Association of Low Handgrip Strength with Chemotherapy Toxicity in Digestive Cancer Patients: A Comprehensive Observational Cohort Study (FIGHTDIGOTOX)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Population
2.2. Outcomes
2.3. Ethical Approval
2.4. Data Collection
2.5. Handgrip Strength Measurement and Dynapenia Definition
2.6. Chemotherapy-Induced Dose-Limiting Toxicities (DLT), Dose-Limiting Neurotoxicity (DLN) and All-Grade Chemotherapy-Induced Toxicities
2.7. Statistical Analyses
3. Results
3.1. Characteristics of Patients
3.2. Handgrip Strength (HGS)
3.3. Chemotherapy-Induced DLT
3.4. All-Grade Toxicity (Dose-Limiting or Not)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Hilmi, M.; Jouinot, A.; Burns, R.; Pigneur, F.; Mounier, R.; Gondin, J.; Neuzillet, C.; Goldwasser, F. Body Composition and Sarcopenia: The next-Generation of Personalized Oncology and Pharmacology? Pharmacol. Ther. 2019, 196, 135–159. [Google Scholar] [CrossRef] [PubMed]
- Kurk, S.; Peeters, P.; Stellato, R.; Dorresteijn, B.; de Jong, P.; Jourdan, M.; Creemers, G.-J.; Erdkamp, F.; de Jongh, F.; Kint, P.; et al. Skeletal Muscle Mass Loss and Dose-Limiting Toxicities in Metastatic Colorectal Cancer Patients. J. Cachexia Sarcopenia Muscle 2019, 10, 803–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aleixo, G.F.P.; Williams, G.R.; Nyrop, K.A.; Muss, H.B.; Shachar, S.S. Muscle Composition and Outcomes in Patients with Breast Cancer: Meta-Analysis and Systematic Review. Breast Cancer Res. Treat. 2019, 177, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuzillet, C.; Anota, A.; Foucaut, A.-M.; Védie, A.-L.; Antoun, S.; Barnoud, D.; Bouleuc, C.; Chorin, F.; Cottet, V.; Fontaine, E.; et al. Nutrition and Physical Activity: French Intergroup Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up (SNFGE, FFCD, GERCOR, UNICANCER, SFCD, SFED, SFRO, ACHBT, AFC, SFP-APA, SFNCM, AFSOS). BMJ Support. Palliat. Care 2021, 11, 381–395. [Google Scholar] [CrossRef]
- Clark, B.C.; Manini, T.M. Sarcopenia =/= Dynapenia. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 829–834. [Google Scholar] [CrossRef]
- Dodds, R.M.; Syddall, H.E.; Cooper, R.; Benzeval, M.; Deary, I.J.; Dennison, E.M.; Der, G.; Gale, C.R.; Inskip, H.M.; Jagger, C.; et al. Grip Strength across the Life Course: Normative Data from Twelve British Studies. PLoS ONE 2014, 9, e113637. [Google Scholar] [CrossRef] [Green Version]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Findlay, M.; White, K.; Stapleton, N.; Bauer, J. Response to Comment: Evaluating Sarcopenia in Cancer Patients: The Role of Muscle Strength. Clin. Nutr. 2022, 41, 780–781. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Stobäus, N.; Gonzalez, M.C.; Schulzke, J.-D.; Pirlich, M. Hand Grip Strength: Outcome Predictor and Marker of Nutritional Status. Clin. Nutr. 2011, 30, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Olguín, T.; Bunout, D.; de la Maza, M.P.; Barrera, G.; Hirsch, S. Admission Handgrip Strength Predicts Functional Decline in Hospitalized Patients. Clin. Nutr. ESPEN 2017, 17, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Kilgour, R.D.; Vigano, A.; Trutschnigg, B.; Hornby, L.; Lucar, E.; Bacon, S.L.; Morais, J.A. Cancer-Related Fatigue: The Impact of Skeletal Muscle Mass and Strength in Patients with Advanced Cancer. J. Cachexia Sarcopenia Muscle 2010, 1, 177–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norman, K.; Stobäus, N.; Smoliner, C.; Zocher, D.; Scheufele, R.; Valentini, L.; Lochs, H.; Pirlich, M. Determinants of Hand Grip Strength, Knee Extension Strength and Functional Status in Cancer Patients. Clin. Nutr. 2010, 29, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Huang, Y.-Z.; Hung, T.-T. Hand-Grip Strength Is a Simple and Effective Outcome Predictor in Esophageal Cancer Following Esophagectomy with Reconstruction: A Prospective Study. J. Cardiothorac. Surg. 2011, 6, 98. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Bolívar, V.; Sánchez-Torralvo, F.J.; Ruiz-Vico, M.; González-Almendros, I.; Barrios, M.; Padín, S.; Alba, E.; Olveira, G. GLIM Criteria Using Hand Grip Strength Adequately Predict Six-Month Mortality in Cancer Inpatients. Nutrients 2019, 11, 2043. [Google Scholar] [CrossRef] [Green Version]
- Perrier, M.; Ordan, M.-A.; Barbe, C.; Mazza, C.; Botsen, D.; Moreau, J.; Renard, Y.; Brasseur, M.; Tailliere, B.; Regnault, P.; et al. Dynapenia in Digestive Cancer Outpatients: Association with Markers of Functional and Nutritional Status (the FIGHTDIGO Study). Support. Care Cancer 2022, 30, 207–215. [Google Scholar] [CrossRef]
- Ordan, M.-A.; Mazza, C.; Barbe, C.; Perrier, M.; Botsen, D.; Renard, Y.; Moreau, J.; Brasseur, M.; Taillière, B.; Bertin, É.; et al. Feasibility of Systematic Handgrip Strength Testing in Digestive Cancer Patients Treated with Chemotherapy: The FIGHTDIGO Study. Cancer 2018, 124, 1501–1506. [Google Scholar] [CrossRef]
- Botsen, D.; Ordan, M.-A.; Barbe, C.; Mazza, C.; Perrier, M.; Moreau, J.; Brasseur, M.; Renard, Y.; Taillière, B.; Slimano, F.; et al. Dynapenia Could Predict Chemotherapy-Induced Dose-Limiting Neurotoxicity in Digestive Cancer Patients. BMC Cancer 2018, 18, 955. [Google Scholar] [CrossRef]
- Proctor, M.J.; Morrison, D.S.; Talwar, D.; Balmer, S.M.; O’Reilly, D.S.J.; Foulis, A.K.; Horgan, P.G.; McMillan, D.C. An Inflammation-Based Prognostic Score (MGPS) Predicts Cancer Survival Independent of Tumour Site: A Glasgow Inflammation Outcome Study. Br. J. Cancer 2011, 104, 726–734. [Google Scholar] [CrossRef] [Green Version]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A Review of the Measurement of Grip Strength in Clinical and Epidemiological Studies: Towards a Standardised Approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celik, E.; Suzan, V.; Samanci, N.S.; Suzan, A.A.; Karadag, M.; Sahin, S.; Aslan, M.S.; Yavuzer, H.; Demirci, N.S.; Doventas, A.; et al. Sarcopenia Assessment by New EWGSOP2 Criteria for Predicting Chemotherapy Dose-Limiting Toxicity in Patients with Gastrointestinal Tract Tumors. Eur. Geriatr. Med. 2022, 13, 267–274. [Google Scholar] [CrossRef]
- Lakenman, P.; Ottens-Oussoren, K.; Witvliet-van Nierop, J.; van der Peet, D.; de van der Schueren, M. Handgrip Strength Is Associated With Treatment Modifications During Neoadjuvant Chemoradiation in Patients With Esophageal Cancer. Nutr. Clin. Pract. 2017, 32, 652–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Almeida Marques, R.; de Souza, V.F.; do Rosario, T.C.; da Silva Garcia, M.R.P.; Pereira, T.S.S.; Marques-Rocha, J.L.; Guandalini, V.R. Agreement between Maximum and Mean Handgrip Strength Measurements in Cancer Patients. PLoS ONE 2022, 17, e0270631. [Google Scholar] [CrossRef] [PubMed]
- Clark, B.C.; Manini, T.M. What Is Dynapenia? Nutrition 2012, 28, 495–503. [Google Scholar] [CrossRef] [Green Version]
- Cavusoglu, C.; Tahtaci, G.; Dogrul, R.T.; Ileri, I.; Yildirim, F.; Candemir, B.; Kizilarslanoglu, M.C.; Uner, A.; Goker, B. Predictive Ability of the G8 Screening Test to Determine Probable Sarcopenia and Abnormal Comprehensive Geriatric Assessment in Older Patients with Solid Malignancies. BMC Geriatr. 2021, 21, 574. [Google Scholar] [CrossRef]
- Peixoto da Silva, S.; Santos, J.M.O.; Costa e Silva, M.P.; Gil da Costa, R.M.; Medeiros, R. Cancer Cachexia and Its Pathophysiology: Links with Sarcopenia, Anorexia and Asthenia. J. Cachexia Sarcopenia Muscle 2020, 11, 619–635. [Google Scholar] [CrossRef]
- Durham, W.J.; Dillon, E.L.; Sheffield-Moore, M. Inflammatory Burden and Amino Acid Metabolism in Cancer Cachexia. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Morley, J.E.; Anker, S.D.; Evans, W.J. Cachexia and Aging: An Update Based on the Fourth International Cachexia Meeting. J. Nutr. Health Aging 2009, 13, 47–55. [Google Scholar] [CrossRef]
- McGovern, J.; Dolan, R.D.; Skipworth, R.J.; Laird, B.J.; McMillan, D.C. Cancer Cachexia: A Nutritional or a Systemic Inflammatory Syndrome? Br. J. Cancer 2022, 127, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Kurita, Y.; Kobayashi, N.; Tokuhisa, M.; Goto, A.; Kubota, K.; Endo, I.; Nakajima, A.; Ichikawa, Y. Sarcopenia Is a Reliable Prognostic Factor in Patients with Advanced Pancreatic Cancer Receiving FOLFIRINOX Chemotherapy. Pancreatology 2019, 19, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Lv, L.-N.; Zhao, Y.; Li, L.; Zhu, X.-D. Is Skeletal Muscle Loss Associated with Chemoradiotherapy Toxicity in Nasopharyngeal Carcinoma Patients? A Prospective Study. Clin. Nutr. 2021, 40, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Bohlius, J.; Bohlke, K.; Castelli, R.; Djulbegovic, B.; Lustberg, M.B.; Martino, M.; Mountzios, G.; Peswani, N.; Porter, L.; Tanaka, T.N.; et al. Management of Cancer-Associated Anemia with Erythropoiesis-Stimulating Agents: ASCO/ASH Clinical Practice Guideline Update. Blood Adv. 2019, 3, 1197–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilreath, J.A.; Rodgers, G.M. How I Treat Cancer-Associated Anemia. Blood 2020, 136, 801–813. [Google Scholar] [CrossRef]
- Dicato, M.; Plawny, L.; Diederich, M. Anemia in Cancer. Ann. Oncol. 2010, 21, vii167–vii172. [Google Scholar] [CrossRef]
- da Rocha, I.M.G.; Marcadenti, A.; de Medeiros, G.O.C.; Bezerra, R.A.; Rego, J.F.M.; Gonzalez, M.C.; Fayh, A.P.T. Is Cachexia Associated with Chemotherapy Toxicities in Gastrointestinal Cancer Patients? A Prospective Study. J. Cachexia Sarcopenia Muscle 2019, 10, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Gi, Y.-M.; Jung, B.; Kim, K.-W.; Cho, J.-H.; Ha, I.-H. Low Handgrip Strength Is Closely Associated with Anemia among Adults: A Cross-Sectional Study Using Korea National Health and Nutrition Examination Survey (KNHANES). PLoS ONE 2020, 15, e0218058. [Google Scholar] [CrossRef] [Green Version]
- Nikolaou, V.; Syrigos, K.; Saif, M.W. Incidence and Implications of Chemotherapy Related Hand-Foot Syndrome. Expert Opin. Drug Saf. 2016, 15, 1625–1633. [Google Scholar] [CrossRef]
- Ruiz-Pinto, S.; Pita, G.; Martín, M.; Nuñez-Torres, R.; Cuadrado, A.; Shahbazi, M.N.; Caronia, D.; Kojic, A.; Moreno, L.T.; de la Torre-Montero, J.C.; et al. Regulatory CDH4 Genetic Variants Associate With Risk to Develop Capecitabine-Induced Hand-Foot Syndrome. Clin. Pharmacol. Ther. 2021, 109, 462–470. [Google Scholar] [CrossRef]
- Gökyer, A.; Küçükarda, A.; Köstek, O.; Hacıoğlu, M.B.; Sunal, B.S.; Demircan, N.C.; Uzunoğlu, S.; Solak, S.; İşsever, K.; Çiçin, I.; et al. Relation between Sarcopenia and Dose-Limiting Toxicity in Patients with Metastatic Colorectal Cancer Who Received Regorafenib. Clin. Transl. Oncol. 2019, 21, 1518–1523. [Google Scholar] [CrossRef] [PubMed]
- Adel, N. Overview of Chemotherapy-Induced Nausea and Vomiting and Evidence-Based Therapies. Am. J. Manag. Care 2017, 23, S259–S265. [Google Scholar] [PubMed]
- Dranitsaris, G.; Molassiotis, A.; Clemons, M.; Roeland, E.; Schwartzberg, L.; Dielenseger, P.; Jordan, K.; Young, A.; Aapro, M. The Development of a Prediction Tool to Identify Cancer Patients at High Risk for Chemotherapy-Induced Nausea and Vomiting. Ann. Oncol. 2017, 28, 1260–1267. [Google Scholar] [CrossRef]
- Prado, C.M.M.; Maia, Y.L.M.; Ormsbee, M.; Sawyer, M.B.; Baracos, V.E. Assessment of Nutritional Status in Cancer–The Relationship Between Body Composition and Pharmacokinetics. Anti-Cancer Agents Med. Chem. 2013, 13, 1197–1203. [Google Scholar] [CrossRef]
- Pérez-Pitarch, A.; Guglieri-López, B.; Nacher, A.; Merino, V.; Merino-Sanjuán, M. Impact of Undernutrition on the Pharmacokinetics and Pharmacodynamics of Anticancer Drugs: A Literature Review. Nutr. Cancer 2017, 69, 555–563. [Google Scholar] [CrossRef]
- Cereda, E.; Tancredi, R.; Klersy, C.; Lobascio, F.; Crotti, S.; Masi, S.; Cappello, S.; Stobäus, N.; Tank, M.; Cutti, S.; et al. Muscle Weakness as an Additional Criterion for Grading Sarcopenia-Related Prognosis in Patients with Cancer. Cancer Med. 2022, 11, 308–316. [Google Scholar] [CrossRef]
- Retornaz, F.; Guillem, O.; Rousseau, F.; Morvan, F.; Rinaldi, Y.; Nahon, S.; Castagna, C.; Boulahssass, R.; Grino, M.; Gholam, D. Predicting Chemotherapy Toxicity and Death in Older Adults with Colon Cancer: Results of MOST Study. Oncologist 2020, 25, e85–e93. [Google Scholar] [CrossRef] [Green Version]
- Spexoto, M.C.B.; Ramírez, P.C.; de Oliveira Máximo, R.; Steptoe, A.; de Oliveira, C.; Alexandre, T.D.S. European Working Group on Sarcopenia in Older People 2010 (EWGSOP1) and 2019 (EWGSOP2) Criteria or Slowness: Which Is the Best Predictor of Mortality Risk in Older Adults? Age Ageing 2022, 51, afac164. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, A.; Perrier, M.; Mazza, C.; Quinquenel, A.; Brasseur, M.; Delmer, A.; Vallerand, H.; Dewolf, M.; Bertin, E.; Barbe, C.; et al. Feasibility and Impact of Adapted Physical Activity (APA) in Cancer Outpatients Beginning Medical Anti-Tumoral Treatment: The UMA-CHAPA Study. Cancers 2022, 14, 1993. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Li, X.-X.; Ma, H.-K.; Zhang, X.; Wang, B.-W.; Guo, T.-T.; Xiao, Y.; Bing, Z.-T.; Ge, L.; Yang, K.-H.; et al. Exercise Training for Improving Patient-Reported Outcomes in Patients With Advanced-Stage Cancer: A Systematic Review and Meta-Analysis. J. Pain Symptom Manag. 2020, 59, 734–749.e10. [Google Scholar] [CrossRef] [PubMed]
Characteristics of Patients | Level | Overall | Dynapenia 1 | Normal HGS 1 | p-Value |
---|---|---|---|---|---|
Total, n (%) | 244 | 23 (9.4) | 221 (90.6) | ||
Sex, n (%) | Female Male | 109 (44.7) 135 (55.3) | 10 (43.5) 13 (56.5) | 99 (44.8) 122 (55.2) | 1.000 |
Age, median (IQR) | 69.0 (59.0–74.0) | 73.0 (69.0–81.5) | 68.0 (58.0–73.0) | <0.001 | |
BMI, median (IQR) | 24.6 (21.5–28.6) | 24.6 (21.1–29.4) | 24.6 (21.6–28.6) | 0.862 | |
ECOG PS, n (%) | 0 1 2 3 | 66 (27.0) 150 (61.5) 26 (10.7) 2 (0.8) | 0 (0.0) 14 (60.9) 8 (34.8) 1 (4.3) | 66 (29.9) 136 (61.5) 18 (8.1) 1 (0.5) | <0.001 |
Serum albumin level, median (IQR) | 39.0 (36.0–42.0) | 36.0 (33.0–40.0) | 39.0 (37.0–42.0) | 0.012 | |
CRP, median (IQR) | 9.0 (4.0–33.2) | 19.0 (4.5–40.5) | 8.0 (4.0–33.0) | 0.114 | |
mGPS, n (%) | 0 1 2 | 118 (48.4) 87 (35.7) 39 (16.0) | 5 (21.7) 10 (43.5) 8 (34.8) | 113 (51.1) 77 (34.8) 31 (14.0) | 0.006 |
Lymphopenia, n (%) | No Yes | 226 (92.6) 18 (7.4) | 21 (91.3) 2 (8.7) | 205 (92.8) 16 (7.2) | 0.681 |
G8 score, median 2 (IQR) | 12.0 (11.0–15.0) | 10.0 (8.8–12.0) | 13.0 (11.0–15.0) | 0.002 | |
Primary tumor location, n (%) | Colon and rectum Stomach Esophagus Pancreas Others 3 | 105 (43.2) 26 (10.7) 18 (7.4) 69 (28.4) 25 (10.2) | 16 (69.6) 2 (8.7) 2 (8.7) 2 (8.7) | 89 (40.5) 24 (10.9) 16 (7.3) 67 (30.5) 25 (11.1) | 0.339 |
Stage, n (%) | Localized Locally advanced Metastatic | 84 (34.4) 57 (23.4) 103 (42.2) | 9 (39.1) 4 (17.4) 10 (43.5) | 75 (33.9) 53 (24.0) 93 (42.1) | 0.784 |
Number of metastatic sites, n (%) | 1 ≥2 | 68 (65.4) 36 (34.6) | 7 (70.0) 3 (30.0) | 61 (64.9) 33 (35.1) | 1.000 |
Chemotherapy regimen, n (%) | 5FU + Oxaliplatin 5FU + Irinotecan + Oxaliplatin 5FU alone Gemcitabine Others 4 | 96 (39.3) 69 (28.3) 24 (9.8) 18 (7.4) 37 (15.1) | 12 (52.2) 3 (13.0) 6 (26.1) 2 (8.6) | 84 (38.0) 66 (29.9) 18 (8.1) 18 (8.1) 35 (16.2) | 0.170 |
Biotherapy, n (%) | None Bevacizumab Others 5 | 204 (83.6) 26 (10.7) 14 (5.7) | 18 (78.3) 5 (21.7) | 186 (84.2) 21 (9.5) 14 (6.3) | 0.305 |
Concomitant radiotherapy, n (%) | No Yes | 222 (91.0) 22 (9.0) | 22 (95.7) 1 (4.3) | 200 (90.5) 21 (9.5) | 0.704 |
Dose Limiting Toxicity | Overall (n = 244) | Dynapenia 1 (n = 23) | Normal HGS 1 (n = 221) | p Value |
---|---|---|---|---|
All Type (%) | 134 (54.9) | 13 (56.5) | 121 (54.8) | 1.000 |
Neuropathy 2 | 76 (41.3) | 7 (46.7) | 69 (40.8) | 0.786 |
Asthenia (%) | 24 (9.8) | 5 (21.7) | 19 (8.6) | 0.059 |
Diarrhea (%) | 20 (8.2) | 2 (8.7) | 18 (8.1) | 1.000 |
Nausea 3 (%) | 4 (2.0) | 1 (5.9) | 3 (1.6) | 0.298 |
Vomiting 3 (%) | 4 (2.0) | 0 (0) | 4 (2.2) | 1.000 |
Neutropenia (%) | 28 (11.5) | 0 (0) | 28 (12.7) | 0.086 |
Anemia (%) | 6 (2.5) | 1 (4.3) | 5 (2.3) | 0.451 |
Thrombopenia (%) | 13 (5.3) | 2 (8.7) | 11 (5.0) | 0.352 |
Hand foot syndrome 4 (%) | 4 (1.9) | 2 (9.1) | 2 (1.1) | 0.075 |
Oral mucositis 4 (%) | 3 (1.2) | 0 (0) | 3 (1.4) | 1.000 |
Dose Limiting Toxicity | Overall (n = 244) | Exploratory Low HGS 1 (n = 107) | Normal HGS 1 (n = 137) | p-Value for Univariate Analysis | p-Value for Multivariate Analysis * |
---|---|---|---|---|---|
All Type (%) | 134 (54.9) | 32 (29.9) | 40 (29.2) | 1.000 | 0.2 |
Neuropathy 2 | 76 (41.3) | 26 (36.1) | 50 (44.6) | 0.285 | - |
Asthenia (%) | 24 (9.8) | 16 (15.0) | 8 (5.8) | 0.029 | 0.78 |
Diarrhea (%) | 20 (8.2) | 9 (8.4) | 11 (8.0) | 1.000 | - |
Nausea 3 (%) | 4 (2.0) | 2 (2.4) | 2 (1.7) | 1.000 | - |
Vomiting 3 (%) | 4 (2.0) | 1 (1.2) | 3 (2.5) | 0.645 | - |
Neutropenia (%) | 28 (11.5) | 10 (9.3) | 18 (13.1) | 0.421 | - |
Anemia (%) | 6 (2.5) | 4 (3.7) | 2 (1.5) | 0.409 | - |
Thrombopenia (%) | 13 (5.3) | 5 (4.7) | 8 (5.8) | 0.779 | - |
Hand foot syndrome 4 (%) | 4 (1.9) | 2 (2.2) | 2 (1.7) | 1.000 | - |
Toxicity (All Grade) | Overall (n = 244) | Dynapenia 1 (n = 23) | Normal HGS 1 (n = 221) | p Value |
---|---|---|---|---|
Neuropathy 2 (%) | 174 (94.6) | 14 (93.3) | 160 (94.7) | 0. 582 |
Asthenia (%) | 224 (91.8) | 23 (100.0) | 201 (91.0) | 0.303 |
Diarrhea (%) | 139 (57.0) | 12 (52.2) | 127 (57.5) | 0.693 |
Nausea 3 (%) | 115 (56.9) | 9 (52.9) | 106 (57.3) | 0.801 |
Vomiting 3 (%) | 51 (25.2) | 3 (17.6) | 48 (25.9) | 0.605 |
Neutropenia (%) | 60 (24.6) | 3 (13.0) | 57 (25.8) | 0.286 |
Anemia (%) | 165 (67.6) | 19 (82.6) | 146 (66.1) | 0.238 |
Thrombopenia (%) | 73 (29.9) | 10 (43.5) | 63 (28.5) | 0.235 |
Hand foot syndrome 4 (%) | 10 (4.8) | 4 (18.2) | 6 (3.2) | 0.007 |
Oral mucositis 4 (%) | 29 (11.9) | 2 (8.7) | 27 (12.2) | 0.836 |
Toxicity (All Grade) | Overall (n = 244) | Exploratory Low HGS 1 (n = 107) | Normal HGS 1 (n = 137) | p Value |
---|---|---|---|---|
Neuropathy 2 (%) | 174 (94.6) | 66 (91.7) | 108 (96.4) | 0.193 |
Asthenia (%) | 224 (91.8) | 104 (97.2) | 120 (87.6) | 0.014 |
Diarrhea (%) | 139 (57.0) | 56 (52.3) | 83 (60.6) | 0.214 |
Nausea 3 (%) | 115 (56.9) | 41 (49.4) | 74 (62.2) | 0.084 |
Vomiting 3 (%) | 51 (25.2) | 15 (18.1) | 36 (30.3) | 0.047 |
Neutropenia (%) | 60 (24.6) | 26 (24.3) | 34 (24.8) | 1.000 |
Anemia (%) | 165 (67.6) | 83 (77.6) | 82 (59.9) | 0.006 |
Thrombopenia (%) | 73 (29.9) | 32 (29.9) | 41 (29.9) | 1.000 |
Hand foot syndrome 4 (%) | 10 (4.8) | 5 (5.4) | 5 (4.3) | 0.629 |
Oral mucositis 4 (%) | 29 (11.9) | 15 (14.0) | 14 (10.2) | 0.455 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, P.; Botsen, D.; Brugel, M.; Bertin, E.; Carlier, C.; Mahmoudi, R.; Slimano, F.; Perrier, M.; Bouché, O. Association of Low Handgrip Strength with Chemotherapy Toxicity in Digestive Cancer Patients: A Comprehensive Observational Cohort Study (FIGHTDIGOTOX). Nutrients 2022, 14, 4448. https://doi.org/10.3390/nu14214448
Martin P, Botsen D, Brugel M, Bertin E, Carlier C, Mahmoudi R, Slimano F, Perrier M, Bouché O. Association of Low Handgrip Strength with Chemotherapy Toxicity in Digestive Cancer Patients: A Comprehensive Observational Cohort Study (FIGHTDIGOTOX). Nutrients. 2022; 14(21):4448. https://doi.org/10.3390/nu14214448
Chicago/Turabian StyleMartin, Pierre, Damien Botsen, Mathias Brugel, Eric Bertin, Claire Carlier, Rachid Mahmoudi, Florian Slimano, Marine Perrier, and Olivier Bouché. 2022. "Association of Low Handgrip Strength with Chemotherapy Toxicity in Digestive Cancer Patients: A Comprehensive Observational Cohort Study (FIGHTDIGOTOX)" Nutrients 14, no. 21: 4448. https://doi.org/10.3390/nu14214448
APA StyleMartin, P., Botsen, D., Brugel, M., Bertin, E., Carlier, C., Mahmoudi, R., Slimano, F., Perrier, M., & Bouché, O. (2022). Association of Low Handgrip Strength with Chemotherapy Toxicity in Digestive Cancer Patients: A Comprehensive Observational Cohort Study (FIGHTDIGOTOX). Nutrients, 14(21), 4448. https://doi.org/10.3390/nu14214448