Parenteral Nutrition Overview
Abstract
:1. Introduction
2. Indications
- Hospitalized patients should be regularly screened for risk of malnutrition, especially those who might be candidates for PN.
- PN is not an emergency treatment and should be started electively and revised frequently to check if the enteral route might be available.
- Developing support policies and procedures is also recommended to assist with the decision-making for PN initiation, as well as implementing a quality improvement process to ensure appropriate use of PN.
- Future research: Optimal timing of PN and its relationship with clinical and nutritional outcomes and costs, involving a homogenous patient population.
3. Vascular Access and Administration
3.1. Vascular Access
3.2. Administration
- Protocolize VAD placement, individualizing the selection of VADs based on risk and benefits, and clinical factors, and validate the optimal position of the VAD before PN initiation.
- Use a proper in line filter for administration and avoid additional lines for lipid administration.
- Future research: Developing VADs and administration kits with easier and safer procedures. Evaluating the effects of accumulation of particles in vital organs and the interest of in-line filters.
4. Composition of PN Admixtures
- Calcium and phosphorus: Solid precipitates may develop with the addition of an incompatible combination of salts to a PN mixture. Different factors affect the formation of these precipitates, such as temperature, time of exposure, pH and order of mixing the PN ingredients. Organic salts, such as calcium gluconate (for calcium) and sodium glycerophosphate (for phosphorus), are more stable than the equivalent inorganic salts.
- Bicarbonate salts should be avoided due to incompatibility with PN admixtures, if needed, acetate salts can be added.
- Medication additives: Despite there being data about the compatibility of several drugs with PN, PN should not be used as a drug delivery vehicle.
- Temperature: For example, with increased temperature, there is a raised likelihood of calcium-phosphate precipitate formation and of the degradation of several amino acids.
- pH: The optimal pH for IVFE stability is in the range of 6–9, whereas calcium phosphate solubility is better at lower pH values.
- Light and oxygen exposure: Enhances the degradation of some vitamins and amino acids.
- All-in-one mixtures: All the factors that affect stability in a two-in-one formulation tend to do so to a greater extent with an all-in-one mixture. Therefore, a more conservative approach to interpreting guidelines for compatibility is needed to prevent the destabilization of the TNA or formation of a precipitate. The physical instability of IVLEs refers to lipid droplet size (e.g., a high concentration of cations may lead to destabilization of the emulsion and limit the load of cations that may be administered in the TNAs).
- Vitamins: Light exposure and time are the common factors affecting vitamin stability.
- Composition, due to compatibility issues.
- Develop and maintain safety protocols for all PN processes, from prescribing and compounding steps to final administration.
- For stability and compatibility reasons, additions of high loads of electrolytes in the PN admixture should be avoided, especially cations.
- Future research: Stability studies to assess compatibility and stability of PN and PN components.
4.1. Proteins
4.2. Carbohydrates
4.3. Lipids
4.4. Micronutrients: Electrolytes, Vitamins and Trace Elements
- Protein dose recommendations are still controversial; 1–1.2 g/kg/day is a reasonable dose with no renal impairment.
- Lipids based only on soybean oil contain high concentrations of PUFA, omega-6 fatty acids and phytosterols. Consequently, more recently developed lipid emulsions have partially replaced soybean oil with other oils (MCT, olive and fish oil), thereby reducing phytosterols and increasing omega-9 and omega-3 fatty acids.
- Monitoring of fluid and electrolytes losses, as well as renal function to control electrolytes and fluid imbalances, should be implemented in all patients receiving PN.
- Future research: Optimal protein dose with renal replacement therapy.
5. Complications and Monitoring
5.1. Complications
5.1.1. Hyperglycemia
- Monitoring glucose is mandatory in patients with PN, more frequently at the beginning of PN, reducing frequency after stabilization.
- Identifying risk factors and drugs that may lead to hyperglycemia.
- Future research: Combined or single insulin regimens with PN for glycemic control.
5.1.2. Hypertriglyceridemia
- Use of omega-3 fatty-acid enriched lipids and limiting lipid intake is recommended (<1 g/kg/day including external sources such as propofol) to avoid hypertriglyceridemia.
- To help monitoring, when hypertriglyceridemia is present, blood samples should be properly collected to avoid possible artifactual results.
- Future research: Exploring strategies such as omega-3 fatty acid dose levels and administration, to deal with and control blood triglyceride levels without a reduction of caloric intake because of lipid restriction.
5.1.3. Refeeding Syndrome
- Low BMI < 18.5 kg/m2;
- Recent weight loss of 5% in 1 month or 7.5–10% in 3 to 6 months;
- None or negligible oral intake 5–6 days;
- Caloric intake < 75% estimated for >5 days during acute illness or injury;
- Caloric intake < 75% estimated energy for >1 month;
- Abnormal potassium, phosphorus, or magnesium serum concentrations;
- Loss of subcutaneous fat;
- Loss of muscle mass;
- Higher-risk comorbidities (diseases and clinical conditions associated with the presence of the prior criteria, such as alcoholism, eating disorders, cancer, malabsorptive states, etc.).
- Protocolize identification of risk factors for RS and patients at risk of RS.
- Future research: Monitoring and new approaches to measuring the risk of overfeeding. Compare the effectiveness for avoiding RS of different initiation regimens and protocols.
5.1.4. Hepatobiliary Complications
- Liver impairment during PN is multifactorial. Most of the common causes, apart from PN, are drugs, procedures or sepsis, or pre-existing liver disease.
- Establish at least a minimal EN intake to minimize risk of biliary complications and help reduce liver function test values.
- Future research: Dose-dependent effect for IVLEs containing omega-3 fatty acids, as well as the role of other components such as alpha-tocopherol in hepatobiliary complications.
5.1.5. Catheter-Related Complications
- Emphasize the importance of educational programs regarding protection against infection and hand decontamination.
- Protocolize VAD care and surveillance.
- Future research: Assessment of antiseptics or new drugs to address the development of new strategies to reduce CRBSI.
5.2. Monitoring
- Special situation, such as high electrolyte imbalance or refeeding syndrome, may require more frequent and prolonged laboratory monitoring.
6. Disease-Specific PN
6.1. Acute Pancreatitis
- AP patients with PN should be closely monitored for hyperglycemia and hypertriglyceridemia.
- Future research: Using PN in AP, the role of nutrients such as omega-3 fatty acids in reducing complications should be assessed. We will continue by studying the dose and length of glutamine addition, and confirming the role of glutamine in AP, especially patients critically ill with AP. As with other clinical situations, an assessment of the optimal PN initiation when PN is indicated should be performed.
6.2. Surgery Patients
- Consider preoperative PN in severely malnourished patients who cannot tolerate oral or enteral intake.
- Future research: Investigate the role of nutrients added to PN, such as omega-3 fatty acids and glutamine, in clinical outcomes (time and dose). Optimal timing for PN initiation to achieve better outcomes.
6.3. Critically Ill Patients
- Avoid overfeeding: Initiation of supplemental PN should only be considered in stable, critically ill patients with a clearly insufficient EN intake.
- Reassess malnutrition and nutrition plan, especially during a prolonged ICU stay.
- In patients on renal replacement therapy, an increased provision of amino acids and micronutrients (electrolytes, vitamins and trace elements) should be considered.
- Future research: Monitoring the risk of overfeeding and new approaches to measuring it. Easy and feasible energy-requirement assessment suitable for the phase of illness in critically ill patients. Optimal timing for PN initiation, and timing for increased caloric and protein intake should be also assessed.
6.4. Inflammatory Bowel Disease
- As malnutrition is highly prevalent in IBD patients, screening for malnutrition should be implemented for all such patients.
- Per the previous point, before nutritional support is initiated, an adequate nutritional plan (amount of macro and micronutrients) should be established to avoid RS and electrolyte imbalances.
- Future research: Comparing outcomes of the role of supplemental PN when EN does not achieve optimal requirements.
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dudrick, S.J.; Wilmore, D.W.; Vars, H.M.; Rhoads, J. Long-Term Total Parenteral Nutrition with Growth, Development, and Positive Nitrogen Balance. Surgery 1968, 64, 134–142. [Google Scholar] [PubMed]
- Ayers, P.; Adams, S.; Boullata, J.; Gervasio, J.; Holcombe, B.; Kraft, M.D.; Marshall, N.; Neal, A.; Sacks, G.; Seres, D.S.; et al. Parenteral Nutrition Safety Consensus Recommendations. J. Parenter. Enter. Nutr. 2014, 38, 296–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittiruti, M.; Hamilton, H.; Biffi, R.; MacFie, J.; Pertkiewicz, M. ESPEN Guidelines on Parenteral Nutrition: Central Venous Catheters (Access, Care, Diagnosis and Therapy of Complications). Clin. Nutr. 2009, 28, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Cuerda, C.; Pironi, L.; Arends, J.; Bozzetti, F.; Gillanders, L.; Jeppesen, P.B.; Joly, F.; Kelly, D.; Lal, S.; Staun, M.; et al. ESPEN Practical Guideline: Clinical Nutrition in Chronic Intestinal Failure. Clin. Nutr. 2021, 40, 5196–5220. [Google Scholar] [CrossRef] [PubMed]
- Weimann, A.; Braga, M.; Carli, F.; Higashiguchi, T.; Hübner, M.; Klek, S.; Laviano, A.; Ljungqvist, O.; Lobo, D.N.; Martindale, R.G.; et al. ESPEN Practical Guideline: Clinical Nutrition in Surgery. Clin. Nutr. 2021, 40, 4745–4761. [Google Scholar] [CrossRef] [PubMed]
- Boullata, J.I.; Gilbert, K.; Sacks, G.; Labossiere, R.J.; Crill, C.; Goday, P.; Kumpf, V.J.; Mattox, T.W.; Plogsted, S.; Holcombe, B.; et al. Clinical Guidelines: Parenteral Nutrition Ordering, Order Review, Compounding, Labeling, and Dispensing. J. Parenter. Enter. Nutr. 2014, 38, 334–377. [Google Scholar] [CrossRef] [Green Version]
- Pironi, L.; Arends, J.; Baxter, J.; Bozzetti, F.; Peláez, R.B.; Cuerda, C.; Forbes, A.; Gabe, S.; Gillanders, L.; Holst, M.; et al. ESPEN Endorsed Recommendations: Definition and Classification of Intestinal Failure in Adults. Clin. Nutr. 2015, 34, 171–180. [Google Scholar] [CrossRef]
- Mueller, C.M. (Ed.) The ASPEN Nutrition Support Core Curriculum, 3rd ed.; American Society of Parenteral and Enteral Nutrition: Silver Spring, MD, USA, 2017; ISBN 978-188-962-231-6. [Google Scholar]
- Compher, C.; Bingham, A.L.; McCall, M.; Patel, J.; Rice, T.W.; Braunschweig, C.; McKeever, L. Guidelines for the Provision of Nutrition Support Therapy in the Adult Critically Ill Patient: The American Society for Parenteral and Enteral Nutrition. J. Parenter. Enter. Nutr. 2022, 46, 12–41. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN Guideline on Clinical Nutrition in the Intensive Care Unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [Green Version]
- Martin, K.; DeLegge, M.; Nichols, M.; Chapman, E.; Sollid, R.; Grych, C. Assessing Appropriate Parenteral Nutrition Ordering Practices in Tertiary Care Medical Centers; Assessing Appropriate Parenteral Nutrition Ordering Practices in Tertiary Care Medical Centers. J. Parenter. Enter. Nutr. 2011, 35, 122–130. [Google Scholar] [CrossRef]
- Meyer, M.; Hartwell, J.; Beatty, A.; Cattell, T. Creation of a Virtual Nutrition Support Team to Improve Quality of Care for Patients Receiving Parenteral Nutrition in a Multisite Healthcare System. Nutr. Clin. Pract. 2019, 34, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, M.K.; Crooks, B.; Baunwall, S.M.D.; Rud, C.L.; Lal, S.; Hvas, C.L. Systematic Review with Meta-analysis: Effects of Implementing a Nutrition Support Team for In-hospital Parenteral Nutrition. Aliment Pharm. 2021, 54, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Sriram, K.; Cyriac, T.; Fogg, L.F. Effect of Nutritional Support Team Restructuring on the Use of Parenteral Nutrition. Nutrition 2010, 26, 735–739. [Google Scholar] [CrossRef] [PubMed]
- López-Martín, C.; Abilés, J.; Garrido Siles, M.; Faus Felipe, V. Impact of the Creation of a Nutritional Support Team on the Quality, Safety and Effectiveness of Total Parenteral Nutrition. Nutr. Hosp. 2012, 27, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Casaer, M.P.; Mesotten, D.; Hermans, G.; Wouters, P.J.; Schetz, M.; Meyfroidt, G.; van Cromphaut, S.; Ingels, C.; Meersseman, P.; Muller, J.; et al. Early versus Late Parenteral Nutrition in Critically Ill Adults. N. Engl. J. Med. 2011, 365, 506–517. [Google Scholar] [CrossRef] [Green Version]
- Cies, J.J.; Moore, W.S. Neonatal and Pediatric Peripheral Parenteral Nutrition: What Is a Safe Osmolarity? Nutr. Clin. Pract. 2014, 29, 118–124. [Google Scholar] [CrossRef]
- Senkal, M.; Bonavina, L.; Reith, B.; Caruso, R.; Matern, U.; Duran, M. Perioperative Peripheral Parenteral Nutrition to Support Major Gastrointestinal Surgery: Expert Opinion on Treating the Right Patients at the Right Time. Clin. Nutr. ESPEN 2021, 43, 16–24. [Google Scholar] [CrossRef]
- Gura, K.M. Is There Still a Role for Peripheral Parenteral Nutrition? Nutr. Clin. Pract. 2009, 24, 709–717. [Google Scholar] [CrossRef]
- Lv, L.; Zhang, J. The Incidence and Risk of Infusion Phlebitis with Peripheral Intravenous Catheters: A Meta-Analysis. J. Vasc. Access 2020, 21, 342–349. [Google Scholar] [CrossRef]
- Rubino, M.; Jin, J.; Gramlich, L. Safety and Impact of Peripheral Parenteral Nutrition on Nutrient Delivery in Patients with Nutrition Risk: A Prospective Observational Study. Nutr. Clin. Pract. 2021, 37, 1162–1171. [Google Scholar] [CrossRef]
- Fessler, A.G.; Rejrat, C.E. Re-Evaluating Safe Osmolarity for Peripheral Parenteral Nutrition in Neonatal Intensive Care Patients. J. Pediatr. Pharmacol. Ther. 2021, 26, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Hartman, C.; Shamir, R.; Simchowitz, V.; Lohner, S.; Cai, W.; Decsi, T.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; et al. ESPGHAN/ESPEN/ESPR/CSPEN Guidelines on Pediatric Parenteral Nutrition: Complications. Clin. Nutr. 2018, 37, 2418–2429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parienti, J.-J.; Mongardon, N.; Mégarbane, B.; Mira, J.-P.; Kalfon, P.; Gros, A.; Marqué, S.; Thuong, M.; Pottier, V.; Ramakers, M.; et al. Intravascular Complications of Central Venous Catheterization by Insertion Site. N. Engl. J. Med. 2015, 373, 1220–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavin, N.C.; Button, E.; Keogh, S.; McMillan, D.; Rickard, C. Does Parenteral Nutrition Increase the Risk of Catheter-Related Bloodstream Infection? A Systematic Literature Review. J. Parenter. Enter. Nutr. 2017, 41, 918–928. [Google Scholar] [CrossRef]
- Kovacevich, D.S.; Corrigan, M.; Ross, V.M.; McKeever, L.; Hall, A.M.; Braunschweig, C. American Society for Parenteral and Enteral Nutrition Guidelines for the Selection and Care of Central Venous Access Devices for Adult Home Parenteral Nutrition Administration. J. Parenter. Enter. Nutr. 2019, 43, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Saugel, B.; Scheeren, T.W.L.; Teboul, J.-L. Ultrasound-Guided Central Venous Catheter Placement: A Structured Review and Recommendations for Clinical Practice. Crit. Care 2017, 21, 225. [Google Scholar] [CrossRef] [Green Version]
- Arenas Villafranca, J.J.; Nieto Guindo, M.; Álvaro Sanz, E.; Moreno Santamaria, M.; Garrido Siles, M.; Abilés, J. Effects of Cyclic Parenteral Nutrition on Parenteral-Associated Liver Dysfunction Parameters. Nutr. J. 2017, 16, 66. [Google Scholar] [CrossRef] [Green Version]
- Rochling, F.A. Intravenous Lipid Emulsions in the Prevention and Treatment of Liver Disease in Intestinal Failure. Nutrients 2021, 13, 895. [Google Scholar] [CrossRef]
- Bethune, K.; Allwood, M.; Grainger, C.; Wormleighton, C. Use of Filters during the Preparation and Administration of Parenteral Nutrition: Position Paper and Guidelines Prepared by a British Pharmaceutical Nutrition Group Working Party. Nutrition 2001, 17, 403–408. [Google Scholar] [CrossRef]
- Pedrón Giner, C.; Cuervas-Mons Vendrell, M.; Galera Martínez, R.; Gómez López, L.; Gomis Muñoz, P.; Irastorza Terradillos, I.; Martínez Costa, C.; Moreno Villares, J.M.; Pérez-Portabella Maristany, C.; Pozas del Río, M.T.; et al. Guía de Práctica Clínica SENPE/SEGHNP/SEFH Sobre Nutrición Parenteral Pediátrica. Nutr. Hosp. 2017, 34, 745. [Google Scholar] [CrossRef]
- Worthington, P.; Gura, K.M.; Kraft, M.D.; Nishikawa, R.; Guenter, P.; Sacks, G.S. Update on the Use of Filters for Parenteral Nutrition: An ASPEN Position Paper. Nutr. Clin. Pract. 2021, 36, 29–39. [Google Scholar] [CrossRef]
- Puntis, J.W.L.; Hojsak, I.; Ksiazyk, J.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; Carnielli, V.; Darmaun, D.; Decsi, T.; et al. ESPGHAN/ESPEN/ESPR/CSPEN Guidelines on Pediatric Parenteral Nutrition: Organisational Aspects. Clin. Nutr. 2018, 37, 2392–2400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boullata, J.I.; Berlana, D.; Pietka, M.; Klek, S.; Martindale, R. Use of Intravenous Lipid Emulsions With Parenteral Nutrition: Practical Handling Aspects. J. Parenter. Enter. Nutr. 2020, 44, S74–S81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirtallo, J.M.; Ayers, P.; Boullata, J.; Gura, K.M.; Plogsted, S.; Anderson, C.R.; Worthington, P.; Seres, D.S.; Nicolai, E.; Alsharhan, M.; et al. ASPEN Lipid Injectable Emulsion Safety Recommendations, Part 1: Background and Adult Considerations. Nutr. Clin. Pract. 2020, 35, 769–782. [Google Scholar] [CrossRef] [PubMed]
- Boullata, J.I.; Holcombe, B.; Sacks, G.; Gervasio, J.; Adams, S.C.; Christensen, M.; Durfee, S.; Ayers, P.; Marshall, N.; Guenter, P. Standardized Competencies for Parenteral Nutrition Order Review and Parenteral Nutrition Preparation, Including Compounding. Nutr. Clin. Pract. 2016, 31, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Boullata, J.I.; Mirtallo, J.M.; Sacks, G.S.; Salman, G.; Gura, K.; Canada, T.; Maguire, A. Parenteral Nutrition Compatibility and Stability: A Comprehensive Review. J. Parenter. Enter. Nutr. 2022, 46, 273–299. [Google Scholar] [CrossRef]
- Robinson, D.T.; Ayers, P.; Fleming, B.; Gura, K.M.; Gutsul, L.; Michalski, A.; Holcombe, B.; Sacks, G.S. Recommendations for Photoprotection of Parenteral Nutrition for Premature Infants: An ASPEN Position Paper. Nutr. Clin. Pract. 2021, 36, 927–941. [Google Scholar] [CrossRef]
- Balet, A.; Cardona, D.; Jane, S.; Molins-Pujol, A.; Sanchez Quesada, J.; Gich, I.; Mangues, M. Effects of Multilayered Bags vs Ethylvinyl-Acetate Bags on Oxidation of Parenteral Nutrition. J. Parenter. Enter. Nutr. 2004, 28, 85–91. [Google Scholar] [CrossRef]
- Hardy, G.; Austin, P.D.; Davis, M.R.; Manzanares, W.; Mühlebach, S.F.; Pietka, M.; Allwood, M.C. Photoprotection of Parenteral Nutrition: An International Perspective. Nutr. Clin. Pract. 2021, 36, 921–925. [Google Scholar] [CrossRef]
- Mihatsch, W.A.; Koletzko, B. Editorial: Light Shielding of Bags and Tubing Used for Parenteral Nutrition of Infants. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 236–239. [Google Scholar] [CrossRef]
- Chessex, P.; Laborie, S.; Nasef, N.; Masse, B.; Lavoie, J.-C. Shielding Parenteral Nutrition From Light Improves Survival Rate in Premature Infants. J. Parenter. Enter. Nutr. 2017, 41, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Karthigesu, K.; Bertolo, R.F.; Brown, R.J. Parenteral Nutrition and Oxidant Load in Neonates. Nutrients 2021, 13, 2631. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, J.E.; Berlana, D.; Ukleja, A.; Boullata, J. Clinical, Ergonomic, and Economic Outcomes With Multichamber Bags Compared With (Hospital) Pharmacy Compounded Bags and Multibottle Systems: A Systematic Literature Review. J. Parenter. Enter. Nutr. 2017, 41, 1162–1177. [Google Scholar] [CrossRef] [PubMed]
- Mirtallo, J.; Canada, T.; Johnson, D.; Kumpf, V.; Petersen, C.; Sacks, G.; Seres, D.; Guenter, P. Safe Practices for Parenteral Nutrition. J. Parenter. Enter. Nutr. 2004, 28, S39–S70. [Google Scholar] [CrossRef]
- Chiu, E.; Oleynick, C.; Raman, M.; Bielawska, B. Optimizing Inpatient Nutrition Care of Adult Patients with Inflammatory Bowel Disease in the 21st Century. Nutrients 2021, 13, 1581. [Google Scholar] [CrossRef]
- Sánchez-Guillén, L.; Soriano-Irigaray, L.; López-Rodríguez-Arias, F.; Barber, X.; Murcia, A.; Alcaide, M.J.; Aranaz-Ostáriz, V.; Soler-Silva, Á.; Navarro-Ruiz, A.; Arroyo, A. Effect of Early Peripheral Parenteral Nutrition Support in an Enhanced Recovery Program for Colorectal Cancer Surgery: A Randomized Open Trial. J. Clin. Med. 2021, 10, 3647. [Google Scholar] [CrossRef]
- Van der Walt, A.; Watt, A.; Kaushik, V.; Osland, E. Are We Underusing Peripheral Parenteral Nutrition? A 5-year Retrospective Review of Inpatient Parenteral Nutrition Practices. Nutr. Clin. Pract. 2022. [CrossRef]
- Durán-Poveda, M.; Bonavina, L.; Reith, B.; Caruso, R.; Klek, S.; Senkal, M. Nutrition Practices with a Focus on Parenteral Nutrition in the Context of Enhanced Recovery Programs: An Exploratory Survey of Gastrointestinal Surgeons. Clin. Nutr. ESPEN 2022, 50, 138–147. [Google Scholar] [CrossRef]
- Berlana, D.; Almendral, M.A.; Abad, M.R.; Fernández, A.; Torralba, A.; Cervera-Peris, M.; Piñeiro, G.; Romero-Jiménez, R.; Vázquez, A.; Ramírez, E.; et al. Cost, Time, and Error Assessment During Preparation of Parenteral Nutrition: Multichamber Bags Versus Hospital-Compounded Bags. J. Parenter. Enter. Nutr. 2019, 43, 557–565. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, Y.X.; Liu, X.Y.; Li, H.L.; Mei, D. Comparison of Effectiveness, Safety, and Costs of Standardized and Customized Parenteral Nutrition Support among Gastric Cancer Patients after Gastrectomy: A Retrospective Cohort Study. Asia Pac. J. Clin. Nutr. 2018, 27, 818–822. [Google Scholar] [CrossRef]
- Gomis, P.; Loitegui, M.A.; Rosas, C.R.; Spiers, S.; Shinn, M.; Orbaneja, M.Á. Influence of the Type of Amino Acids in the Formation of Precipitates of Copper and Sulphur in Parenteral Nutrition. Nutr. Hosp. 2019, 36, 764–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, C.; MacKay, M. Physical Compatibility of Calcium Chloride and Sodium Glycerophosphate in Pediatric Parenteral Nutrition Solutions. J. Parenter. Enter. Nutr. 2016, 40, 1166–1169. [Google Scholar] [CrossRef] [PubMed]
- Newton, D.W.; Driscoll, D.F. Chemistry and Safety of Phosphates Injections. Am. J. Health-Syst. Pharm. 2008, 65, 1761–1766. [Google Scholar] [CrossRef] [PubMed]
- Vanek, V.W.; Borum, P.; Buchman, A.; Fessler, T.A.; Howard, L.; Jeejeebhoy, K.; Kochevar, M.; Shenkin, A.; Valentine, C.J.; American Society for Parenteral and Enteral Nutrition. Position Paper. Nutr. Clin. Pract. 2012, 27, 440–491. [Google Scholar] [CrossRef]
- Thibault, M. Possible Incompatibility between Amino Acids and Copper in Solutions for Pediatric Parenteral Nutrition. Can J. Hosp. Pharm. 2014, 67, 160–164. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.C.; McDougal, A.R.; Tofan, M.; Aulakh, J.; Pineault, M.; Chessex, P. Doubling Calcium and Phosphate Concentrations in Neonatal Parenteral Nutrition Solutions Using Monobasic Potassium Phosphate. J. Am. Coll. Nutr. 2006, 25, 70–77. [Google Scholar] [CrossRef]
- Pertkiewicz, M.; Cosslett, A.; Mühlebach, S.; Dudrick, S.J. Basics in Clinical Nutrition: Stability of Parenteral Nutrition Admixtures. E-SPEN Eur. E-J. Clin. Nutr. Metab. 2009, 4, e117–e119. [Google Scholar] [CrossRef] [Green Version]
- Klang, M.G. PFAT5 and the Evolution of Lipid Admixture Stability. J. Parenter. Enter. Nutr. 2015, 39, 67S–71S. [Google Scholar] [CrossRef]
- Driscoll, D.F. Globule-Size Distribution in Injectable 20% Lipid Emulsions: Compliance with USP Requirements. Am. J. Health-Syst. Pharm. 2007, 64, 2032–2036. [Google Scholar] [CrossRef]
- Télessy, I.G.; Balogh, J.; Turmezei, J.; Dredán, J.; Zelkó, R. Stability Assessment of o/w Parenteral Nutrition Emulsions in the Presence of High Glucose and Calcium Concentrations. J. Pharm. Biomed. Anal. 2011, 56, 159–164. [Google Scholar] [CrossRef]
- Lobo, B.W.; da Veiga, V.F.; Cabral, L.M.; Michel, R.C.; Volpato, N.M.; de Sousa, V.P. Influence of the Relative Composition of Trace Elements and Vitamins in Physicochemical Stability of Total Parenteral Nutrition Formulations for Neonatal Use. Nutr. J. 2012, 11, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, T.I.; Emery, S.; Price-Davies, R.; Cosslett, A.G. A Review of Stability Issues Associated with Vitamins in Parenteral Nutrition. ESPEN J. 2014, 9, e49–e53. [Google Scholar] [CrossRef]
- Hardy, G.; Puzovic, M. Formulation, Stability, and Administration of Parenteral Nutrition With New Lipid Emulsions. Nutr. Clin. Pract. 2009, 24, 616–625. [Google Scholar] [CrossRef]
- Iacone, R.; Scanzano, C.; Santarpia, L.; Cioffi, I.; Contaldo, F.; Pasanisi, F. Macronutrients in Parenteral Nutrition: Amino Acids. Nutrients 2020, 12, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClave, S.A.; Taylor, B.E.; Martindale, R.G.; Warren, M.M.; Johnson, D.R.; Braunschweig, C.; McCarthy, M.S.; Davanos, E.; Rice, T.W.; Cresci, G.A.; et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J. Parenter. Enter. Nutr. 2016, 40, 159–211. [Google Scholar] [CrossRef]
- Brown, R.O.; Compher, C.; American Society for Parenteral and Enteral Nutrition. Clinical Guidelines. J. Parenter. Enter. Nutr. 2010, 34, 366–377. [Google Scholar] [CrossRef]
- Fiaccadori, E.; Sabatino, A.; Barazzoni, R.; Carrero, J.J.; Cupisti, A.; de Waele, E.; Jonckheer, J.; Singer, P.; Cuerda, C. ESPEN Guideline on Clinical Nutrition in Hospitalized Patients with Acute or Chronic Kidney Disease. Clin. Nutr. 2021, 40, 1644–1668. [Google Scholar] [CrossRef]
- Vilstrup, H.; Gluud, C.; Hardt, F.; Kristensen, M.; Køhler, O.; Melgaard, B.; Dejgaard, A.; Hansen, B.A.; Krintel, J.J.; Schütten, H.J.; et al. Branched Chain Enriched Amino Acid versus Glucose Treatment of Hepatic Encephalopathy. J. Hepatol. 1990, 10, 291–296. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Bernal, W.; Dasarathy, S.; Merli, M.; Plank, L.D.; Schütz, T.; Plauth, M. ESPEN Practical Guideline: Clinical Nutrition in Liver Disease. Clin. Nutr. 2020, 39, 3533–3562. [Google Scholar] [CrossRef]
- Raman, M.; Almutairdi, A.; Mulesa, L.; Alberda, C.; Beattie, C.; Gramlich, L. Parenteral Nutrition and Lipids. Nutrients 2017, 9, 388. [Google Scholar] [CrossRef]
- Visschers, R.G.J.; Olde Damink, S.W.M.; Gehlen, J.M.L.G.; Winkens, B.; Soeters, P.B.; van Gemert, W.G. Treatment of Hypertriglyceridemia in Patients Receiving Parenteral Nutrition. J. Parenter. Enter. Nutr. 2011, 35, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Wretlind, A. Development of Fat Emulsions. Nutrition 1999, 15, 641–645. [Google Scholar] [CrossRef]
- Calder, P.C.; Waitzberg, D.L.; Klek, S.; Martindale, R.G. Lipids in Parenteral Nutrition: Biological Aspects. J. Parenter. Enter. Nutr. 2020, 44, S21–S27. [Google Scholar] [CrossRef] [PubMed]
- Sadu Singh, B.K.; Narayanan, S.S.; Khor, B.H.; Sahathevan, S.; Abdul Gafor, A.H.; Fiaccadori, E.; Sundram, K.; Karupaiah, T. Composition and Functionality of Lipid Emulsions in Parenteral Nutrition: Examining Evidence in Clinical Applications. Front. Pharm. 2020, 11, 506. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Svahn, S.L.; Johansson, M.E. Effects of Omega-3 Fatty Acids on Immune Cells. Int. J. Mol. Sci. 2019, 20, 5028. [Google Scholar] [CrossRef] [Green Version]
- Waitzberg, D.L.; Torrinhas, R.S. Fish Oil Lipid Emulsions and Immune Response: What Clinicians Need to Know. Nutr. Clin. Pract. 2009, 24, 487–499. [Google Scholar] [CrossRef]
- Scaioli, E.; Liverani, E.; Belluzzi, A. The Imbalance between N-6/n-3 Polyunsaturated Fatty Acids and Inflammatory Bowel Disease: A Comprehensive Review and Future Therapeutic Perspectives. Int. J. Mol. Sci. 2017, 18, 2619. [Google Scholar] [CrossRef] [Green Version]
- Pradelli, L.; Mayer, K.; Klek, S.; Omar Alsaleh, A.J.; Clark, R.A.C.; Rosenthal, M.D.; Heller, A.R.; Muscaritoli, M. Ω-3 Fatty-Acid Enriched Parenteral Nutrition in Hospitalized Patients: Systematic Review With Meta-Analysis and Trial Sequential Analysis. J. Parenter. Enter. Nutr. 2020, 44, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Langlois, P.L.; D’Aragon, F.; Hardy, G.; Manzanares, W. Omega-3 Polyunsaturated Fatty Acids in Critically Ill Patients with Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. Nutrition 2019, 61, 84–92. [Google Scholar] [CrossRef]
- Puder, M.; Valim, C.; Meisel, J.A.; Le, H.D.; de Meijer, V.E.; Robinson, E.M.; Zhou, J.; Duggan, C.; Gura, K.M. Parenteral Fish Oil Improves Outcomes in Patients With Parenteral Nutrition-Associated Liver Injury. Ann. Surg. 2009, 250, 395–402. [Google Scholar] [CrossRef]
- Ganousse-Mazeron, S.; Lacaille, F.; Colomb-Jung, V.; Talbotec, C.; Ruemmele, F.; Sauvat, F.; Chardot, C.; Canioni, D.; Jan, D.; Revillon, Y.; et al. Assessment and Outcome of Children with Intestinal Failure Referred for Intestinal Transplantation. Clin. Nutr. 2015, 34, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Zaloga, G.P. Phytosterols, Lipid Administration, and Liver Disease During Parenteral Nutrition. J. Parenter. Enter. Nutr. 2015, 39, 39S–60S. [Google Scholar] [CrossRef] [PubMed]
- Kirk, C.; Haigh, L.; Thompson, N.P.; Pearce, M.; Jones, D.E.; Mathers, J.C. The Effects of Different Parenteral Nutrition Lipid Formulations on Clinical and Laboratory Endpoints in Patients Receiving Home Parenteral Nutrition: A Systematic Review. Clin. Nutr. 2022, 41, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Llop-Talaverón, J.M.; Novak, A.; Negre, J.M.S.; Badia Tahull, M.B.; Leiva-Badosa, E.; Tico-Grau, J.R. Phytosterol Determination in Lipid Emulsions for Parenteral Nutrition. Farm. Hosp. 2018, 42, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.M.; Shenkin, A.; Schweinlin, A.; Amrein, K.; Augsburger, M.; Biesalski, H.-K.; Bischoff, S.C.; Casaer, M.P.; Gundogan, K.; Lepp, H.-L.; et al. ESPEN Micronutrient Guideline. Clin. Nutr. 2022, 41, 1357–1424. [Google Scholar] [CrossRef] [PubMed]
- Elizabeth, P.-C.; Rogelio Ramón, P.-R.; Félix Alberto, M.-M. Hyperglycemia Associated with Parenteral Nutrition in Noncritical Patients. Hum. Nutr. Metab. 2020, 22, 200114. [Google Scholar] [CrossRef]
- Llop, J.M.; Leiva, E.; Mateu-de Antonio, J.; Berlana, D.; Badia, M.; Casasín, T.; Miana, M.; Pons, M.; Maroto, M.; Chicharro, L.; et al. Study of Hyperglycemia in Non Critically-Ill Patients Receiving Parenteral Nutrition: Incidence and Risk Factors. Nutr. Hosp. 2012, 27, 1521–1526. [Google Scholar] [CrossRef]
- Van den Berghe, G.; Wouters, P.; Weekers, F.; Verwaest, C.; Bruyninckx, F.; Schetz, M.; Vlasselaers, D.; Ferdinande, P.; Lauwers, P.; Bouillon, R. Intensive Insulin Therapy in Critically Ill Patients. N. Engl. J. Med. 2001, 345, 1359–1367. [Google Scholar] [CrossRef]
- Olveira, G.; Tapia, M.J.; Ocón, J.; Cabrejas-Gómez, C.; Ballesteros-Pomar, M.D.; Vidal-Casariego, A.; Arraiza-Irigoyen, C.; Olivares, J.; Conde-García, M.D.C.; García-Manzanares, Á.; et al. Parenteral Nutrition–Associated Hyperglycemia in Non–Critically Ill Inpatients Increases the Risk of In-Hospital Mortality (Multicenter Study). Diabetes Care 2013, 36, 1061–1066. [Google Scholar] [CrossRef] [Green Version]
- Olveira, G.; Abuin-Fernández, J. Regular Insulin Added to Total Parenteral Nutrition vs Subcutaneous Glargine in Non-Critically Ill Diabetic Inpatients, a Multicenter Randomized Clinical Trial: INSUPAR Trial. Clin. Nutr. 2021, 40, 1440. [Google Scholar] [CrossRef]
- Roszali, M.A.; Zakaria, A.N.; Mohd Tahir, N.A. Parenteral Nutrition-Associated Hyperglycemia: Prevalence, Predictors and Management. Clin. Nutr. ESPEN 2021, 41, 275–280. [Google Scholar] [CrossRef]
- Llop, J.; Sabin, P.; Garau, M.; Burgos, R.; Pérez, M.; Massó, J.; Cardona, D.; Sánchez Segura, J.M.; Garriga, R.; Redondo, S.; et al. The Importance of Clinical Factors in Parenteral Nutrition-Associated Hypertriglyceridemia. Clin. Nutr. 2003, 22, 577–583. [Google Scholar] [CrossRef]
- Mateu-de Antonio, J.; Florit-Sureda, M. New Strategy to Reduce Hypertriglyceridemia During Parenteral Nutrition While Maintaining Energy Intake. J. Parenter. Enter. Nutr. 2016, 40, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.S.; Seres, D.S.; Sabino, K.; Adams, S.C.; Berdahl, G.J.; Citty, S.W.; Cober, M.P.; Evans, D.C.; Greaves, J.R.; Gura, K.M.; et al. ASPEN Consensus Recommendations for Refeeding Syndrome. Nutr. Clin. Pract. 2020, 35, 178–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedli, N.; Odermatt, J.; Reber, E.; Schuetz, P.; Stanga, Z. Refeeding Syndrome: Update and Clinical Advice for Prevention, Diagnosis and Treatment. Curr. Opin. Gastroenterol. 2020, 36, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Friedli, N.; Stanga, Z.; Sobotka, L.; Culkin, A.; Kondrup, J.; Laviano, A.; Mueller, B.; Schuetz, P. Revisiting the Refeeding Syndrome: Results of a Systematic Review. Nutrition 2017, 35, 151–160. [Google Scholar] [CrossRef] [Green Version]
- De Vargas Cony, K.; de Magalhães Francesconi, C.F. An Unexpectedly High Incidence of Refeeding Syndrome in Patients with Total Parenteral Nutrition in a Reference University Hospital. Clin. Nutr. 2021, 40, 3702–3707. [Google Scholar] [CrossRef]
- Madnawat, H.; Welu, A.L.; Gilbert, E.J.; Taylor, D.B.; Jain, S.; Manithody, C.; Blomenkamp, K.; Jain, A.K. Mechanisms of Parenteral Nutrition-Associated Liver and Gut Injury. Nutr. Clin. Pract. 2020, 35, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Żalikowska-Gardocka, M.; Przybyłkowski, A. Review of Parenteral Nutrition-Associated Liver Disease. Clin. Exp. Hepatol. 2020, 6, 65–73. [Google Scholar] [CrossRef]
- Beath, S.V.; Kelly, D.A. Total Parenteral Nutrition–Induced Cholestasis. Clin. Liver Dis. 2016, 20, 159–176. [Google Scholar] [CrossRef]
- Mitra, A.; Ahn, J. Liver Disease in Patients on Total Parenteral Nutrition. Clin. Liver Dis. 2017, 21, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Jenniskens, M.; Langouche, L.; van den Berghe, G. Cholestatic Alterations in the Critically Ill. Chest 2018, 153, 733–743. [Google Scholar] [CrossRef]
- Mateu-de Antonio, J.; Miana-Mena, M.T.; Martínez-Bernabé, E.; González-Valdivieso, J.; Berlana, D.; Pons-Bussom, M.; Murgadella-Sancho, A.; Badia-Tahull, M.B.; Martínez-Castro, B.; Sunyer-Esquerrà, N.; et al. Cohort Multicenter Study on the Role of Medications in Parenteral Nutrition–Related Alteration of Liver Function Tests in Adults. J. Parenter. Enter. Nutr. 2021, 45, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Stout, S.M.; Cober, M.P. Metabolic Effects of Cyclic Parenteral Nutrition Infusion in Adults and Children. Nutr. Clin. Pract. 2010, 25, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.; Klek, S.; García-de-Lorenzo, A.; Rosenthal, M.D.; Li, A.; Evans, D.C.; Muscaritoli, M.; Martindale, R.G. Lipid Use in Hospitalized Adults Requiring Parenteral Nutrition. J. Parenter. Enter. Nutr. 2020, 44, S28–S38. [Google Scholar] [CrossRef] [Green Version]
- Llop-Talaveron, J.; Badia-Tahull, M.B.; Lozano-Andreu, T.; Suarez-Lledo, A.; Leiva-Badosa, E. Risk Factors of Hepatic Function Alterations in Hospitalized Adult Patients Treated with Short-Term Parenteral Nutrition Receiving the Same Lipid Composition at the Same Dose. Lipids Health Dis. 2018, 17, 267. [Google Scholar] [CrossRef] [Green Version]
- Martincich, I.; Cini, K.; Lapkin, S.; Lord, H.; Fernandez, R. Central Venous Access Device Complications in Patients Receiving Parenteral Nutrition in General Ward Settings: A Retrospective Analysis. J. Parenter. Enter. Nutr. 2020, 44, 1104–1111. [Google Scholar] [CrossRef]
- Timsit, J.-F.; Baleine, J.; Bernard, L.; Calvino-Gunther, S.; Darmon, M.; Dellamonica, J.; Desruennes, E.; Leone, M.; Lepape, A.; Leroy, O.; et al. Expert Consensus-Based Clinical Practice Guidelines Management of Intravascular Catheters in the Intensive Care Unit. Ann. Intensive Care 2020, 10, 1–26. [Google Scholar] [CrossRef]
- O’Grady, N.P.; Alexander, M.; Burns, L.A.; Dellinger, E.P.; Garland, J.; Heard, S.O.; Lipsett, P.A.; Masur, H.; Mermel, L.A.; Pearson, M.L.; et al. Guidelines for the Prevention of Intravascular Catheter-Related Infections. Am. J. Infect. Control 2011, 39, S1–S34. [Google Scholar] [CrossRef] [Green Version]
- Bell, T.; O’Grady, N.P. Prevention of Central Line–Associated Bloodstream Infections. Infect. Dis. Clin. N. Am. 2017, 31, 551–559. [Google Scholar] [CrossRef]
- Wall, C.; Moore, J.; Thachil, J. Catheter-Related Thrombosis: A Practical Approach. J. Intensive Care Soc. 2016, 17, 160–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, S.; Jiménez, P.; Saavedra, P.; Macías, D.; Loza, A.; León, C.; López, M.; Pallejá, E.; Hernández-Socorro, C.R.; Ruiz-Santana, S. Five-Year Outcome of Peripherally Inserted Central Catheters in Adults: A Separated Infectious and Thrombotic Complications Analysis. Infect Control Hosp. Epidemiol. 2021, 42, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Arvanitakis, M.; Ockenga, J.; Bezmarevic, M.; Gianotti, L.; Krznarić, Ž.; Lobo, D.N.; Löser, C.; Madl, C.; Meier, R.; Phillips, M.; et al. ESPEN Guideline on Clinical Nutrition in Acute and Chronic Pancreatitis. Clin. Nutr. 2020, 39, 612–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, S.J.; Omer, E. Chronic Pancreatitis and Nutrition Therapy. Nutr. Clin. Pract. 2019, 34, S13–S26. [Google Scholar] [CrossRef] [Green Version]
- Smit, M.; Buddingh, K.T.; Bosma, B.; Nieuwenhuijs, V.B.; Hofker, H.S.; Zijlstra, J.G. Abdominal Compartment Syndrome and Intra-Abdominal Ischemia in Patients with Severe Acute Pancreatitis. World J. Surg. 2016, 40, 1454–1461. [Google Scholar] [CrossRef] [Green Version]
- Márta, K.; Farkas, N.; Szabó, I.; Illés, A.; Vincze, Á.; Pár, G.; Sarlós, P.; Bajor, J.; Szűcs, Á.; Czimmer, J.; et al. Meta-Analysis of Early Nutrition: The Benefits of Enteral Feeding Compared to a Nil Per Os Diet Not Only in Severe, but Also in Mild and Moderate Acute Pancreatitis. Int. J. Mol. Sci. 2016, 17, 1691. [Google Scholar] [CrossRef] [Green Version]
- Moraes, J.M.M.; Felga, G.E.G.; Chebli, L.A.; Franco, M.B.; Gomes, C.A.; Gaburri, P.D.; Zanini, A.; Chebli, J.M.F. A Full Solid Diet as the Initial Meal in Mild Acute Pancreatitis Is Safe and Result in a Shorter Length of Hospitalization. J. Clin. Gastroenterol. 2010, 44, 517–522. [Google Scholar] [CrossRef]
- Eckerwall, G.E.; Tingstedt, B.B.Å.; Bergenzaun, P.E.; Andersson, R.G. Immediate Oral Feeding in Patients with Mild Acute Pancreatitis Is Safe and May Accelerate Recovery—A Randomized Clinical Study. Clin. Nutr. 2007, 26, 758–763. [Google Scholar] [CrossRef] [Green Version]
- Petrov, M.S. Enteral Nutrition and the Risk of Mortality and Infectious Complications in Patients With Severe Acute Pancreatitis. Arch. Surg. 2008, 143, 1111. [Google Scholar] [CrossRef]
- Arvanitakis, M.; Gkolfakis, P.; Fernandez, Y.; Viesca, M. Nutrition in Acute Pancreatitis. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 428–432. [Google Scholar] [CrossRef]
- Al-Omran, M.; AlBalawi, Z.H.; Tashkandi, M.F.; Al-Ansary, L.A. Enteral versus Parenteral Nutrition for Acute Pancreatitis. Cochrane Database Syst. Rev. 2010, 1, CD002837. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, J.; Zhao, S.; Li, J. Safety and Efficacy of Total Parenteral Nutrition versus Total Enteral Nutrition for Patients with Severe Acute Pancreatitis: A Meta-Analysis. J. Int. Med. Res. 2018, 46, 3948–3958. [Google Scholar] [CrossRef] [Green Version]
- Yi, F.; Ge, L.; Zhao, J.; Lei, Y.; Zhou, F.; Chen, Z.; Zhu, Y.; Xia, B. Meta-Analysis: Total Parenteral Nutrition Versus Total Enteral Nutrition in Predicted Severe Acute Pancreatitis. Intern. Med. 2012, 51, 523–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrov, M.S.; Whelan, K. Comparison of Complications Attributable to Enteral and Parenteral Nutrition in Predicted Severe Acute Pancreatitis: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2010, 103, 1287–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, H.; He, C.; Deng, L.; Liao, G. Enteral versus Parenteral Nutrition in Critically Ill Patients with Severe Pancreatitis: A Meta-Analysis. Eur. J. Clin. Nutr. 2018, 72, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Vege, S.S.; DiMagno, M.J.; Forsmark, C.E.; Martel, M.; Barkun, A.N. Initial Medical Treatment of Acute Pancreatitis: American Gastroenterological Association Institute Technical Review. Gastroenterology 2018, 154, 1103–1139. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Gao, C. A Systematic Review and Meta-Analysis of the Effect of Total Parenteral Nutrition and Enteral Nutrition on the Prognosis of Patients with Acute Pancreatitis. Ann. Palliat. Med. 2021, 10, 10779–10788. [Google Scholar] [CrossRef]
- Roberts, K.M.; Nahikian-Nelms, M.; Ukleja, A.; Lara, L.F. Nutritional Aspects of Acute Pancreatitis. Gastroenterol. Clin. N. Am. 2018, 47, 77–94. [Google Scholar] [CrossRef]
- Jafari, T.; Feizi, A.; Askari, G.; Fallah, A.A. Parenteral Immunonutrition in Patients with Acute Pancreatitis: A Systematic Review and Meta-Analysis. Clin. Nutr. 2015, 34, 35–43. [Google Scholar] [CrossRef]
- Yong, L.; Lu, Q.-P.; Liu, S.-H.; Fan, H. Efficacy of Glutamine-Enriched Nutrition Support for Patients With Severe Acute Pancreatitis. J. Parenter. Enter. Nutr. 2016, 40, 83–94. [Google Scholar] [CrossRef]
- Asrani, V.; Chang, W.K.; Dong, Z.; Hardy, G.; Windsor, J.A.; Petrov, M.S. Glutamine Supplementation in Acute Pancreatitis: A Meta-Analysis of Randomized Controlled Trials. Pancreatology 2013, 13, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Jeurnink, S.M.; Nijs, M.M.; Prins, H.A.B.; Greving, J.P.; Siersema, P.D. Antioxidants as a Treatment for Acute Pancreatitis: A Meta-Analysis. Pancreatology 2015, 15, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Zhao, Z.; Li, X.; Chen, Z.; Jiang, W.; Zhou, W. Efficacy of Glutamine in Treating Severe Acute Pancreatitis: A Systematic Review and Meta-Analysis. Front. Nutr. 2022, 9, 865102. [Google Scholar] [CrossRef] [PubMed]
- Lei, Q.; Wang, X.; Xia, X.; Zheng, H.; Bi, J.; Tian, F.; Li, N. The Role of Omega-3 Fatty Acids in Acute Pancreatitis: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2015, 7, 2261–2273. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liu, Y.; Zhang, L.; Zhou, D.; Tian, F.; Gao, T.; Tian, H.; Hu, H.; Gong, F.; Guo, D.; et al. Effect of Early vs Late Supplemental Parenteral Nutrition in Patients Undergoing Abdominal Surgery. JAMA Surg. 2022, 157, 384–393. [Google Scholar] [CrossRef]
- Ljungqvist, O.; Gustafsson, U.O.; Lobo, D.N. Early Postoperative Supplementary Parenteral Nutrition. JAMA Surg. 2022, 157, 393. [Google Scholar] [CrossRef]
- Hsieh, C.E.; Lin, K.H.; Lin, C.C.; Hwu, Y.J.; Lin, P.Y.; Lin, H.C.; Ko, C.J.; Wang, S.H.; Chen, Y.L. Comparative Factor Analysis of the Effect of Postoperative Peripheral Parenteral Nutrition on Recovery of Right Lobe Liver Donors. Exp. Clin. Transplant. 2015, 13, 157–162. [Google Scholar] [CrossRef]
- Jin, Y.; Yong, C.; Ren, K.; Li, D.; Yuan, H. Effects of Post-Surgical Parenteral Nutrition on Patients with Gastric Cancer. Cell. Physiol. Biochem. 2018, 49, 1320–1328. [Google Scholar] [CrossRef]
- Krüger, J.; Meffert, P.J.; Vogt, L.J.; Gärtner, S.; Steveling, A.; Kraft, M.; Mayerle, J.; Lerch, M.M.; Aghdassi, A.A. Early Parenteral Nutrition in Patients with Biliopancreatic Mass Lesions, a Prospective, Randomized Intervention Trial. PLoS ONE 2016, 11, e0166513. [Google Scholar] [CrossRef]
- Liu, M.-Y.; Tang, H.-C.; Yang, H.-L.; Huang, H.-H.; Chang, S.-J. Hypo-Calories with Micronutrients and Fat Emulsion of Pre-Operative Peripheral Parenteral Nutrition in Malnutrition Risk Rectal Cancer Patients: A Retrospective Cross-Sectional Study. Food Nutr. Sci. 2013, 04, 821–826. [Google Scholar] [CrossRef]
- Burden, S.; Todd, C.; Hill, J.; Lal, S. Pre-Operative Nutrition Support in Patients Undergoing Gastrointestinal Surgery. Cochrane Database Syst. Rev. 2012, 11, CD008879. [Google Scholar] [CrossRef] [PubMed]
- Heyland, D.K.; Montalvo, M.; Macdonald, S.; Keefe, L.; Su, Y.X.; Drover, J.W. Total Parenteral Nutrition in the Surgical Patient: A Meta-Analysis. Can. J. Surg. 2001, 44, 102–111. [Google Scholar] [PubMed]
- Zhao, X.-F.; Wu, N.; Zhao, G.-Q.; Liu, J.-F.; Dai, Y.-F. Enteral Nutrition versus Parenteral Nutrition after Major Abdominal Surgery in Patients with Gastrointestinal Cancer: A Systematic Review and Meta-Analysis. J. Investig. Med. 2016, 64, 1061–1074. [Google Scholar] [CrossRef] [PubMed]
- Mazaki, T.; Ebisawa, K. Enteral versus Parenteral Nutrition after Gastrointestinal Surgery: A Systematic Review and Meta-Analysis of Randomized Controlled Trials in the English Literature. J. Gastrointest. Surg. 2008, 12, 739–755. [Google Scholar] [CrossRef]
- Adiamah, A.; Ranat, R.; Gomez, D. Enteral versus Parenteral Nutrition Following Pancreaticoduodenectomy: A Systematic Review and Meta-Analysis. HPB 2019, 21, 793–801. [Google Scholar] [CrossRef]
- Zeng, S.; Xue, Y.; Zhao, J.; Liu, A.; Zhang, Z.; Sun, Y.; Xu, C. Total Parenteral Nutrition versus Early Enteral Nutrition after Cystectomy: A Meta-Analysis of Postoperative Outcomes. Int. Urol. Nephrol. 2019, 51, 1–7. [Google Scholar] [CrossRef]
- Sandini, M.; Nespoli, L.; Oldani, M.; Bernasconi, D.; Gianotti, L. Effect of Glutamine Dipeptide Supplementation on Primary Outcomes for Elective Major Surgery: Systematic Review and Meta-Analysis. Nutrients 2015, 7, 481–499. [Google Scholar] [CrossRef]
- Ziegler, T.R.; May, A.K.; Hebbar, G.; Easley, K.A.; Griffith, D.P.; Dave, N.; Collier, B.R.; Cotsonis, G.A.; Hao, L.; Leong, T.; et al. Efficacy and Safety of Glutamine-Supplemented Parenteral Nutrition in Surgical ICU Patients. Ann. Surg. 2016, 263, 646–655. [Google Scholar] [CrossRef] [Green Version]
- Pichard, C.; Oshima, T.; Berger, M.M. Energy Deficit Is Clinically Relevant for Critically Ill Patients: Yes. Intensive Care Med. 2015, 41, 335–338. [Google Scholar] [CrossRef] [Green Version]
- Oshima, T.; Deutz, N.E.; Doig, G.; Wischmeyer, P.E.; Pichard, C. Protein-Energy Nutrition in the ICU Is the Power Couple: A Hypothesis Forming Analysis. Clin. Nutr. 2016, 35, 968–974. [Google Scholar] [CrossRef]
- Heyland, D.K.; Dhaliwal, R.; Wang, M.; Day, A.G. The Prevalence of Iatrogenic Underfeeding in the Nutritionally ‘at-Risk’ Critically Ill Patient: Results of an International, Multicenter, Prospective Study. Clin. Nutr. 2015, 34, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.; Heyland, D.K.; Elke, G.; Schaller, S.J.; Stocker, R.; Haberthür, C.; von Loeffelholz, C.; Suchner, U.; Puthucheary, Z.A.; Bear, D.E.; et al. Meeting Nutritional Targets of Critically Ill Patients by Combined Enteral and Parenteral Nutrition: Review and Rationale for the EFFORTcombo Trial. Nutr. Res. Rev. 2020, 33, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Wischmeyer, P.E.; Hasselmann, M.; Kummerlen, C.; Kozar, R.; Kutsogiannis, D.J.; Karvellas, C.J.; Besecker, B.; Evans, D.K.; Preiser, J.-C.; Gramlich, L.; et al. A Randomized Trial of Supplemental Parenteral Nutrition in Underweight and Overweight Critically Ill Patients: The TOP-UP Pilot Trial. Crit Care 2017, 21, 142. [Google Scholar] [CrossRef] [Green Version]
- Heyland, D.; Stapleton, R.; Compher, C. Should We Prescribe More Protein to Critically Ill Patients? Nutrients 2018, 10, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reignier, J.; Boisramé-Helms, J.; Brisard, L.; Lascarrou, J.-B.; Ait Hssain, A.; Anguel, N.; Argaud, L.; Asehnoune, K.; Asfar, P.; Bellec, F.; et al. Enteral versus Parenteral Early Nutrition in Ventilated Adults with Shock: A Randomised, Controlled, Multicentre, Open-Label, Parallel-Group Study (NUTRIREA-2). Lancet 2018, 391, 133–143. [Google Scholar] [CrossRef]
- Harvey, S.E.; Parrott, F.; Harrison, D.A.; Bear, D.E.; Segaran, E.; Beale, R.; Bellingan, G.; Leonard, R.; Mythen, M.G.; Rowan, K.M. Trial of the Route of Early Nutritional Support in Critically Ill Adults. N. Engl. J. Med. 2014, 371, 1673–1684. [Google Scholar] [CrossRef]
- Hill, A.; Heyland, D.K.; Ortiz Reyes, L.A.; Laaf, E.; Wendt, S.; Elke, G.; Stoppe, C. Combination of Enteral and Parenteral Nutrition in the Acute Phase of Critical Illness: An Updated Systematic Review and Meta-analysis. J. Parenter. Enter. Nutr. 2022, 46, 395–410. [Google Scholar] [CrossRef]
- Lee, Z.-Y.; Yap, C.S.L.; Hasan, M.S.; Engkasan, J.P.; Barakatun-Nisak, M.Y.; Day, A.G.; Patel, J.J.; Heyland, D.K. The Effect of Higher versus Lower Protein Delivery in Critically Ill Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Crit. Care 2021, 25, 260. [Google Scholar] [CrossRef]
- Lin, A.; Micic, D. Nutrition Considerations in Inflammatory Bowel Disease. Nutr. Clin. Pract. 2021, 36, 298–311. [Google Scholar] [CrossRef]
- Gajendran, M.; Umapathy, C.; Loganathan, P.; Hashash, J.G.; Koutroubakis, I.E.; Binion, D.G. Analysis of Hospital-Based Emergency Department Visits for Inflammatory Bowel Disease in the USA. Dig. Dis. Sci. 2016, 61, 389–399. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Escher, J.; Hébuterne, X.; Kłęk, S.; Krznaric, Z.; Schneider, S.; Shamir, R.; Stardelova, K.; Wierdsma, N.; Wiskin, A.E.; et al. ESPEN Practical Guideline: Clinical Nutrition in Inflammatory Bowel Disease. Clin. Nutr. 2020, 39, 632–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Huix, F.; Fernández-Bañares, F.; Esteve-Comas, M.; Abad-Lacruz, A.; Cabré, E.; Acero, D.; Figa, M.; Guilera, M.; Humbert, P.; de León, R.; et al. Enteral versus Parenteral Nutrition as Adjunct Therapy in Acute Ulcerative Colitis. Am. J. Gastroenterol. 1993, 88, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, E. Perioperative Parenteral Nutrition in Adults With Inflammatory Bowel Disease. Nutr. Clin. Pract. 2016, 31, 159–170. [Google Scholar] [CrossRef]
- Aksan, A.; Farrag, K.; Blumenstein, I.; Schröder, O.; Dignass, A.U.; Stein, J. Chronic Intestinal Failure and Short Bowel Syndrome in Crohn’s Disease. World J. Gastroenterol. 2021, 27, 3440–3465. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, G.C.; Laveist, T.A.; Brant, S.R. The Utilization of Parenteral Nutrition during the In-Patient Management of Inflammatory Bowel Disease in the United States: A National Survey. Aliment. Pharm. 2007, 26, 1499–1507. [Google Scholar] [CrossRef]
Condition | Mechanism/Indication for PN | Example |
---|---|---|
Short bowel Intestinal fistula Extensive intestinal mucosal disease | Reduction of absorption capacity Loss of nutrients | Short bowel syndrome, ischemic bowel, complications of colorectal or bariatric surgery, high-output stoma, high-output intestinal fistula Radiation or chemotherapy-related enteritis, mucositis, autoimmune enteropathy, gut graft-versus-host disease |
Mechanical bowel obstruction | Blockage of intestinal lumen Recurrent vomiting | Malignant bowel obstruction, intestinal adhesions, stenosis or strictures, inflammatory disease, peritoneal carcinomatosis |
Motility disorders | Failure to tolerate adequate oral or enteral intake Recurrent vomiting | Functional gastrointestinal disorders, ileus, scleroderma, acute pancreatitis, post-operatively, gastrointestinal failure associated with critical illness, pseudo-obstruction, adhesive disease |
Bowel rest needed | Need to restrict oral or enteral intake | Ischemic bowel, perioperative status, acute pancreatitis, chylous fistula |
Other | Failure of oral or enteral nutrition | Unable to achieve or maintain secure oral or enteral access |
Type of VAD | Placement | Limitations | Advantages |
---|---|---|---|
Short peripheral catheter | Percutaneous peripheral insertion. | Infusion < 600 mOsm/L, high risk of phlebitis. | Easy to place, cost, lower infection risk. |
Midline | Percutaneous peripheral insertion. | Not appropriate for infusions > 900 mOsm/L (needs central access). | Lasting 2–4 weeks. |
PICC | Percutaneous placement via a peripheral vein (basilic, cephalic or brachial vein). | Self-care difficult, uncomfortable for long periods, placement needs trained personnel. | Low risk of placement complications. Used in acute and home care settings. Easy to remove. Lasting weeks to months. |
Nontunneled central VAD | Subclavian, jugular or femoral vein. | Operating room or hospital setting for placement. | Long-term usage, easy self-care. |
Tunneled central VAD | Subclavian or jugular (Hickman, Broviac, Hohn types). | Hospital setting, small procedure for removal. | Lower risk of infection, position on chest facilitates self-care; lasting months to years (home PN). |
Implanted ports | Subclavian or jugular. | Hospital setting, surgical procedure for removal, needle access required. | Associated with lower risk of infection. |
Lipid Source and Content | Phytosterol Content (mcg/mL) | Commercial Name (Manufacturer) |
---|---|---|
Soybean oil 100% | 422–439 | Intralipid® 20% (Fresenius Kabi, Bad Homburg, Germany) |
Soybean oil 50% Coconut oil 50% | 187–278 | Lipofundin® 20% (BBraun, Melsungen, Germany) |
Soybean oil 64% Coconut oil 36% | 346 | Structolipid® 20% (Fresenius Kabi, Germany) |
Soybean oil 20% Olive oil 80% | 208–274 | ClinOleic®/ClinoLipid® 20% (Baxter Deerfield, USA) |
Fish oil 100% | 0 | Omegaven® 10% (Fresenius Kabi, Germany) |
Soybean oil 40% Coconut oil 50% Fish oil 10% | 140 | Lipiderm®/LipoPlus® 20% (BBraun, Germany) |
Soybean oil 30% Coconut oil 30% Olive oil 25% Fish oil 15% | 124–207 | SMOFlipid® 20% (Fresenius Kabi, Germany) |
Type of Risk Factor | Cause | Reason | Intervention |
---|---|---|---|
Unrelated to PN | Sepsis and/or insult | Liver toxicity | Infection prevention |
Drugs-induced toxicity | Drugs causing liver toxicity | Identify the drug, change if possible | |
Related to PN | Lack of enteral intake | Impaired secretion of bile or biliary obstruction | Trophic EN, reintroducing enteral/oral intake |
Overfeeding | Fat accumulation leading to steatosis | Reduce total energy intake (fat and/or glucose) or change to enriched fish-oil IVFE | |
Lipids with a high phytosterol load | Phytosterols direct/indirect action in the liver | Change to lipid with lower phytosterol content and/or reduce lipids |
Society | Start SPN * | Start PN | Protein g/kg/day | Energy Kcal/kg/day |
---|---|---|---|---|
ASPEN | After 6 days | Any time | 1.2–2.0 | 12–25 (up to 7–10 day) |
ESPEN | Within 3–7 days | Within 3–7 days | 1.3 | Not exceeding 70% of EE ** (day 1–3)After day 3: 80–100% EE ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berlana, D. Parenteral Nutrition Overview. Nutrients 2022, 14, 4480. https://doi.org/10.3390/nu14214480
Berlana D. Parenteral Nutrition Overview. Nutrients. 2022; 14(21):4480. https://doi.org/10.3390/nu14214480
Chicago/Turabian StyleBerlana, David. 2022. "Parenteral Nutrition Overview" Nutrients 14, no. 21: 4480. https://doi.org/10.3390/nu14214480
APA StyleBerlana, D. (2022). Parenteral Nutrition Overview. Nutrients, 14(21), 4480. https://doi.org/10.3390/nu14214480