Nephrol. 2003, 59, 160–163. [Google Scholar] [CrossRef]
- Perez-Brayfield, M.R.; Caplan, D.; Gatti, J.M.; Smith, E.A.; Kirsch, A.J. Metabolic risk factors for stone formation in patients with cystic fibrosis. J. Urol. 2002, 167, 480–484. [Google Scholar] [CrossRef]
- Scott, W.J.; Block, G.E. Biliary stone disease in adults with cystic fibrosis. Surgery 1989, 105, 671–673. [Google Scholar]
- Spivacow, F.R.; Negri, A.L.; Polonsky, A.; Del Valle, E.E. Long-term treatment of renal lithiasis with potassium citrate. Urology 2010, 76, 1346–1349. [Google Scholar] [CrossRef] [PubMed]
- Conte, A.; Piza, P.; Garcia-Raja, A.; Grases, F.; Costa-Bauza, A.; Prieto, R.M. Urinary lithogen risk test: Usefulness in the evaluation of renal lithiasis treatment using crystallization inhibitors (citrate and phytate). Arch. Esp. Urol. 1999, 52, 305–310. [Google Scholar]
- Miyake, O.; Yoshimura, K.; Yoshioka, T.; Koide, T.; Okuyama, A. High urinary excretion level of citrate and magnesium in children: Potential etiology for the reduced incidence of pediatric urolithiasis. Urol. Res. 1998, 26, 209–213. [Google Scholar] [CrossRef]
- Guitron, A.; Gonzalez-Loya, H.; Barinagarrementeria, R.; Sarol, J.C.; Adalid, R.; Rodriguez-Delgado, J. Dissolution of pancreatic lithiasis by direct citrate application into the pancreatic duct in two patients with chronic idiopathic pancreatitis. Dig. Dis. 1997, 15, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Barcelo, P.; Wuhl, O.; Servitge, E.; Rousaud, A.; Pak, C.Y. Randomized double-blind study of potassium citrate in idiopathic hypocitraturic calcium nephrolithiasis. J. Urol. 1993, 150, 1761–1764. [Google Scholar] [CrossRef]
- Pak, C.Y.; Fuller, C.; Sakhaee, K.; Preminger, G.M.; Britton, F. Long-term treatment of calcium nephrolithiasis with potassium citrate. J. Urol. 1985, 134, 11–19. [Google Scholar] [CrossRef]
- Pak, C.Y.; Sakhaee, K.; Fuller, C.J. Physiological and physiochemical correction and prevention of calcium stone formation by potassium citrate therapy. Trans. Assoc. Am. Physicians 1983, 96, 294–305. [Google Scholar] [PubMed]
- Schwille, P.O.; Scholz, D.; Paulus, M.; Engelhardt, W.; Sigel, A. Citrate in daily and fasting urine: Results of controls, patients with recurrent idiopathic calcium urolithiasis, and primary hyperparathyroidism. Investig. Urol. 1979, 16, 457–462. [Google Scholar]
- Elliott, R.B. Methods and Compositions for the Treatment of Lung Disorders. WO2011142677. 2011. Available online: https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2011142677 (accessed on 9 October 2022).
- Engelen, M.P.; Com, G.; Deutz, N.E. Protein is an important but undervalued macronutrient in the nutritional care of patients with cystic fibrosis. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 515–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorji, Z.; Modaresi, M.; Yekanni-Nejad, S.; Mahmoudi, M. Effects of low glycemic index/high-fat, high-calorie diet on glycemic control and lipid profiles of children and adolescence with cystic fibrosis: A randomized double-blind controlled clinical trial. Diabetes Metab. Syndr. 2020, 14, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Gorji, Z.; Modaresi, M.; Yekanni-Nejad, S.; Rezaei, N.; Mahmoudi, M. Comparing effects of low glycemic index/high-fat, high-calorie diet and high-fat, high-calorie diet on cytokine levels of patients with cystic fibrosis: A randomized controlled clinical trial. Eur. Cytokine Netw. 2020, 31, 32–38. [Google Scholar] [PubMed]
- Hagins, J.M.; Locy, R.; Silo-Suh, L. Isocitrate lyase supplies precursors for hydrogen cyanide production in a cystic fibrosis isolate of Pseudomonas aeruginosa. J. Bacteriol. 2009, 191, 6335–6339. [Google Scholar] [CrossRef] [PubMed]
Name | Structure | Calculated Affinity Km (µM) | Experimental Activation/ Inhibition EC50 (µM) | Ref. |
---|---|---|---|---|
Hylout4 | 7 | 100 for HA | [9] | |
ATP | 0.022 | 41 for Cl− | [13] | |
CFTRact-06 | 1.4 | 1 for HA | [6] | |
Corr-4a | 0.01 | 1 for Cl− | [14] | |
VX809 | 0.01 | 0.081 for Cl− | [15] | |
CFTRinh127 | 0.22 | 0.3 for Cl− | [16] | |
DHA | 17 | [17] | ||
Citrate | 2.7 | 6 for HA | ||
Isocitrate | 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borkenhagen, B.; Prehm, P. Recovery of ΔF508-CFTR Function by Citrate. Nutrients 2022, 14, 4283. https://doi.org/10.3390/nu14204283
Borkenhagen B, Prehm P. Recovery of ΔF508-CFTR Function by Citrate. Nutrients. 2022; 14(20):4283. https://doi.org/10.3390/nu14204283
Chicago/Turabian StyleBorkenhagen, Beatrice, and Peter Prehm. 2022. "Recovery of ΔF508-CFTR Function by Citrate" Nutrients 14, no. 20: 4283. https://doi.org/10.3390/nu14204283
APA StyleBorkenhagen, B., & Prehm, P. (2022). Recovery of ΔF508-CFTR Function by Citrate. Nutrients, 14(20), 4283. https://doi.org/10.3390/nu14204283