The Role of Dietary Patterns and Dietary Quality on Body Composition of Adolescents in Chinese College
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessment of Dietary Intake
2.3. Derivation of Dietary Patterns
2.4. DII Score and Dietary Intake Assessment
2.5. Body Composition Assessment
2.6. Statistical Analysis
3. Results
3.1. Overall Sample Characteristics
3.2. Dietary Pattern Characterization
3.3. Association of Dietary Patterns and Dietary Scores with BMI
3.4. Association of Dietary Patterns and Dietary Scores with Body Compositions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- López-Sánchez, G.F.; Radzimiński, Ł.; Skalska, M.; Jastrzębska, J.; Smith, L.; Wakuluk, D.; Jastrzębski, Z. Body Composition, Physical Fitness, Physical Activity and Nutrition in Polish and Spanish Male Students of Sports Sciences: Differences and Correlations. Int. J. Environ. Res. Public Health 2019, 16, 1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.; Peng, S.; Yang, T.; Cottrell, R.R.; Li, L. Overweight and Obesity Among Chinese College Students: An Exploration of Gender as Related to External Environmental Influences. Am. J. Men’s Health 2018, 12, 926–934. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, X.; Yan, N.; Jia, W.; Fan, Y.; Yan, H.; Ma, L.; Ma, L. Higher Academic Stress Was Associated with Increased Risk of Overweight and Obesity among College Students in China. Int. J. Environ. Res. Public Health 2020, 17, 5559. [Google Scholar] [CrossRef] [PubMed]
- Shan, M.; Zou, Y.; Guo, P.; Weng, J.; Wang, Q.; Dai, Y.; Liu, H.; Zhang, Y.; Jiang, G.; Xie, Q.; et al. Systematic estimation of BMI. Medicine 2019, 98, e15810. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Rodríguez, J.R.; Luna-Castro, J.; Ballesteros-Yáñez, I.; Pérez-Ortiz, J.M.; Gómez-Romero, F.J.; Redondo-Calvo, F.J.; Alguacil, L.F.; Castillo, C.A. Influence of biomedical education on health and eating habits of university students in Spain. Nutrition 2021, 86, 111181. [Google Scholar] [CrossRef] [PubMed]
- Romagnolo, D.F.; Selmin, O.I. Mediterranean Diet and Prevention of Chronic Diseases. Nutr. Today 2017, 52, 208–222. [Google Scholar] [CrossRef] [Green Version]
- Soltani, S.; Shirani, F.; Chitsazi, M.J.; Salehi-Abargouei, A. The effect of dietary approaches to stop hypertension (DASH) diet on weight and body composition in adults: A systematic review and meta-analysis of randomized controlled clinical trials. Obes. Rev. 2016, 17, 442–454. [Google Scholar] [CrossRef]
- Haq, I.U.; Mariyam, Z.; Zeb, F.; Jiang, P.; Wu, X.; Shah, J.; Xu, C.; Zhou, M.; Feng, Q.; Li, M. Identification of Body Composition, Dietary Patterns and Its Associated Factors in Medical University Students in China. Ecol. Food Nutr. 2020, 59, 65–78. [Google Scholar] [CrossRef]
- Sprake, E.F.; Russell, J.M.; Cecil, J.E.; Cooper, R.J.; Grabowski, P.; Pourshahidi, L.K.; Barker, M.E. Dietary patterns of university students in the UK: A cross-sectional study. Nutr. J. 2018, 17, 90. [Google Scholar] [CrossRef]
- Kuriyan, R. Body composition techniques. Indian J. Med. Res. 2018, 148, 648. [Google Scholar] [CrossRef]
- Kotarsky, C.J.; Johnson, N.R.; Mahoney, S.J.; Mitchell, S.L.; Schimek, R.L.; Stastny, S.N.; Hackney, K.J. Time-restricted eating and concurrent exercise training reduces fat mass and increases lean mass in overweight and obese adults. Physiol. Rep. 2021, 9, e14868. [Google Scholar] [CrossRef] [PubMed]
- McLester, C.N.; Nickerson, B.S.; Kliszczewicz, B.M.; McLester, J.R. Reliability and Agreement of Various InBody Body Composition Analyzers as Compared to Dual-Energy X-Ray Absorptiometry in Healthy Men and Women. J. Clin. Densitom. 2020, 23, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Toselli, S.; Mazzilli, M.; Gobbo, L.A.; Coratella, G. Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients 2021, 13, 1620. [Google Scholar] [CrossRef] [PubMed]
- Harmouche-Karaki, M.; Mahfouz, M.; Mahfouz, Y.; Fakhoury-Sayegh, N.; Helou, K. Combined effect of physical activity and sedentary behavior on body composition in university students. Clin. Nutr. 2020, 39, 1517–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- VanItallie, T.B.; Yang, M.U.; Heymsfield, S.B.; Funk, R.C.; Boileau, R.A. Height-normalized indices of the body’s fat-free mass and fat mass: Potentially useful indicators of nutritional status. Am. J. Clin. Nutr. 1990, 52, 953–959. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Fang, Y.; Xia, J. Update of the Chinese Diet Balance Index: DBI-16. Acta Nutr. Sin. 2018, 40, 526–530. [Google Scholar]
- Phillips, C.M.; Chen, L.; Heude, B.; Bernard, J.Y.; Harvey, N.C.; Duijts, L.; Mensink-Bout, S.M.; Polanska, K.; Mancano, G.; Suderman, M.; et al. Dietary Inflammatory Index and Non-Communicable Disease Risk: A Narrative Review. Nutrients 2019, 11, 1873. [Google Scholar] [CrossRef] [Green Version]
- Zang, J.; Yu, H.; Zhu, Z.; Lu, Y.; Liu, C.; Yao, C.; Bai, P.; Guo, C.; Jia, X.; Zou, S.; et al. Does the Dietary Pattern of Shanghai Residents Change across Seasons and Area of Residence: Assessing Dietary Quality Using the Chinese Diet Balance Index (DBI). Nutrients 2017, 9, 251. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Ma, G.; Zhai, F.; Li, Y.; Hu, Y.; Feskens, E.J.M.; Yang, X. Dietary patterns and glucose tolerance abnormalities in Chinese adults. Diabetes Care 2009, 32, 1972–1976. [Google Scholar] [CrossRef] [Green Version]
- Biazzi Leal, D.; Altenburg De Assis, M.A.; Hinnig, P.D.F.; Schmitt, J.; Soares Lobo, A.; Bellisle, F.; Di Pietro, P.; Vieira, F.; de Moura Araujo, P.H.; de Andrade, D. Changes in Dietary Patterns from Childhood to Adolescence and Associated Body Adiposity Status. Nutrients 2017, 9, 1098. [Google Scholar] [CrossRef] [Green Version]
- Mu, M.; Wang, S.F.; Sheng, J.; Zhao, Y.; Wang, G.X.; Liu, K.Y.; Hu, C.L.; Tao, F.B.; Wang, H.L. Dietary patterns are associated with body mass index and bone mineral density in Chinese freshmen. J. Am. Coll. Nutr. 2014, 33, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Perng, W.; Fernandez, C.; Peterson, K.E.; Zhang, Z.; Cantoral, A.; Sanchez, B.N.; Solano-González, M.; Téllez-Rojo, M.M.; Baylin, A. Dietary Patterns Exhibit Sex-Specific Associations with Adiposity and Metabolic Risk in a Cross-Sectional Study in Urban Mexican Adolescents. J. Nutr. 2017, 147, 1977–1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivappa, N.; Wirth, M.D.; Hurley, T.G.; Hébert, J.R. Association between the dietary inflammatory index (DII) and telomere length and C-reactive protein from the National Health and Nutrition Examination Survey-1999-2002. Mol. Nutr. Food Res. 2017, 61, 1600630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Li, T.; Li, H.; Li, D.; Wang, X.; Zhao, A.; Liang, W.; Xiao, R.; Xi, Y. Association of Dietary Inflammatory Potential with Blood Inflammation: The Prospective Markers on Mild Cognitive Impairment. Nutrients 2022, 14, 2417. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghoreishy, S.M.; Askari, G.; Mohammadi, H.; Campbell, M.S.; Khorvash, F.; Arab, A. Associations between potential inflammatory properties of the diet and frequency, duration, and severity of migraine headaches: A cross-sectional study. Sci. Rep. 2022, 12, 2878. [Google Scholar] [CrossRef]
- He, Y.; Zhai, F.Y.X.; Ge, K. The Chinese Diet Balance Index Revised. Acta Nutr. Sin. 2009, 31, 532–536. [Google Scholar]
- Chinese Nutrition Society. Dietary Guidelines for Chinese Residents; People’s Medical Publishing House: Beijing, China, 2016. [Google Scholar]
- Yarizadeh, H.; Setayesh, L.; Majidi, N.; Rasaei, N.; Mehranfar, S.; Ebrahimi, R.; Casazzza, K.; Mirzaei, K. Nutrient patterns and their relation to obesity and metabolic syndrome in Iranian overweight and obese adult women. Eat. Weight. Disord. -Stud. Anorex. Bulim. Obes. 2022, 27, 1327–1337. [Google Scholar] [CrossRef]
- Hurt, R.T.; Ebbert, J.O.; Croghan, I.; Nanda, S.; Schroeder, D.R.; Teigen, L.M.; Velapati, S.R.; Mundi, M.S. The Comparison of Segmental Multifrequency Bioelectrical Impedance Analysis and Dual-Energy X-ray Absorptiometry for Estimating Fat Free Mass and Percentage Body Fat in an Ambulatory Population. J. Parenter. Enter. Nutr. 2021, 45, 1231–1238. [Google Scholar] [CrossRef]
- Chinese Nutrition Society. China Blue Paper on Obesity Prevention and Control; Peking University Medical Press: Beijing, China, 2019. [Google Scholar]
- Larsson, S.C.; Bäck, M.; Rees, J.M.B.; Mason, A.M.; Burgess, S. Body mass index and body composition in relation to 14 cardiovascular conditions in UK Biobank: A Mendelian randomization study. Eur. Heart J. 2020, 41, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Chinese Society of Endocrinology; Diabetes Society of China Association of Chinese Medicine; Chinese Society for Metabolic and Bariatric Surgery; Chinese Society of Diabetes and Bariatric Surgery; Chinese Association Of Research Hospitals. Multidisciplinary clinical consensus on diagnosis and treatment of obesity (2021 edition). Chin. J. Obes. Metab. 2021, 37, 959–972. [Google Scholar]
- Liu, X.; Chen, X.; Hou, L.; Xia, X.; Hu, F.; Luo, S.; Zhang, G.; Dong, B. Associations of Body Mass Index, Visceral Fat Area, Waist Circumference, and Waist-to-Hip Ratio with Cognitive Function in Western China: Results from WCHAT Study. J. Nutr. Health Aging 2021, 25, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Bendor, C.D.; Bardugo, A.; Pinhas-Hamiel, O.; Afek, A.; Twig, G. Cardiovascular morbidity, diabetes and cancer risk among children and adolescents with severe obesity. Cardiovasc. Diabetol. 2020, 19, 79. [Google Scholar] [CrossRef] [PubMed]
- Cobo-Cuenca, A.I.; Garrido-Miguel, M.; Soriano-Cano, A.; Ferri-Morales, A.; Martínez-Vizcaíno, V.; Martín-Espinosa, N.M. Adherence to the Mediterranean Diet and Its Association with Body Composition and Physical Fitness in Spanish University Students. Nutrients 2019, 11, 2830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esmaillzadeh, A.; Azadbakht, L. Major Dietary Patterns in Relation to General Obesity and Central Adiposity among Iranian Women. J. Nutr. 2008, 138, 358–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazidi, M.; Kengne, A.P. Nutrient patterns and their relationship with general and central obesity in US adults. Eur. J. Clin. Investig. 2020, 50, e12745. [Google Scholar]
- Makura-Kankwende, C.B.T.; Gradidge, P.J.; Crowther, N.J.; Norris, S.A.; Chikowore, T. Nutrient Patterns and Body Composition Parameters of Black South African Women. Nutrients 2021, 13, 6. [Google Scholar] [CrossRef] [PubMed]
- Taleban, R.; Heidari-Beni, M.; Qorbani, M.; Motlagh, M.E.; Malekshah, A.F.T.; Moafi, M.; Zavareh, N.H.T.; Kelishadi, R. Is dietary vitamin B intake associated with weight disorders in children and adolescents? The weight disorders survey of the CASPIAN-IV Study. Health Promot. Perspect. 2019, 9, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, G.R.; Shah, I.; Gariballa, S.; Yasin, J.; Barker, J.; Salman Ashraf, S. Significantly Elevated Levels of Plasma Nicotinamide, Pyridoxal, and Pyridoxamine Phosphate Levels in Obese Emirati Population: A Cross-Sectional Study. Molecules 2020, 25, 3932. [Google Scholar] [CrossRef]
- Diez-Fernández, A.; Álvarez-Bueno, C.; Martínez-Vizcaíno, V.; Sotos-Prieto, M.; Recio-Rodríguez, J.I.; Cavero-Redondo, I. Total Dairy, Cheese and Milk Intake and Arterial Stiffness: A Systematic Review and Meta-Analysis of Cross-sectional Studies. Nutrients 2019, 11, 741. [Google Scholar] [CrossRef] [Green Version]
- Cavero-Redondo, I.; Alvarez-Bueno, C.; Sotos-Prieto, M.; Gil, A.; Martinez-Vizcaino, V.; Ruiz, J.R. Milk and Dairy Product Consumption and Risk of Mortality: An Overview of Systematic Reviews and Meta-Analyses. Adv. Nutr. (Bethesda Md.) 2019, 10, S97–S104. [Google Scholar] [CrossRef] [PubMed]
- Fulgoni, V.L.R.; Dreher, M.; Davenport, A.J. Avocado consumption is associated with better diet quality and nutrient intake, and lower metabolic syndrome risk in US adults: Results from the National Health and Nutrition Examination Survey (NHANES) 2001-2008. Nutr. J. 2013, 12, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas-Valdés, S.; Tostes, M.D.G.V.; Anunciação, P.C.; Da Silva, B.P.; Sant’Ana, H.M.P. Association between vitamin deficiency and metabolic disorders related to obesity. Crit. Rev. Food Sci. Nutr. 2017, 57, 3332–3343. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, T.R.; Martins, C.C.; Ferreira, L.L.; Spritzer, P.M. Mediterranean diet is associated with bone mineral density and muscle mass in postmenopausal women. Climacteric 2019, 22, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Setayeshgar, S.; Maximova, K.; Ekwaru, J.P.; Gray-Donald, K.; Henderson, M.; Paradis, G.; Tremblay, A.; Veugelers, P. Diet quality as measured by the Diet Quality Index–International is associated with prospective changes in body fat among Canadian children. Public Health Nutr. 2017, 20, 456–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalwood, P.; Marshall, S.; Burrows, T.L.; McIntosh, A.; Collins, C.E. Diet quality indices and their associations with health-related outcomes in children and adolescents: An updated systematic review. Nutr. J. 2020, 19, 118. [Google Scholar] [CrossRef] [PubMed]
- Maitiniyazi, G.; Chen, Y.; Qiu, Y.; Xie, Z.; He, J.; Xia, S. Characteristics of Body Composition and Lifestyle in Chinese University Students with Normal-Weight Obesity: A Cross-Sectional Study. Diabetes Metab. Syndr. Obes.: Targets Ther. 2021, 14, 3427–3436. [Google Scholar] [CrossRef]
- Badrooj, N.; Keshavarz, S.A.; Yekaninejad, M.S.; Mirzaei, K. Association between Dietary Inflammatory Index with Bioelectrical Impedance Parameters and Characteristics Health in Overweight/Obese Women: A Cross-Sectional Study. Int. J. Prev. Med. 2021, 12, 79. [Google Scholar]
- Brunani, A.; Perna, S.; Soranna, D.; Rondanelli, M.; Zambon, A.; Bertoli, S.; Vinci, C.; Capodaglio, P.; Lukaski, H.; Cancello, R. Body composition assessment using bioelectrical impedance analysis (BIA) in a wide cohort of patients affected with mild to severe obesity. Clin. Nutr. 2021, 40, 3973–3981. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Correa-Bautista, J.E.; Martínez-Torres, J.; González-Ruíz, K.; González-Jiménez, E.; Schmidt-RioValle, J.; Garcia-Hermoso, A. Performance of Two Bioelectrical Impedance Analyses in the Diagnosis of Overweight and Obesity in Children and Adolescents: The FUPRECOL Study. Nutrients 2016, 8, 575. [Google Scholar] [CrossRef] [Green Version]
- Seo, Y.G.; Kim, J.H.; Kim, Y.; Lim, H.; Ju, Y.S.; Kang, M.J.; Lee, K.; Lee, H.J.; Jang, H.B.; Park, S.I.; et al. Validation of body composition using bioelectrical impedance analysis in children according to the degree of obesity. Scand. J. Med. Sci. Sport. 2018, 28, 2207–2215. [Google Scholar] [CrossRef] [PubMed]
- Ul Haq, I.; Mariyam, Z.; Li, M.; Huang, X.; Jiang, P.; Zeb, F.; Wu, X.; Feng, Q.; Zhou, M. A Comparative Study of Nutritional Status, Knowledge Attitude and Practices (KAP) and Dietary Intake between International and Chinese Students in Nanjing, China. Int. J. Environ. Res. Public Health 2018, 15, 1910. [Google Scholar] [CrossRef] [PubMed]
Variable | Total | Thinness | Normal Weight | Overweight | Obesity | p |
---|---|---|---|---|---|---|
General | ||||||
N (%) | 498 | 34 (6.82) | 352 (70.68) | 85 (17.06) | 27 (5.42) | |
Age, year | 20 (19,22) | 20 (19,22) | 20 (19,22) | 20 (19,23) | 20 (19,22) | 0.792 |
Male, n (%) | 113 (22.7) | 6 (5.3) | 66 (58.4) e | 26 (23.0) | 15 (13.3) e | 0.000 ** |
Female, n (%) | 385 (77.3) | 28 (7.3) | 286 (74.3) e | 59 (15.3) | 12 (3.1) e | 0.000 ** |
Body composition | ||||||
N | 498 | 34 | 352 | 85 | 27 | |
BMR, kcal | 1238.0 (1164.5, 1383.3) | 1135.5 (1099.5, 1210.8) | 1224.0 (1162.0, 1302.5) | 1352.0 (1240.5, 1565.5) | 1674.0 (1383.0, 1787.0) | 0.000 ** |
Abdominal obesity | ||||||
Yes | 81 (16.3) | 0 (0.0) | 13 (3.7) c,d | 42 (49.4) b | 26 (96.3) b | 0.000 ** |
No | 417 (83.7) | 34 (100.0) | 339 (96.3) | 43 (50.6) | 1 (3.7) | |
PBF, % | 30.2 (24.4, 34.3) | 23.1 (21.3, 27.4) b–d | 29.6 (24.4, 33.7) a,c,d | 33.7 (27.7, 37.5) a,b | 34.3 (28.8, 41.1) a,b | 0.000 ** |
FMI | 6.4 (5.0, 8.1) | 4.3 (3.7, 4.9) b–d | 6.1 (5.0, 7.5) a,c,d | 8.7 (7.1, 9.5) a,b | 10.2 (8.7, 12.8) a,b | 0.000 ** |
VFA (cm2) | 73.2 (55.4, 101.4) | 42.8 (37.9, 56.1) b–d | 69.3 (54.3, 91.2) a,c,d | 110.3 (83.5, 122.1) a,b | 140.2 (103.3, 175.8) a,b | 0.000 ** |
Waist–hip ratio | 0.84 (0.81, 0.87) | 0.80 (0.78, 0.82) b–d | 0.83 (0.81, 0.86) a,c,d | 0.86 (0.84, 0.91) a,b | 0.92 (0.88, 0.94) a,b | 0.000 ** |
FFM, kg | 40.2 (36.8, 46.9) | 35.5 (33.8, 38.9) b–d | 39.5 (36.7,43.2) a,c,d | 45.5 (40.3, 55.4) a,b,d | 60.3 (46.9, 65.6) a–c | 0.000 ** |
FFMI | 15.1 (14.3, 16.8) | 13.5 (13.1, 13.1) b–d | 14.9 (14.2, 15.9) a,c,d | 16.9 (15.8, 18.8) a,b | 19.6 (17.3, 20.8) a,b | 0.000 ** |
Soft lean mass, kg | 37.7 (34.5, 44.1) | 33.3 (31.6, 36.5) b–d | 37.0 (34.4, 40.5) a,c,d | 42.7 (37.9, 52.1) a,b,d | 56.9 (44.1, 61.7) a–c | 0.000 ** |
Skeletal muscle mass, kg | 21.6 (19.6, 25.6) | 18.9 (17.7, 20.9) b–d | 21.3 (19.6, 23.4) a,c,d | 24.7 (21.8, 31.0) a,b,d | 33.8 (25.8, 36.9) a–c | 0.000 ** |
Skeletal muscle index, kg/m2 | 6.2 (5.7, 7.0) | 5.4 (5.2, 5.8) b–d | 6.0 (5.7, 6.5) a,c,d | 6.9 (6.4, 7.7) a,b,d | 8.2 (7.3, 8.9) a–c | 0.000 ** |
FMI/FFMI ratio | 0.43 (0.32, 0.52) | 0.30 (0.27, 0.38) b–d | 0.42 (0.32, 0.51) a,c,d | 0.51 (0.38, 0.60) a,b | 0.52 (0.40, 0.70) a,b | 0.000 ** |
Food | ||||||
N | 474 | 33 | 336 | 80 | 25 | |
Flour, g/d | 25.0 (10.5, 50.0) | 20.5 (4.5, 50.0) b,d | 32.0 (10.5, 50.0) a | 25.0 (20.5, 50.0) | 50 (20.5, 76.5) a | 0.017 * |
Fried food, g/d | 10.5 (3.5, 21.0) | 3.5 (1.5, 15.8) | 10.5 (3.5, 21.0) | 10.5 (3.5, 29.9) | 21.0 (7.0, 28.2) | 0.036 * |
Energy | ||||||
N | 474 | 33 | 336 | 80 | 25 | |
Daily energy intake, kcal | 1761.9 (1424.2, 2261.1) | 1596.2 (1427.2, 1892.0) | 1746.7 (1397.2, 2256.9) | 1853.8 (1497.4, 2390.8) | 1981.3 (1429.4, 2742.9) | 0.062 |
Dietary scores | ||||||
N | 474 | 33 | 336 | 80 | 25 | |
DBI-16 | ||||||
HBS | 12 (9, 16) | 13 (10, 16) | 12 (9, 16) | 11 (9, 15) | 12 (8, 17) | 0.671 |
LBS | 16 (14, 19) | 17 (15, 19) | 16 (13, 19) | 16 (14, 18) | 15 (12, 19) | 0.712 |
DQD | 28 (24, 34) | 30 (26, 34) | 28 (24, 35) | 28 (24, 31) | 27 (23, 33) | 0.548 |
DII | 6.7 (0.8, 10.4) | 5.5 (1.3, 7.6) | 6.7 (0.3, 10.4) | 6.6 (3.5, 11.0) | 8.0 (2.7, 12.4) | 0.157 |
Dietary Patterns (n = 488) | ||||
---|---|---|---|---|
Pattern 1 | Pattern 2 | Pattern 3 | Pattern 4 | |
Variance explained (%) | 11.190 | 9.458 | 9.407 | 7.462 |
Food and food groups | Factor loadings | |||
River food | 0.801 | 0.126 | 0.003 | −0.024 |
Seafood | 0.754 | 0.224 | −0.137 | 0.008 |
Beer | 0.722 | −0.155 | 0.195 | −0.072 |
Nuts | 0.547 | 0.356 | −0.108 | 0.153 |
Processed meat | 0.544 | −0.091 | 0.416 | −0.043 |
Bean products | 0.470 | 0.168 | 0.054 | 0.362 |
Congee | 0.234 | 0.029 | 0.02 | 0.005 |
Tubers | 0.143 | 0.593 | 0.163 | 0.058 |
Coarse cereal | 0.247 | 0.585 | −0.022 | 0.130 |
Fruits | 0.100 | 0.573 | −0.093 | −0.039 |
Milk | −0.030 | 0.560 | 0.195 | −0.088 |
Flour food | 0.031 | 0.419 | 0.497 | −0.069 |
Fried food | 0.131 | −0.078 | 0.621 | 0.199 |
Sweets and desserts | −0.001 | 0.269 | 0.537 | −0.067 |
Equivalent salt | −0.070 | −0.059 | 0.497 | −0.120 |
Poultry | 0.294 | 0.166 | 0.440 | 0.251 |
Oil | −0.064 | 0.038 | 0.438 | −0.212 |
Drink with sugar | 0.065 | −0.208 | 0.432 | 0.278 |
Rice | −0.005 | −0.304 | 0.325 | 0.208 |
Red meat | 0.089 | 0.146 | 0.537 | 0.313 |
Dumpling | 0.072 | 0.252 | 0.265 | 0.227 |
Egg | 0.011 | 0.036 | 0.049 | 0.604 |
Light green vegetables | 0.134 | 0.387 | 0.016 | 0.588 |
Dark green vegetables | 0.083 | 0.439 | −0.100 | 0.550 |
Mushroom | 0.407 | 0.278 | −0.046 | 0.410 |
Red wine | 0.014 | −0.157 | 0.003 | 0.337 |
Chinese liquor | −0.069 | −0.099 | 0.042 | 0.296 |
Variable | Pattern 1 | Pattern 2 | Pattern 3 | Pattern 4 | p |
---|---|---|---|---|---|
General | |||||
N | 122 | 122 | 122 | 122 | |
Age, year | 20 (19, 23) | 20 (19, 21) | 20 (19, 21) | 20 (19, 22) | 0.477 |
Male, n (%) | 31 (24.4) | 14 (11.0) e | 38 (29.9) | 44 (36.1) e | 0.000 ** |
Female, n (%) | 91 (25.2) | 108 (29.9) e | 84 (23.3) | 78 (21.6) e | |
Body composition | |||||
N | 120 | 118 | 120 | 117 | |
BMI, kg/m2 | 21.7 (20.2, 24.1) | 22.1 (20.4, 24.4) | 22.6 (21.0, 24.4) | 21.7 (20.1, 23.8) | 0.190 |
Thinness | 18.3 ± 0.1 | 18.0 ± 0.5 | 17.7 ± 0.7 | 17.6 ± 0.6 | 0.083 |
Normal weight | 21.2 ± 1.4 | 21.3 ± 1.4 | 21.6 ± 1.4 | 21.3 ± 1.4 | 0.197 |
Overweight | 25.2 (24.6, 26.0) | 25.7 ± 1.1 | 25.4 ± 1.1 | 25.2 (24.7, 25.9) | 0.601 |
Obesity | 30.5 ± 2.0 | 29.8 ± 1.5 | 30.5 ± 1.8 | 30.6 ± 2.0 | 0.835 |
BMR, kcal | 1248.5 (1186.3, 1423.8) | 1239.0 (1165.0, 1345.3) | 1273.0 (1196.0, 1511.3) | 1282.0 (1188.7, 1508.5) | 0.034 * |
Abdominal obesity | |||||
Yes | 101 (25.6) | 104 (26.3) | 99 (25.1) | 91 (23.0) | 0.241 |
No | 18 (23.7) | 14 (18.4) | 19 (25.0) | 25 (32.9) | |
PBF, % | 29.9 (24.3, 33.5) | 31.6 (26.2, 35.7) d | 31.6 (25.2, 34.9) | 28.0 (19.8, 33.8) b | 0.008 ** |
FMI | 6.3 (5.1, 7.9) | 6.9 (5.4, 8.5) d | 7.2 (5.2, 8.5) | 6.1 (4.3, 8.1) b | 0.016 * |
VFA (cm2) | 71.3 (56.4, 98.6) | 81.2 (59.5, 109.8) d | 83.9 (60.4, 111.6) d | 68.6 (48.0, 103.4) b,c | 0.010 * |
Waist–hip ratio | 0.83 (0.81, 0.86) | 0.84 (0.81, 0.88) | 0.85 (0.82, 0.89) d | 0.83 (0.80, 0.87) c | 0.026 * |
FFM, kg | 40.7 (37.8, 48.8) | 40.3 (36.8, 45.1) | 41.8 (38.2, 52.9) | 42.2 (37.9, 52.7) | 0.034 * |
FFMI | 15.3 (14.4, 17.1) | 15.1 (14.3, 16.5) | 15.3 (14.4, 17.9) | 15.4 (14.4, 17.8) | 0.150 |
Soft lean mass, kg | 38.2 (35.5, 45.7) | 37.9 (34.5, 42.3) | 39.2 (35.8, 49.9) | 39.7 (35.5, 49.7) | 0.032 * |
Skeletal muscle mass, kg | 21.8 (20.1, 26.5) | 21.5 (19.7, 24.8) | 22.5 (20.5, 29.7) | 23.0 (20.3, 29.6) | 0.030 * |
Skeletal muscle index, kg/m2 | 6.2(5.8, 7.2) | 6.0 (5.8, 6.6) | 6.3 (5.8, 7.7) | 6.4 (5.8, 7.5) | 0.058 |
FMI/FFMI ratio | 0.43(0.31, 0.50) | 0.46 (0.35, 0.56) d | 0.46 (0.33, 0.54) | 0.39 (0.25, 0.51) b | 0.000 ** |
Nutrients | |||||
N | 122 | 122 | 122 | 122 | |
Energy | |||||
Daily energy intake, kcal | 2034.4 (1665.4, 2661.6) b,c | 2382.8 (1897.0, 2989.6) a | 2495.0 (2042.0, 2968.8) a,d | 2075.5 (1718.2, 2800.9) c | 0.000 ** |
Macronutrients | |||||
Protein, g/d | 86.5 (65.9, 106.2) | 90.9 (72.0, 114.0) | 91.6 (77.4, 114.0) | 87.8 (69.1, 113.0) | 0.152 |
Animal-food-derived (%) | 0.48 ± 0.13 | 0.52 ± 0.14 | 0.53 ± 0.13 | 0.51 ± 0.13 | 0.006 ** |
Bean-derived (%) | 0.17 (0.11,0.26) b,c | 0.13 (0.05, 0.20) a | 0.10 (0.05, 0.17) a,d | 0.15 (0.07, 0.25) c | 0.000 ** |
Fat, g/d | 113.3 (92.4,133.6) c | 112.9 (98.7, 135.9) | 126.3 (109.9, 143.4) a,d | 108.4 (93.8, 134.4) c | 0.000 ** |
Animal-food-derived (%) | 0.32 ± 0.11 d | 0.32 ± 0.11 d | 0.36 ± 0.10 | 0.36 ± 0.10 a,b | 0.003 ** |
Bean-derived (%) | 0.09 (0.06, 0.13) b,c | 0.06 (0.03, 0.10) a | 0.05 (0.03, 0.09) a,d | 0.09 (0.04, 0.14) c | 0.000 ** |
Carbohydrate, g/d | 198.4 (140.2, 253.6) b,c | 255.3 (187.7, 330.0) a,d | 241.9 (192.9, 319.9) a,d | 190.6 (140.35, 298.7) b,c | 0.000 ** |
Animal-food-derived (%) | 0.17(0.09, 0.27) | 0.19 (0.09, 0.3) | 0.16 (0.1, 0.23) | 0.14 (0.07, 0.23) | 0.033 ** |
Bean-derived (%) | 0.03(0.02, 0.05) b,c | 0.02 (0.01, 0.03) a,d | 0.01 (0.01, 0.03) a,d | 0.03 (0.01, 0.05) b,c | 0.000 ** |
Protein, E% | 16.3(15.0, 17.6) b,c | 15.7 (14.0, 17.3) a,d | 15.4 (13.9, 16.3) a,d | 16.6 (15.0, 17.9) b,c | 0.000 ** |
Fat, E% | 48.3 ± 5.6 b,c | 44.6 ± 5.6 a,d | 46.2 ± 5.8 a | 47.2 ± 6.2 b | 0.000 ** |
Carbohydrate, E% | 35.3 ± 6.2 b,c | 39.7 ± 6.4 a,d | 38.5 ± 6.5 a,d | 36.3 ± 7.7 b,c | 0.000 ** |
Other nutrients | |||||
Vitamin B3, mg/d | 15.3 (11.0, 18.7) c | 13.8 (10.0, 18.7) c | 17.2 (13.8, 23.0) a,b | 14.8 (11.8, 21.4) | 0.004 ** |
Vitamin C, mg/d | 47.9 (36.8, 74.9) b,d | 84.7 (56.3, 104.8) a,c | 50.9 (34.9, 77.3) b,d | 74.3 (47.3, 100.2) a,c | 0.000 ** |
Potassium, mg/d | 1930.9 (1449.9, 2539.2) b | 2510.9 (2024.8, 3142.3) a,c,d | 2072.5 (1682.4, 2706.3) b | 2038.5 (1487.8, 2871.1) b | 0.000 ** |
SFA, g/d | 24.7(17.5, 32.6) | 24.3 (19.2, 33.6) c | 26.4 (20.9, 37.1) b | 24.4 (18.5, 33.6) | 0.152 |
MUFA, g/d | 30.7(21.0, 42.7) b | 28.5 (21.6, 41.0) a | 33.9 (25.5, 47.0) | 30.4 (21.9, 43.1) | 0.021 * |
PUFA, g/d | 15.8(11.3, 24.6) c,d | 12.8 (9.1, 18.9) c,d | 14.8 (10.6, 24.2) a,b | 14.4 (11.0, 21.3) a,b | 0.019 * |
DHA, g/d | 0.001 (0.000, 0.002) b–d | 0.000 (0.000, 0.001) a | 0.000 (0.000, 0.001) a | 0.000 (0.000, 0.001) a | 0.000 ** |
EPA, g/d | 0.002 (0.001, 0.012) b,c | 0.001 (0.001, 0.002) a,d | 0.001 (0, 0.013) a | 0.001 (0.001, 0.01) b | 0.000 ** |
Dietary scores | |||||
N | 122 | 122 | 122 | 122 | |
DBI-16 | |||||
HBS | 12 (9, 16) | 10 (7, 12) | 13 (10, 16) | 13 (9, 16) | 0.000 ** |
LBS | 15 (12, 17) | 13 (11, 16) | 16 (14, 20) | 15 (12, 17) | 0.000 ** |
DQD | 26 (22, 32) | 23 (20, 27) | 30 (27, 34) | 27 (23, 32) | 0.000 ** |
DII | 8.31 ± 5.19 b | 11.36 (9.25, 14.04) a | 10.07 (7.93, 13.32) | 10.86 (6.33, 13.93) | 0.000 ** |
Variable | Models | β (95% CI) | p |
---|---|---|---|
Body composition | |||
FMI | 1 | 1.000 (0.998, 1.002) | 0.000 ** |
2 | 0.999 (0.997, 1.002) | 0.000 ** | |
3 | 1.000 (0.997, 1.002) | 0.000 ** | |
FFMI | 1 | 1.002 (0.999, 1.004) | 0.000 ** |
2 | 1.003 (0.999, 1.007) | 0.000 ** | |
3 | 1.000 (0.994, 1.006) | 0.000 ** | |
Dietary patterns | |||
Pattern 1 | 1 | −0.030 (−0.294, 0.235) | 0.826 |
2 | −0.062 (−0.325, 0.200) | 0.641 | |
3 | −0.279 (−0.590, 0.032) | 0.079 | |
Pattern 2 | 1 | 0.246 (−0.023, 0.515) | 0.073 |
2 | 0.339 (0.068, 0.610) | 0.014 * | |
3 | −0.032 (−0.478, 0.413) | 0.886 | |
Pattern 3 | 1 | 0.326 (0.056, 0.595) | 0.018 * |
2 | 0.235 (−0.039, 0.508) | 0.092 | |
3 | −0.151 (−0.603, 0.301) | 0.512 | |
Pattern 4 | 1 | 0.160 (−0.105, 0.425) | 0.237 |
2 | 0.030 (−0.241, 0.302) | 0.826 | |
3 | −0.067 (−0.334, 0.201) | 0.625 | |
Dietary scores | |||
DBI-16 | |||
HBS | 1 | NA | NA |
2 | −0.044 (−0.096, 0.008) | 0.095 | |
3 | −0.059 (−0.102, 0.016) | 0.007 ** | |
LBS | 1 | 0.076 (−0.012, 0.165) | 0.091 |
2 | 0.035 (−0.036, 0.105) | 0.337 | |
3 | 0.046 (−0.012, 0.103) | 0.117 | |
DQD | 1 | −0.020 (−0.070, 0.031) | 0.439 |
2 | NA | NA | |
3 | NA | NA | |
DII | 1 | 0.065 (0.022, 0.107) | 0.003 ** |
2 | 0.046 (0.002, 0.089) | 0.042 * | |
3 | NA | NA |
Variable | Thinness | Overweight | Obesity | |||
---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
Body composition | ||||||
FMI (per 1 kg/m2 increase) | 0.07 (0.03, 0.18) | 0.000 ** | 15.90 (7.76, 32.59) | 0.000 ** | NA | NA |
FFMI (per 1 kg/m2 increase) | 0.08 (0.03, 0.20) | 0.000 ** | 5.91 (3.65, 9.58) | 0.000 ** | 15.29 (6.92, 33.77) | 0.000 ** |
Waist–hip ratio (Ref: male < 0.9; female < 0.85) | 0.70 (0.04, 3.34) | 0.717 | 0.25 (0.09, 0.67) | 0.006 ** | 0.06 (0.00, 1.20) | 0.065 |
VFA (Ref: < 100) | NA | NA | 6.83 (2.54, 18.40) | 0.000 ** | 20.61 (0.22, 1912.86) | 0.191 |
PBF (Ref: male < 25%; female < 30%) | 0.05 (0.01, 0.26) | 0.000 ** | 18.69 (3.71, 94.25) | 0.000 ** | 15.52 (0.04, 5417.42) | 0.359 |
Abdominal obesity | NA | NA | 9.77 (2.86, 33.34) | 0.000 ** | NA | NA |
Dietary pattern | ||||||
Pattern 1 | ||||||
Q1 (Ref) | ||||||
Q2 | 3.11 (0.66, 14.67) | 0.151 | 1.13 (0.39, 3.29) | 0.828 | 2.37 (0.28, 21.11) | 0.431 |
Q3 | 4.04 (0.88, 18.57) | 0.073 | 1.16 (0.41, 3.26) | 0.776 | 0.62 (0.03, 11.12) | 0.743 |
Q4 | 1.94 (0.34, 11.1) | 0.456 | 2.21 (0.79, 6.14) | 0.129 | 0.45 (0.04, 4.61) | 0.498 |
Pattern 2 | ||||||
Q1 (Ref) | ||||||
Q2 | 1.57 (0.46, 5.42) | 0.474 | 1.63 (0.60, 4.38) | 0.337 | 0.16 (0.01, 3.16) | 0.229 |
Q3 | 0.24 (0.05, 1.13) | 0.071 | 0.87 (0.28, 2.72) | 0.807 | 0.72 (0.04, 12.44) | 0.823 |
Q4 | 0.61 (0.08, 4.50) | 0.630 | 1.77 (0.54, 5.79) | 0.348 | 0.16 (0.01, 3.95) | 0.266 |
Pattern 3 | ||||||
Q1 (Ref) | ||||||
Q2 | 1.02 (0.26, 4.04) | 0.980 | 1.27 (0.45, 3.56) | 0.654 | 0.19 (0.01, 2.62) | 0.214 |
Q3 | 1.72 (0.45, 6.64) | 0.431 | 1.57 (0.52, 4.81) | 0.427 | 0.19 (0.01, 3.97) | 0.284 |
Q4 | 2.12 (0.39, 11.62) | 0.387 | 1.33 (0.38, 4.62) | 0.653 | 0.15 (0.01, 2.77) | 0.201 |
Pattern 4 | ||||||
Q1 (Ref) | ||||||
Q2 | 1.31 (0.31, 5.47) | 0.716 | 1.35 (0.50, 3.68) | 0.556 | 0.04 (0.00, 0.95) | 0.047 * |
Q3 | 1.21 (0.28, 5.12) | 0.800 | 1.86 (0.66, 5.23) | 0.237 | 0.75 (0.06, 9.59) | 0.822 |
Q4 | 2.06 (0.45, 9.41) | 0.350 | 1.37 (0.47, 3.97) | 0.568 | 0.68 (0.08, 5.54) | 0.719 |
Dietary scores | ||||||
DBI-16 | ||||||
HBS | ||||||
Almost no problem (Ref) | ||||||
Low level | 2.72 (0.89, 8.30) | 0.079 | 1.19 (0.61, 2.32) | 0.616 | 0.38 (0.11, 1.33) | 0.130 |
Moderate and high level | 3.07 (0.47, 19.98) | 0.241 | 2.20 (0.59, 8.20) | 0.241 | 0.17 (0.01, 2.40) | 0.188 |
LBS | ||||||
Almost no problem (Ref) | ||||||
Low level | 3.02 (0.68, 13.38) | 0.145 | 1.10 (0.50, 2.42) | 0.821 | 0.33 (0.08, 1.41) | 0.135 |
Moderate and high level | 26.62 (2.03, 349.71) | 0.013 * | 8.04 (1.28, 50.51) | 0.026 * | 1.90 (0.11, 33.24) | 0.659 |
DQD | ||||||
Almost no problem (Ref) | ||||||
Low level | 0.07 (0.01, 0.49) | 0.008 ** | 0.73 (0.18, 3.02) | 0.664 | 1.38 (0.16, 12.25) | 0.774 |
Moderate and high level | 0.03 (0.00, 0.40) | 0.008 ** | 0.19 (0.03, 1.40) | 0.104 | 3.72 (0.12, 111.20) | 0.449 |
DII | ||||||
Q1 (Ref) | ||||||
Q2 | 1.54 (0.46, 5.13) | 0.480 | 2.26 (0.96, 5.31) | 0.062 | 1.25 (0.24, 6.61) | 0.790 |
Q3 | 0.94 (0.19, 4.62) | 0.943 | 1.00 (0.37, 2.73) | 0.999 | 0.81 (0.13, 4.99) | 0.817 |
Q4 | 0.73 (0.06, 8.41) | 0.800 | 0.84 (0.25, 2.85) | 0.781 | 0.44 (0.04, 4.81) | 0.504 |
Variable | Models | FMI | FFMI | ||
---|---|---|---|---|---|
β (95% CI) | p | β (95% CI) | p | ||
Dietary patterns | |||||
Pattern 1 | 1 | −0.113 (−0.314, 0.089) | 0.272 | 0.086 (−0.082, 0.253) | 0.315 |
2 | −0.080 (−0.268, 0.109) | 0.407 | 0.020 (−0.099, 0.139) | 0.738 | |
3 | −0.171 (−0.431, 0.089) | 0.196 | −0.104 (−0.211, 0.003) | 0.057 | |
Pattern 2 | 1 | 0.325 (0.120, 0.530) | 0.002 ** | −0.080 (−0.250, 0.090) | 0.355 |
2 | 0.165 (−0.029, 0.358) | 0.095 | 0.185 (0.064, 0.306) | 0.003 ** | |
3 | 0.000 (−0.372, 0.372) | 0.998 | −0.032 (−0.185, 0.122) | 0.686 | |
Pattern 3 | 1 | 0.006 (−0.199, 0.211) | 0.953 | 0.318 (0.148, 0.488) | 0.000 ** |
2 | 0.201 (0.006, 0.395) | 0.043 * | 0.046 (−0.077, 0.168) | 0.467 | |
3 | 0.033 (−0.344, 0.411) | 0.863 | −0.183 (−0.338, −0.027) | 0.021 * | |
Pattern 4 | 1 | −0.225 (−0.427, −0.023) | 0.029 * | 0.384 (0.217, 0.552) | 0.000 ** |
2 | −0.002 (−0.196, 0.192) | 0.985 | 0.03 (−0.092, 0.152) | 0.627 | |
3 | −0.038 (−0.261, 0.186) | 0.741 | −0.028 (−0.121, 0.064) | 0.545 | |
Dietary scores | |||||
DBI-16 | |||||
HBS | 1 | −0.074 (−0.110, −0.038) | 0.000 ** | 0.036 (0.005, 0.067) | 0.022 * |
2 | −0.040 (−0.074, −0.005) | 0.024 * | −0.021 (−0.043, 0.001) | 0.058 | |
3 | −0.036 (−0.069, −0.004) | 0.029 * | −0.018 (−0.031, −0.004) | 0.010 ** | |
LBS | 1 | −0.010 (−0.056, −0.036) | 0.680 | 0.003 (−0.036, 0.042) | 0.874 |
2 | 0.013 (−0.030, 0.056) | 0.550 | −0.031 (−0.058, −0.005) | 0.022 * | |
3 | 0.037 (−0.005, 0.079) | 0.082 | −0.009 (−0.026, 0.009) | 0.330 | |
DQD | 1 | −0.041 (−0.066, −0.015) | 0.002 ** | 0.019 (−0.003, 0.041) | 0.087 |
2 | −0.016 (−0.04, 0.009) | 0.209 | −0.021 (−0.036, −0.006) | 0.007 ** | |
3 | −0.007 (−0.031, 0.017) | 0.553 | −0.012 (−0.022, 0.002) | 0.015 * | |
DII | 1 | 0.011 (−0.016, 0.038) | 0.417 | 0.041 (0.018, 0.063) | 0.000 ** |
2 | 0.024 (−0.011, 0.037) | 0.061 | 0.022 (0.007, 0.038) | 0.005 ** | |
3 | NA | NA | NA | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, D.; Wang, X.; Ding, H.; Wu, Q.; Li, H.; Wang, X.; Li, K.; Xiao, R.; Yu, K.; et al. The Role of Dietary Patterns and Dietary Quality on Body Composition of Adolescents in Chinese College. Nutrients 2022, 14, 4544. https://doi.org/10.3390/nu14214544
Li H, Li D, Wang X, Ding H, Wu Q, Li H, Wang X, Li K, Xiao R, Yu K, et al. The Role of Dietary Patterns and Dietary Quality on Body Composition of Adolescents in Chinese College. Nutrients. 2022; 14(21):4544. https://doi.org/10.3390/nu14214544
Chicago/Turabian StyleLi, Hongrui, Dajun Li, Xianyun Wang, Huini Ding, Qinghua Wu, Haojun Li, Xuan Wang, Kaifeng Li, Rong Xiao, Kang Yu, and et al. 2022. "The Role of Dietary Patterns and Dietary Quality on Body Composition of Adolescents in Chinese College" Nutrients 14, no. 21: 4544. https://doi.org/10.3390/nu14214544
APA StyleLi, H., Li, D., Wang, X., Ding, H., Wu, Q., Li, H., Wang, X., Li, K., Xiao, R., Yu, K., & Xi, Y. (2022). The Role of Dietary Patterns and Dietary Quality on Body Composition of Adolescents in Chinese College. Nutrients, 14(21), 4544. https://doi.org/10.3390/nu14214544