Free Sugar Intake and Periodontal Diseases: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Registration and Protocol
2.2. Search Strategy
2.3. Study Selection
2.4. Data Extraction and Quality Assessment
3. Results
3.1. Literature Search
3.2. Study Characteristics
3.3. Measurements of Periodontal Diseases
3.4. Measurements of Free Sugar Intake
3.5. Quality Assessment
4. Discussion
4.1. Summary of Main Findings
4.2. Comparison with Previous Studies and Possible Explanations
4.3. Strength and Limitation of Included Study
4.4. Strengths and Limitations in the Review Process
4.5. Generalizability of the Result
4.6. Implications from the Present Study
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Prim. 2017, 3, 17038. [Google Scholar] [CrossRef] [PubMed]
- Peres, M.A.; Macpherson, L.M.D.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Listl, S.; Celeste, R.K.; Guarnizo-Herreno, C.C.; Kearns, C.; et al. Oral diseases: A global public health challenge. Lancet 2019, 394, 249–260. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Jepsen, S.; Jin, L.; Otomo-Corgel, J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: A call for global action. J. Clin. Periodontol. 2017, 44, 456–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stöhr, J.; Barbaresko, J.; Neuenschwander, M.; Schlesinger, S. Bidirectional association between periodontal disease and diabetes mellitus: A systematic review and meta-analysis of cohort studies. Sci. Rep. 2021, 11, 13686. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Filho, I.S.; da Cruz, S.S.; Trindade, S.C.; Passos-Soares, J.d.S.; Carvalho-Filho, P.C.; Figueiredo, A.C.M.G.; Lyrio, A.O.; Hintz, A.M.; Pereira, M.G.; Scannapieco, F. Periodontitis and respiratory diseases: A systematic review with meta-analysis. Oral Dis. 2020, 26, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Nadim, R.; Tang, J.; Dilmohamed, A.; Yuan, S.; Wu, C.; Bakre, A.T.; Partridge, M.; Ni, J.; Copeland, J.R.; Anstey, K.J.; et al. Influence of periodontal disease on risk of dementia: A systematic literature review and a meta-analysis. Eur. J. Epidemiol. 2020, 35, 821–833. [Google Scholar] [CrossRef] [PubMed]
- Larvin, H.; Kang, J.; Aggarwal, V.R.; Pavitt, S.; Wu, J. Risk of incident cardiovascular disease in people with periodontal disease: A systematic review and meta-analysis. Clin. Exp. Dent. Res. 2021, 7, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Romandini, M.; Baima, G.; Antonoglou, G.; Bueno, J.; Figuero, E.; Sanz, M. Periodontitis, Edentulism, and Risk of Mortality: A Systematic Review with Meta-analyses. J. Dent. Res. 2021, 100, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Thow, A.M.; Downs, S.M.; Mayes, C.; Trevena, H.; Waqanivalu, T.; Cawley, J. Fiscal policy to improve diets and prevent noncommunicable diseases: From recommendations to action. Bull. World Health Organ. 2018, 96, 201–210. [Google Scholar] [CrossRef]
- Moynihan, P. Sugars and Dental Caries: Evidence for Setting a Recommended Threshold for Intake. Adv. Nutr. 2016, 7, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, S.; Neuenschwander, M.; Schwedhelm, C.; Hoffmann, G.; Bechthold, A.; Boeing, H.; Schwingshackl, L. Food Groups and Risk of Overweight, Obesity, and Weight Gain: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2019, 10, 205–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuenschwander, M.; Ballon, A.; Weber, K.S.; Norat, T.; Aune, D.; Schwingshackl, L.; Schlesinger, S. Role of diet in type 2 diabetes incidence: Umbrella review of meta-analyses of prospective observational studies. BMJ 2019, 366, l2368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Zhu, Y.; Malik, V.; Li, X.; Peng, X.; Zhang, F.F.; Shan, Z.; Liu, L. Intake of Sugar-Sweetened and Low-Calorie Sweetened Beverages and Risk of Cardiovascular Disease: A Meta-Analysis and Systematic Review. Adv. Nutr. 2021, 12, 89–101. [Google Scholar] [CrossRef]
- Llaha, F.; Gil-Lespinard, M.; Unal, P.; de Villasante, I.; Castañeda, J.; Zamora-Ros, R. Consumption of Sweet Beverages and Cancer Risk. A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2021, 13, 516. [Google Scholar] [CrossRef] [PubMed]
- Walton, J.; Bell, H.; Re, R.; Nugent, A.P. Current perspectives on global sugar consumption: Definitions, recommendations, population intakes, challenges and future direction. Nutr. Res. Rev. 2021, 1–22. [Google Scholar] [CrossRef]
- Song, I.S.; Han, K.; Ko, Y.; Park, Y.G.; Ryu, J.J.; Park, J.B. Associations between the consumption of carbonated beverages and periodontal disease: The 2008-2010 Korea national health and nutrition examination survey. Medicine 2016, 95, e4253. [Google Scholar] [CrossRef] [PubMed]
- Lula, E.C.; Ribeiro, C.C.; Hugo, F.N.; Alves, C.M.; Silva, A.A. Added sugars and periodontal disease in young adults: An analysis of NHANES III data. Am. J. Clin. Nutr. 2014, 100, 1182–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyvad, B.; Takahashi, N. Integrated hypothesis of dental caries and periodontal diseases. J. Oral Microbiol. 2020, 12, 1710953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, J.-L.P.; Milledge, K.L.; O’Leary, F.; Cumming, R.; Eberhard, J.; Hirani, V. Poor dietary intake of nutrients and food groups are associated with increased risk of periodontal disease among community-dwelling older adults: A systematic literature review. Nutr. Rev. 2020, 78, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Kristal, R.B.; Blank, A.E.; Wylie-Rosett, J.; Selwyn, P.A. Factors associated with daily consumption of sugar-sweetened beverages among adult patients at four federally qualified health centers, Bronx, New York, 2013. Prev. Chronic Dis. 2015, 12, E02. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganesan, S.M.; Vazana, S.; Stuhr, S. Waistline to the gumline: Relationship between obesity and periodontal disease-biological and management considerations. Periodontology 2000 2021, 87, 299–314. [Google Scholar] [CrossRef]
- Warren, C.; Hobin, E.; Manuel, D.G.; Anderson, L.N.; Hammond, D.; Jessri, M.; Arcand, J.; L’Abbé, M.; Li, Y.; Rosella, L.C.; et al. Socioeconomic position and consumption of sugary drinks, sugar-sweetened beverages and 100% juice among Canadians: A cross-sectional analysis of the 2015 Canadian Community Health Survey-Nutrition. Can. J. Public Health 2022, 113, 341–362. [Google Scholar] [CrossRef] [PubMed]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: https://www.ohri.ca//programs/clinical_epidemiology/oxford.asp (accessed on 20 September 2022).
- Moskalewicz, A.; Oremus, M. No clear choice between Newcastle-Ottawa Scale and Appraisal Tool for Cross-Sectional Studies to assess methodological quality in cross-sectional studies of health-related quality of life and breast cancer. J. Clin. Epidemiol. 2020, 120, 94–103. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, R.; Cheng, R.; Xu, T.; Zhang, T.; Hong, X.; Zhao, X.; Wu, Y.; Cheng, L.; Hu, T. Gingival bleeding and calculus among 12-year-old Chinese adolescents: A multilevel analysis. BMC Oral Health 2020, 20, 147. [Google Scholar] [CrossRef] [PubMed]
- Fann, J.C.-Y.; Lai, H.; Chiu, S.Y.-H.; Yen, A.M.-F.; Chen, S.L.-S.; Chen, H.-H. A population-based study on the association between the intake of soft drinks and periodontal disease in Taiwanese adults aged 35-44 years (KCIS no. 33). Public Health Nutr. 2016, 19, 1471–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyaw Myint, Z.C.; Zaitsu, T.; Oshiro, A.; Ueno, M.; Soe, K.K.; Kawaguchi, Y. Risk indicators of dental caries and gingivitis among 10-11-year-old students in Yangon, Myanmar. Int. Dent. J. 2020, 70, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, A.; Watanabe, R.; Hanada, N.; Miyazaki, H. A longitudinal study of the relationship between diet intake and dental caries and periodontal disease in elderly Japanese subjects. Gerodontology 2009, 26, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Menezes, C.C.; Ribeiro, C.C.C.; Alves, C.M.C.; Thomaz, E.B.A.F.; Franco, M.M.; Batista, R.F.L.; Silva, A.A.M. Soft drink consumption and periodontal status in pregnant women. J. Periodontol. 2019, 90, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.R.O.; Batista, R.F.L.; Ladeira, L.L.C.; Thomaz, E.B.A.F.; Alves, C.M.C.; Saraiva, M.C.; Silva, A.A.M.; Brondani, M.A.; Ribeiro, C.C.C. Higher sugar intake is associated with periodontal disease in adolescents. Clin. Oral Investig. 2021, 25, 983–991. [Google Scholar] [CrossRef]
- El Tantawi, M.; AlAgl, A. Association between gingivitis severity and lifestyle habits in young Saudi Arabian males. East. Mediterr. Health J. 2018, 24, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Jaghasi, I.; Hatahet, W.; Dashash, M. Dietary patterns and oral health in schoolchildren from Damascus, Syrian Arab Republic. East. Mediterr. Health J. 2012, 18, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Vilarrasa, J.; Peña, M.; Gumbau, L.; Monje, A.; Nart, J. Exploring the relationship among dental caries, nutritional habits, and peri-implantitis. J. Periodontol. 2021, 92, 1306–1316. [Google Scholar] [CrossRef] [PubMed]
- Vitosyte, M.; Puriene, A.; Stankeviciene, I.; Rimkevicius, A.; Trumpaite-Vanagiene, R.; Aleksejuniene, J.; Stangvaltaite-Mouhat, L. Oral Health among Adult Residents in Vilnius, Lithuania. Int. J. Environ. Res. Public Health 2022, 19, 582. [Google Scholar] [CrossRef]
- Simon, C.; Tesfaye, F.; Berhane, Y. Assessment of the oral health status of school children in Addis Ababa. Ethiop. Med. J. 2003, 41, 245–256. [Google Scholar] [PubMed]
- McKeown, N.M.; Dashti, H.S.; Ma, J.; Haslam, D.E.; Kiefte-de Jong, J.C.; Smith, C.E.; Tanaka, T.; Graff, M.; Lemaitre, R.N.; Rybin, D.; et al. Sugar-sweetened beverage intake associations with fasting glucose and insulin concentrations are not modified by selected genetic variants in a ChREBP-FGF21 pathway: A meta-analysis. Diabetologia 2018, 61, 317–330. [Google Scholar] [CrossRef] [Green Version]
- Kocher, T.; König, J.; Borgnakke, W.S.; Pink, C.; Meisel, P. Periodontal complications of hyperglycemia/diabetes mellitus: Epidemiologic complexity and clinical challenge. Periodontology 2000 2018, 78, 59–97. [Google Scholar] [CrossRef]
- Chiu, S.Y.-H.; Lai, H.; Yen, A.M.-F.; Fann, J.C.-Y.; Chen, L.-S.; Chen, H.-H. Temporal sequence of the bidirectional relationship between hyperglycemia and periodontal disease: A community-based study of 5885 Taiwanese aged 35-44 years (KCIS No. 32). Acta Diabetol. 2015, 52, 123–131. [Google Scholar] [CrossRef]
- Taskinen, M.-R.; Packard, C.J.; Borén, J. Dietary Fructose and the Metabolic Syndrome. Nutrients 2019, 11, 1987. [Google Scholar] [CrossRef] [Green Version]
- Tegelberg, P.; Tervonen, T.; Knuuttila, M.; Jokelainen, J.; Keinänen-Kiukaanniemi, S.; Auvinen, J.; Ylöstalo, P. Long-term metabolic syndrome is associated with periodontal pockets and alveolar bone loss. J. Clin. Periodontol. 2019, 46, 799–808. [Google Scholar] [CrossRef]
- Baumgartner, S.; Imfeld, T.; Schicht, O.; Rath, C.; Persson, R.E.; Persson, G.R. The impact of the stone age diet on gingival conditions in the absence of oral hygiene. J. Periodontol. 2009, 80, 759–768. [Google Scholar] [CrossRef]
- Millen, A.E.; Dahhan, R.; Freudenheim, J.L.; Hovey, K.M.; Li, L.; McSkimming, D.I.; Andrews, C.A.; Buck, M.J.; LaMonte, M.J.; Kirkwood, K.L.; et al. Dietary carbohydrate intake is associated with the subgingival plaque oral microbiome abundance and diversity in a cohort of postmenopausal women. Sci. Rep. 2022, 12, 2643. [Google Scholar] [CrossRef] [PubMed]
- Trombelli, L.; Farina, R.; Silva, C.O.; Tatakis, D.N. Plaque-induced gingivitis: Case definition and diagnostic considerations. J. Periodontol. 2018, 89 (Suppl. 1), S46–S73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J. Periodontol. 2018, 89 (Suppl. 1), S159–S172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimonovich, M.; Pearce, A.; Thomson, H.; Keyes, K.; Katikireddi, S.V. Assessing causality in epidemiology: Revisiting Bradford Hill to incorporate developments in causal thinking. Eur. J. Epidemiol. 2021, 36, 873–887. [Google Scholar] [CrossRef] [PubMed]
- Westreich, D.; Greenland, S. The Table 2 fallacy: Presenting and interpreting confounder and modifier coefficients. Am. J. Epidemiol. 2013, 177, 292–298. [Google Scholar] [CrossRef] [Green Version]
- VanderWeele, T.J. Principles of confounder selection. Eur. J. Epidemiol. 2019, 34, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Waffenschmidt, S.; Knelangen, M.; Sieben, W.; Bühn, S.; Pieper, D. Single screening versus conventional double screening for study selection in systematic reviews: A methodological systematic review. BMC Med. Res. Methodol. 2019, 19, 132. [Google Scholar] [CrossRef]
- Hernán, M.A.; Hsu, J.; Healy, B. A second chance to get causal inference right: A classification of data science tasks. Chance 2019, 32, 42–49. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Guideline: Sugars Intake for Adults and Children; World Health Organization: Genève, Switzerland, 2015; ISBN 9241549025. [Google Scholar]
- Moynihan, P.; Miller, C. Beyond the Chair: Public Health and Governmental Measures to Tackle Sugar. J. Dent. Res. 2020, 99, 871–876. [Google Scholar] [CrossRef]
ID | First Author (Year) | Country | Targeted Population | Participants (n) | Age at Baseline | Sex (Male%) | Clinical Measurement of PD | Prevalence /Incidence of PD | Source of Free Sugar | Effect Significance a | Included Covariates |
---|---|---|---|---|---|---|---|---|---|---|---|
Cross-Sectional Study | |||||||||||
1 | Chen, et al. [26] (2020) | China | Adolescents without serious health problems | 4525 | 12 y | 48.6% | BOP | 46.6% | Sugar-containing soft drinks/soda/milk/yogurt/tea/coffee/water | * | Region, family size, father’s educational level, mother’s educational level, brushing frequency, dental floss use, dental visit |
2 | El Tantawi, et al. [32] (2018) | Saudi Arabia | Male students | 685 | 13–15 y | 100.0% | GI (≥2) | 14.8% | Daily use of sugary drinks | - | Mother’s and father’s education, type of residence, number of households, plaque index score, brushing frequency, smoking status |
3 | Fann, et al. [27] (2016) | Taiwan | General population | 10,022 | 35–44 y | 37.8% | CPI (≥3) | 26.7% | Soft drinks, including carbonated beverages, cola, milk tea, and juice, or asparagus juice | * | Age, sex, educational level, cigarette smoking, regular teeth brushing, BMI, hyperglycemia, WBC, intake of fruits |
LA (≥1 mm) | 41.3% | * | |||||||||
4 | Jagahashi, et al. [33] (2012) | Syrian Arab Republic | Students | 504 | 6–12 y | 52.2% | GI (≥2) | 48.8% | Sugar-containing food and beverages (chocolate, jam, cakes, biscuits, muffins) | * | Oral hygiene, tooth brushing |
5 | Kyaw, et al. [28] (2020) | Myanmar | Students | 537 | Mean: 10.6 y (1SD = 0.7) | 46.7% | PMA index | Mean: 16.2 (1SD = 5.4) | Sweet snacks | - | Sex, parents’ occupations, tooth-brushing frequency, mouth-rinsing habits, dental visits, OHI-S score, bacteria level |
Sweet drinks | * | ||||||||||
6 | Lula, et al. [17] (2014) | US | General population | 2437 | 18–25 y | 65.0% | PPD ≥ 3 mm and BOP | 18.8% | Added sugar intake (food and beverages), including cakes, cookies, brownies, ice cream, ice milk, milkshakes, chocolate candy, fudge, Hi-C, Tang, Kool-Aid, cola, and soda | * | Sex, age, race/ethnicity, education, poverty–income ratio, self-reported diabetes, serum cotinine concentration, refined starchy food intake, BMI |
7 | Menezes, et al. [30] (2019) | Brazil | Pregnant women in 22nd to 25th week of pregnancy | 1185 | N/A | 0.0% | PPD ≥ 4 mm and BOP | 12.3% | Soft drinks | * | Maternal age, family income, pre-pregnancy obesity, diastolic blood pressure |
CAL ≥ 4 mm | 16.6% | Soft drinks | - | ||||||||
8 | Moreira, et al. [31] (2021) | Brazil | General population | 2515 | 18–19 y | 47.2% | BOP, PPD ≥ 4mm, CAL ≥ 4mm | 20.8% | Added sugar intake was estimated as the percentage of daily calories from added sugar present in beverages, such as soft drinks, fruit-flavored juice, chocolate drinks, and energy drinks, and a wide range of food groups, such as dairy products, bread, cookies, breakfast cereals, desserts, chocolate, mayonnaise, salty snacks, and cold cuts | * | Household income, adolescent educational level, sex, smoking status, alcohol use |
9 | Simon, et al. [36] (2003) | Ethiopia | Students in public and private schools | 1736 | 12–18 y | 44.2% | BOP and calculus | 53.4% | Sweetened drinks (e.g., milk, tea, and soft drinks), | - | Staple food, teeth cleaning |
Sweets (e.g., chocolate, cakes, candy, cookies, and ice cream) | * | ||||||||||
10 | Song, et al. [16] (2016) | South Korea | General population | 5517 | 19–39 y | 47.5% | CPI ≥ 3 | 12.4% | Carbonated beverages | * | Age, sex, BMI, smoking status, drinking habits, exercise, metabolic syndrome, frequency of tooth brushing, use of secondary oral products, dental checkup, consumption of coffee |
11 | Vilarrasa, et al. [34] (2021) | Spain | Patients with dental implants | 169 | Mean: 54.5 y (1SD = 11.7) | 51.5% | PPD, BOP, suppuration, radiographic bone level | 56.2% (Peri-implant mucositis) | Regular sugar consumption | - | Sex, oral dryness, history of periodontitis and SPT compliance, no. of caries |
22.5% (Peri-implantitis) | Regular sugar consumption | * | |||||||||
12 | Vitosyte, et al. [35] (2022) | Lithuania | General population | 453 | 35–74 | 45.3% | Number of teeth with PPD ≥ 4 mm) | Mean: 5.9 (1SD = 5.3) | Frequency of eating or drinking any of following food/drink: cakes, sweet buns/breads, jam, honey, sweets, candies, soft drinks, tea with sugar, coffee with sugar | - | Smoking frequency, alcohol use, dental visit, use of fluoride toothpaste, tooth-brushing frequency |
Cohort study | |||||||||||
13 | Yoshihara, et al. [29] (2009) | Japan | Independent older adults | 261 | 70 y | 44.8% | No. of teeth with periodontal event (≥ 3 mm deeper PPD from baseline) | N/A | Cereals, nuts and seeds, sugar and sweeteners, confectioneries | * | Dark green and yellow vegetable intake, alcohol (g/kg), number of remaining teeth at baseline |
Cross-Sectional Study | Chen, et al. [26] (2020) | El Tantawi, et al. [32] (2018) | Fann, et al. [27] (2016) | Jagahashi, et al. [33] (2012) | Kyaw, et al. [28] (2020) | Lula, et al. [17] (2014) | Menezes, et al. [30] (2019) | Moreira, et al. [31] (2021) | Simon, et al. [36] (2003) | Song, et al. [16] (2016) | Vilarrasa, et al. [34] (2021) | Vitosyte, et al. [35] (2022) | Cohort study | Yoshihara, et al. [29] (2009) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Newcastle–Ottawa scale assessment criteria | Newcastle–Ottawa scale assessment criteria | |||||||||||||
Selection (Max 4 stars) | Selection (Max 4 stars) | |||||||||||||
1. Representativeness of the sample | * | * | * | * | * | * | * | * | * | * | - | * | 1. Representativeness of the exposed cohort | * |
2. Sample size | * | - | * | * | * | * | * | * | * | * | * | * | 2. Selection of the non-exposed cohort | * |
3. Ascertainment of exposure | * | * | * | * | - | * | * | * | * | * | * | * | 3. Ascertainment of exposure | * |
4. Non-respondents | - | - | - | - | - | * | - | - | - | * | - | - | 4. Demonstration that outcome of interest was not present at start of study | * |
Comparability (Max 2 stars) | Comparability (Max 1 stars) | |||||||||||||
1. Comparability of study results | ** | ** | ** | - | ** | ** | * | ** | - | ** | * | - | 1. Comparability of cohort | - |
Outcome (Max 2 stars) | Outcome (Max 3 stars) | |||||||||||||
1. Assessment of outcome | * | * | * | * | * | * | * | * | * | * | * | * | 1. Assessment of outcome | * |
2. Statistical test | * | * | * | * | * | * | * | * | * | * | * | * | 2. Was follow-up sufficient | * |
3. Adequacy of follow-up | - | |||||||||||||
Total (Max 8 stars) | 7 | 6 | 7 | 5 | 6 | 8 | 6 | 7 | 5 | 8 | 5 | 5 | Total (Max 8 stars) | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusama, T.; Nakazawa, N.; Takeuchi, K.; Kiuchi, S.; Osaka, K. Free Sugar Intake and Periodontal Diseases: A Systematic Review. Nutrients 2022, 14, 4444. https://doi.org/10.3390/nu14214444
Kusama T, Nakazawa N, Takeuchi K, Kiuchi S, Osaka K. Free Sugar Intake and Periodontal Diseases: A Systematic Review. Nutrients. 2022; 14(21):4444. https://doi.org/10.3390/nu14214444
Chicago/Turabian StyleKusama, Taro, Noriko Nakazawa, Kenji Takeuchi, Sakura Kiuchi, and Ken Osaka. 2022. "Free Sugar Intake and Periodontal Diseases: A Systematic Review" Nutrients 14, no. 21: 4444. https://doi.org/10.3390/nu14214444
APA StyleKusama, T., Nakazawa, N., Takeuchi, K., Kiuchi, S., & Osaka, K. (2022). Free Sugar Intake and Periodontal Diseases: A Systematic Review. Nutrients, 14(21), 4444. https://doi.org/10.3390/nu14214444