Interactive Effects of Methionine and Lead Intake on Cognitive Function among Chinese Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Design and Study Sample
2.2. Outcome Variable: Cognitive Function Assessment
2.3. Exposure Variable: Dietary Intake of Methionine and Lead
2.4. Covariates
2.5. Statistical Analyses
3. Results
3.1. Descriptive Results
3.2. Associations between Total, Animal, and Plant Methionine Intake and Cognition
3.3. Lead Intake Status Modifies the Association between Animal Methionine Intake and Cognitive Function
3.4. Subgroup Analyses of the Associations between Quartiles of Animal or Plant Methionine Intakes and Global Cognition Scores
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Dementia. 2022. Available online: https://www.who.int/en/news-room/fact-sheets/detail/dementia (accessed on 15 December 2021).
- Jia, L.; Du, Y.; Chu, L.; Zhang, Z.; Li, F.; Lyu, D.; Li, Y.; Li, Y.; Zhu, M.; Jiao, H.; et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. Lancet Public Health 2020, 5, E661–E671. [Google Scholar] [CrossRef]
- National Bureau of Statistics. The Seventh National Census of China. Available online: http://www.stats.gov.cn/tjsj/ndsj/2021/indexch.htm (accessed on 3 September 2022).
- Zhang, Q.L.; Wu, Y.L.; Han, T.K.; Liu, E.P. Changes in Cognitive Function and Risk Factors for Cognitive Impairment of the Elderly in China: 2005–2014. Int. J. Environ. Res. Public Health 2019, 16, 2847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, F.; Luo, C.; Lv, D.; Tian, L.; Qu, C. Risk Factors Affecting Cognitive Impairment of the Elderly Aged 65 and Over: A Cross-Sectional Study. Front. Aging Neurosci. 2022, 14, 903794. [Google Scholar] [CrossRef] [PubMed]
- Senee, A.; Ishnoo, Y.B.; Jeewon, R. An Analysis of the Contributors and Factors Influencing Dietary Patterns among the Elderly Population. Curr. Res. Nutr. Food Sci. J. 2022, 10, 3. [Google Scholar]
- Giannouli, V.; Toulis, K.A.; Syrmos, N. Cognitive function in Hashimoto’s thyroiditis under levothyroxine treatment. Hormones 2014, 13, 430–433. [Google Scholar] [CrossRef] [Green Version]
- Dodd, J.W.; Getov, S.V.; Jones, P.W. Cognitive function in COPD. Eur. Respir. J. 2010, 35, 913–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabinowitz, A.R.; Levin, H.S. Cognitive sequelae of traumatic brain injury. Psychiatr. Clin. 2014, 37, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, Y.; Li, X.; Liu, G.; Bin, P.; Yan, W.; Más, D.; Valdivie, M.; Hu, C.A.A.; Ren, W.K.; Yin, Y. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids 2017, 49, 2091–2098. [Google Scholar] [CrossRef]
- Ren, B.; Wang, L.; Shi, L.; Jin, X.; Liu, Y.; Liu, R.H.; Yin, F.; Cadenas, E.; Dai, X.; Liu, Z.; et al. Methionine restriction alleviates age-associated cognitive decline via fibroblast growth factor 21. Redox Biol. 2021, 41, 101940. [Google Scholar] [CrossRef] [PubMed]
- Jove, M.; Ayala, V.; Ramirez-Nunez, O.; Naudi, A.; Cabre, R.; Spickett, C.M.; Portero-Otín, M.; Pamplona, R. Specific lipidome signatures in central nervous system from methionine-restricted mice. J. Proteome Res. 2013, 12, 2679–2689. [Google Scholar] [CrossRef] [PubMed]
- Troen, A.M.; Chao, W.H.; Crivello, N.A.; D’Anci, K.E.; Shukitt-Hale, B.; Smith, D.E.; Selhub, J.; Rosenberg, I.H. Cognitive impairment in folate-deficient rats corresponds to depleted brain phosphatidylcholine and is prevented by dietary methionine without lowering plasma homocysteine. J. Nutr. 2008, 138, 2502–2509. [Google Scholar] [CrossRef]
- Bilen, M.; Ibrahim, P.; Barmo, N.; Abou, H.E.; Karnib, N.; El, H.L.; Khalifeh, M.; Jabre, V.; Houbeika, R.; Stephan, J.S.; et al. Methionine mediates resilience to chronic social defeat stress by epigenetic regulation of NMDA receptor subunit expression. Psychopharmacology 2020, 237, 3007–3020. [Google Scholar] [CrossRef]
- Miller, A.L. The methionine-homocysteine cycle and its effects on cognitive diseases. Altern. Med. Rev. 2003, 8, 7–19. [Google Scholar]
- Gabbita, S.P.; Aksenov, M.Y.; Lovell, M.A.; Markesbery, W.R. Decrease in peptide methionine sulfoxide reductase in Alzheimer’s disease brain. J. Neurochem. 1999, 73, 1660–1666. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Liu, Q.; Zhang, M.; Sun, C.; Du, Y.; Zhu, Y.; Lin, H.Y.; Jin, M.D.; Ma, F.; Li, W.; et al. Association between methionine cycle metabolite-related diets and mild cognitive impairment in older Chinese adults: A population-based observational study. Nutr. Neurosci. 2022, 25, 1495–1508. [Google Scholar] [CrossRef]
- Dong, Z.; Gao, X.; Chinchilli, V.M.; Sinha, R.; Muscat, J.; Winkels, R.; Richie, J.J. Association of dietary sulfur amino acid intake with mortality from diabetes and other causes. Eur. J. Nutr. 2022, 61, 289–298. [Google Scholar] [CrossRef]
- Elango, R. Methionine Nutrition and Metabolism: Insights from Animal Studies to Inform Human Nutrition. J. Nutr. 2020, 150, 2518s–2523s. [Google Scholar] [CrossRef]
- Mason, L.H.; Harp, J.P.; Han, D.Y. Pb neurotoxicity: Neuropsychological effects of lead toxicity. Biomed. Res. Int. 2014, 2014, 840547. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Song, Q.; Tang, Y.; Li, W.; Xu, J.; Wu, J.; Wang, F.; Brookes, P.C. Human health risk assessment of heavy metals in soil-vegetable system: A multi-medium analysis. Sci. Total Environ. 2013, 463, 530–540. [Google Scholar] [CrossRef]
- Reuben, A. Childhood Lead Exposure and Adult Neurodegenerative Disease. J. Alzheimers Dis. 2018, 64, 17–42. [Google Scholar] [CrossRef]
- Reuben, A.; Caspi, A.; Belsky, D.W.; Broadbent, J.; Harrington, H.; Sugden, K.; Houts, R.M.; Ramrakha, S.; Poulton, R.; Moffitt, T.E. Association of Childhood Blood Lead Levels With Cognitive Function and Socioeconomic Status at Age 38 Years and With IQ Change and Socioeconomic Mobility Between Childhood and Adulthood. JAMA-J. Am. Med. Assoc. 2017, 317, 1244–1251. [Google Scholar] [CrossRef] [Green Version]
- Power, M.C.; Korrick, S.; Tchetgen, E.J.T.; Nie, L.H.; Grodstein, F.; Hu, H.; Weuve, J.; Schwartz, J.; Weisskopf, M.G. Lead exposure and rate of change in cognitive function in older women. Environ. Res. 2014, 129, 69–75. [Google Scholar] [CrossRef]
- Neal, A.P.; Guilarte, T.R. Molecular neurobiology of lead (Pb(2+)): Effects on synaptic function. Mol. Neurobiol. 2010, 42, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Fan, G.; Feng, C.; Wu, F.; Ye, W.; Lin, F.; Wang, C.; Yan, J.; Zhu, G.C.; Xiao, Y.M.; Bi, Y. Methionine choline reverses lead-induced cognitive and N-methyl-d-aspartate receptor subunit 1 deficits. Toxicology 2010, 272, 23–31. [Google Scholar] [CrossRef]
- Fan, G.; Feng, C.; Li, Y.; Wang, C.; Yan, J.; Li, W.; Feng, J.G.; Shi, X.L.; Bi, Y. Selection of nutrients for prevention or amelioration of lead-induced learning and memory impairment in rats. Ann. Occup. Hyg. 2009, 53, 341–351. [Google Scholar]
- Tandon, S.K.; Singh, S.; Flora, S.J. Influence of methionine and zinc supplementation during chelation of lead in rats. J. Trace Elem. Electrolytes Health Dis. 1994, 8, 75–77. [Google Scholar]
- Popkin, B.M.; Du, S.F.; Zhai, F.Y.; Zhang, B. Cohort Profile: The China Health and Nutrition Survey-monitoring and understanding socio-economic and health change in China, 1989–2011. Int. J. Epidemiol. 2010, 39, 1435–1440. [Google Scholar] [CrossRef] [Green Version]
- Plassman, B.L.; Welsh, K.A.; Helms, M.; Brandt, J.; Page, W.F.; Breitner, J.C.S. Intelligence and Education as Predictors of Cognitive State in Late-Life—A 50-Year Follow-Up. Neurology 1995, 45, 1446–1450. [Google Scholar] [CrossRef]
- Ding, D.; Zhao, Q.H.; Guo, Q.H.; Meng, H.J.; Wang, B.; Luo, J.F.; Mortimer, J.A.; Borenstein, A.R.; Hong, Z. Prevalence of mild cognitive impairment in an urban community in China: A cross-sectional analysis of the Shanghai Aging Study. Alzheimers Dement. 2015, 11, 300–309. [Google Scholar] [CrossRef]
- Zhai, F.Y.; Du, S.F.; Wang, Z.H.; Zhang, J.G.; Du, W.W.; Popkin, B.M. Dynamics of the Chinese diet and the role of urbanicity, 1991–2011. Obes. Rev. 2014, 15, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Yao, M.; McCrory, M.A.; Ma, G.; Tucker, K.L.; Gao, S.J.; Fuss, P.; Roberts, S.B. Relative influence of diet and physical activity on body composition in urban Chinese adults. Am. J. Clin. Nutr. 2003, 77, 1409–1416. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y. Chinese Food Composition Table 2004; Peking University Medical Press: Beijing, China, 2005. [Google Scholar]
- Hu, F.B.; Willett, W.C. Dietary fat and coronary heart disease: A comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements—Reply. Am. J. Epidemiol. 2000, 151, 106. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Liu, P.; Sun, J.F.; Wang, C.N.; Min, J.; Zhang, Y.; Wang, S.Y.; Wu, Y.N. Dietary exposure and risk assessment to lead of the population of Jiangsu province, China. Food Addit. Contam. A 2014, 31, 1187–1195. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of Physical Activities: An update of activity codes and MET intensities. Med. Sci. Sport Exerc. 2000, 32, S498–S516. [Google Scholar] [CrossRef]
- Zhou, B.F. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults—Study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed. Environ. Sci. 2002, 15, 83–96. [Google Scholar]
- Li, Y.; Li, S.; Wang, W.; Zhang, D.F. Association between Dietary Protein Intake and Cognitive Function in Adults Aged 60 Years and Older. J. Nutr. Health Aging 2020, 24, 223–229. [Google Scholar] [CrossRef]
- Van der Zwaluw, N.L.; Van de Rest, O.; Tieland, M.; Adam, J.J.; Hiddink, G.J.; Van Loon, L.J.C.; De Groot, L.C.P.G.M. The impact of protein supplementation on cognitive performance in frail elderly. Eur. J. Nutr. 2014, 53, 803–812. [Google Scholar] [CrossRef]
- Muth, A.K.; Park, S.Q. The impact of dietary macronutrient intake on cognitive function and the brain. Clin. Nutr. 2021, 40, 3999–4010. [Google Scholar] [CrossRef]
- Chen, R.; De Sherbinin, A.; Ye, C.; Shi, G. China’s soil pollution: Farms on the frontline. Science 2014, 344, 691. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, S.Q.; Cheng, G.W.; Yang, J.J.; Li, B.C.; Xu, K.; Xiao, P.; Li, W.F.; Rong, S. The Prevalence of Mild Cognitive Impairment among Chinese People: A Meta-Analysis. Neuroepidemiology 2021, 55, 79–91. [Google Scholar] [CrossRef]
- Albert, M.S.; Jones, K.; Savage, C.R.; Berkman, L.; Seeman, T.; Blazer, D.; Rowe, J.W. Predictors of cognitive change in older persons: MacArthur studies of successful aging. Psychol. Aging 1995, 10, 578. [Google Scholar] [CrossRef]
- JacqminGadda, H.; Fabrigoule, C.; Commenges, D.; Dartigues, J.F. A 5-year longitudinal study of the mini-mental state examination in normal aging. Am. J. Epidemiol. 1997, 145, 498–506. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, K.R.A.; Van Gerven, P.W.M.; Van Boxtel, M.P.J.; Van der Elst, W.; Jolles, J. No protective effects of education during normal cognitive aging: Results from the 6-year follow-up of the Maastricht aging study. Psychol. Aging 2008, 23, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Jansen, M.G.; Geerligs, L.; Claassen, J.A.H.R.; Overdorp, E.J.; Brazil, I.A.; Kessels, R.P.C.; Oosterman, J.M. Positive Effects of Education on Cognitive Functioning Depend on Clinical Status and Neuropathological Severity. Front. Hum. Neurosci. 2021, 15, 723728. [Google Scholar] [CrossRef]
- Schmidt, J.A.; Rinaldi, S.; Scalbert, A.; Ferrari, P.; Achaintre, D.; Gunter, M.J.; Appleby, P.N.; Key, T.J.; Travis, R.C. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: A cross-sectional analysis in the EPIC-Oxford cohort. Eur. J. Clin. Nutr. 2016, 70, 306–312. [Google Scholar] [CrossRef]
- Shi, Z.; El-Obeid, T.; Li, M.; Xu, X.Y.; Liu, J.H. Iron-related dietary pattern increases the risk of poor cognition. Nutr. J. 2019, 18, 48. [Google Scholar] [CrossRef] [Green Version]
- Azorin, I.; Huybrechts, I.; Moreno, L.A.; Michels, N. Vegetarianism and veganism versus mental health and cognitive outcomes. A systematic review and meta-analysis. Ann. Nutr. Metab. 2019, 75, 49–50. [Google Scholar]
- Bishwajit, G.; Ide, S.; Hossain, M.A.; Safa, M.N. Trade Liberalization, Urbanization and Nutrition Transition in Asian Countries. J. Nutr. Health Food Sci. 2014, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhao, L.; Gao, L.; Pan, A.; Xue, H. Health policy and public health implications of obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 446–461. [Google Scholar] [CrossRef]
- Miller, A.A.; Spencer, S.J. Obesity and neuroinflammation: A pathway to cognitive impairment. Brain Behav. Immun. 2014, 42, 10–21. [Google Scholar] [CrossRef]
- Xu, W.L.; Atti, A.R.; Gatz, M.; Pedersen, N.L.; Johansson, B.; Fratiglioni, L. Midlife overweight and obesity increase late-life dementia risk: A population-based twin study. Neurology 2011, 76, 1568–1574. [Google Scholar] [CrossRef] [Green Version]
- Whitmer, R.A.; Gunderson, E.P.; Barrett-Connor, E.; Quesenberry, C.P.; Yaffe, K. Obesity in middle age and future risk of dementia: A 27 year longitudinal population based study. BMJ 2005, 330, 1360–1362. [Google Scholar] [CrossRef]
Q1 | Q2 | Q3 | Q4 | p | |
---|---|---|---|---|---|
n = 1166 | n = 1165 | n = 1165 | n = 1165 | ||
Age (years) | 66.8 ± 9.0 | 63.5 ± 7.6 | 62.1 ± 6.9 | 61.3 ± 6.3 | <0.001 |
Survey year | <0.001 | ||||
1997 | 585 (50.2%) | 557 (47.8%) | 487 (41.8%) | 423 (36.3%) | |
2000 | 187 (16.0%) | 217 (18.6%) | 202 (17.3%) | 191 (16.4%) | |
2004 | 260 (22.3%) | 251 (21.5%) | 278 (23.9%) | 317 (27.2%) | |
2006 | 134 (11.5%) | 140 (12.0%) | 198 (17.0%) | 234 (20.1%) | |
Sex | <0.001 | ||||
Men | 374 (32.1%) | 460 (39.5%) | 615 (52.8%) | 788 (67.6%) | |
Women | 792 (67.9%) | 705 (60.5%) | 550 (47.2%) | 377 (32.4%) | |
Socioeconomic factors | |||||
Income | <0.001 | ||||
Low | 467 (40.6%) | 405 (35.0%) | 347 (30.0%) | 244 (21.3%) | |
Medium | 365 (31.7%) | 400 (34.6%) | 347 (30.0%) | 284 (24.8%) | |
High | 319 (27.7%) | 351 (30.4%) | 464 (40.1%) | 618 (53.9%) | |
Education | <0.001 | ||||
Low | 831 (84.2%) | 854 (81.0%) | 752 (69.6%) | 611 (56.3%) | |
Medium | 85 (8.6%) | 119 (11.3%) | 192 (17.8%) | 227 (20.9%) | |
High | 71 (7.2%) | 81 (7.7%) | 137 (12.7%) | 248 (22.8%) | |
Urbanization | <0.001 | ||||
Low | 359 (30.8%) | 352 (30.2%) | 277 (23.8%) | 195 (16.7%) | |
Medium | 345 (29.6%) | 377 (32.4%) | 293 (25.2%) | 283 (24.3%) | |
High | 462 (39.6%) | 436 (37.4%) | 595 (51.1%) | 687 (59.0%) | |
Lifestyle factor | |||||
Smoking | <0.001 | ||||
Nonsmokers | 864 (74.5%) | 827 (71.1%) | 759 (65.3%) | 682 (58.5%) | |
Ex-smokers | 43 (3.7%) | 36 (3.1%) | 35 (3.0%) | 56 (4.8%) | |
Current smokers | 252 (21.7%) | 300 (25.8%) | 369 (31.7%) | 427 (36.7%) | |
Alcohol drinking | 267 (23.4%) | 293 (25.7%) | 401 (35.3%) | 471 (40.9%) | <0.001 |
Physical activity (MET) | 72.7 ± 94.0 | 95.1 ± 104.5 | 93.7 ± 99.8 | 89.5 ± 96.8 | <0.001 |
Weight status | |||||
BMI (kg/m2) | 22.4 ± 3.8 | 22.9 ± 3.7 | 23.4 ± 3.6 | 23.5 ± 3.3 | <0.001 |
Overweight and obesity (BMI ≥ 24 kg/m2) | 326 (30.9%) | 374 (34.5%) | 450 (40.9%) | 457 (41.9%) | <0.001 |
Dietary intakes | |||||
Energy intake (kcal/d) | 1661.6 ± 458.8 | 1998.7 ± 516.0 | 2227.0 ± 548.7 | 2486.1 ± 660.7 | <0.001 |
Fat intake (g/d) | 49.4 ± 29.2 | 60.0 ± 32.8 | 70.3 ± 34.2 | 87.1 ± 39.0 | <0.001 |
Protein intake (g/d) | 45.2 ± 12.6 | 58.1 ± 15.3 | 67.9 ± 17.7 | 83.2 ± 25.4 | <0.001 |
Carbohydrate intake (g/d) | 256.4 ± 79.7 | 302.0 ± 97.7 | 323.4 ± 107.2 | 332.2 ± 119.6 | <0.001 |
Cumulative methionine intake (mg/d) | 915.7 ± 153.9 | 1219.8 ± 66.4 | 1450.1 ± 73.4 | 1910.5 ± 334.0 | <0.001 |
Cumulative animal methionine intake (mg/d) | 203.6 ± 161.9 | 348.7 ± 211.3 | 517.3 ± 263.7 | 916.6 ± 454.1 | <0.001 |
Cumulative plant methionine intake (mg/d) | 712.0 ± 186.0 | 871.1 ± 208.3 | 932.8 ± 258.3 | 993.9 ± 345.1 | <0.001 |
Most recent methionine intake(mg/d) | 886.1 ± 237.8 | 1173.3 ± 267.4 | 1429.8 ± 346.6 | 1914.5 ± 669.8 | <0.001 |
Most recent animal methionine intake (mg/d) | 225.5 ± 211.6 | 382.2 ± 284.2 | 564.9 ± 364.1 | 982.2 ± 689.2 | <0.001 |
Most recent plant methionine intake (mg/d) | 660.7 ± 212.6 | 791.1 ± 243.8 | 865.0 ± 306.4 | 932.4 ± 372.7 | <0.001 |
Lead intake (µg/d) | 80.8 ± 26.7 | 97.5 ± 27.6 | 107.0 ± 31.6 | 121.6 ± 36.5 | <0.001 |
Intake of fruit (g/d) | 13.4 ± 50.1 | 17.5 ± 70.8 | 23.1 ± 76.6 | 39.0 ± 107.9 | <0.001 |
Intake of fresh vegetables (g/d) | 224.4 ± 152.9 | 265.4 ± 159.4 | 287.9 ± 180.5 | 322.3 ± 196.9 | <0.001 |
Intake of meat (g/d) | 32.9 ± 43.1 | 55.4 ± 57.0 | 81.5 ± 75.5 | 127.3 ± 106.7 | <0.001 |
Disease history | |||||
Hypertension | 424 (39.0%) | 375 (34.1%) | 373 (33.4%) | 394 (35.5%) | 0.028 |
Diabetes | 34 (3.0%) | 34 (3.0%) | 34 (3.0%) | 47 (4.1%) | 0.31 |
Stroke | 34 (3.0%) | 18 (1.6%) | 24 (2.1%) | 24 (2.1%) | 0.16 |
Cognitive function | |||||
Self-reported poor memory | 350 (30.3%) | 243 (21.1%) | 220 (19.0%) | 151 (13.1%) | <0.001 |
Self-reported memory decline | 561 (49.5%) | 474 (41.9%) | 402 (35.5%) | 342 (30.2%) | <0.001 |
Global cognition score | 11.3 ± 6.9 | 12.7 ± 6.5 | 14.0 ± 6.6 | 14.9 ± 6.4 | <0.001 |
Global cognition score < 7 | 324 (27.8%) | 221 (19.0%) | 166 (14.2%) | 126 (10.8%) | <0.001 |
Q1 | Q2 | Q3 | Q4 | p trend | |
---|---|---|---|---|---|
Total methionine | |||||
Model 1 | 0.00 | 0.48 (0.12 to 0.83) | 1.16 (0.78 to 1.55) | 1.88 (1.47 to 2.30) | <0.001 |
Model 2 | 0.00 | 0.17 (−0.20 to 0.55) | 0.47 (0.07 to 0.88) | 0.57 (0.13 to 1.02) | 0.008 |
Model 3 | 0.00 | 0.08 (−0.31 to 0.47) | 0.34 (−0.08 to 0.76) | 0.54 (0.08 to 1.01) | 0.013 |
Model 4 | 0.00 | −0.08 (−0.50 to 0.34) | 0.20 (−0.25 to 0.65) | 0.37 (−0.13 to 0.87) | 0.103 |
Animal methionine | |||||
Model 1 | 0.00 | 1.13 (0.77 to 1.48) | 2.40 (2.04 to 2.76) | 3.53 (3.16 to 3.90) | <0.001 |
Model 2 | 0.00 | 0.62 (0.23 to 1.01) | 1.34 (0.92 to 1.77) | 1.88 (1.41 to 2.36) | <0.001 |
Model 3 | 0.00 | 0.57 (0.17 to 0.98) | 1.18 (0.73 to 1.62) | 1.80 (1.31 to 2.29) | <0.001 |
Model 4 | 0.00 | 0.63 (0.19 to 1.06) | 1.15 (0.67 to 1.62) | 1.80 (1.27 to 2.32) | <0.001 |
Plant methionine | |||||
Model 1 | 0.00 | −0.97 (−1.31 to −0.62) | −1.77 (−2.14 to −1.39) | −3.34 (−3.75 to −2.93) | <0.001 |
Model 2 | 0.00 | −0.61 (−0.99 to −0.23) | −0.78 (−1.20 to −0.37) | −1.69 (−2.18 to −1.21) | <0.001 |
Model 3 | 0.00 | −0.73 (−1.12 to −0.34) | −0.83 (−1.26 to −0.41) | −1.72 (−2.22 to −1.22) | <0.001 |
Model 4 | 0.00 | −0.86 (−1.28 to −0.44) | −0.98 (−1.45 to −0.52) | −1.79 (−2.33 to −1.24) | <0.001 |
Q1 | Q2 | Q3 | Q4 | p trend | p interaction | |
---|---|---|---|---|---|---|
Age (years) | 0.002 | |||||
<60 | 0.00 | 0.61 (−0.12 to 1.34) | 0.69 (−0.09 to 1.47) | 1.10 (0.25 to 1.96) | 0.017 | |
≥60 | 0.00 | 0.60 (0.12 to 1.08) | 1.46 (0.94 to 1.98) | 2.13 (1.54 to 2.71) | <0.001 | |
Sex | 0.050 | |||||
Men | 0.00 | 0.66 (0.03 to 1.28) | 1.39 (0.73 to 2.06) | 1.74 (1.03 to 2.46) | <0.001 | |
Women | 0.00 | 0.48 (−0.05 to 1.00) | 0.96 (0.38 to 1.55) | 1.87 (1.20 to 2.54) | <0.001 | |
Education | 0.007 | |||||
Low | 0.00 | 0.63 (0.19 to 1.08) | 1.48 (0.98 to 1.98) | 2.15 (1.57 to 2.72) | <0.001 | |
Medium | 0.00 | 0.09 (−1.14 to 1.31) | −0.43 (−1.67 to 0.80) | 0.99 (−0.31 to 2.30) | 0.072 | |
High | 0.00 | −2.21 (−4.18 to −0.23) | −1.70 (−3.60 to 0.21) | −1.91 (−3.80 to −0.02) | 0.395 | |
Income | 0.016 | |||||
Low | 0.00 | 0.28 (−0.32 to 0.88) | 1.27 (0.53 to 2.01) | 2.41 (1.52 to 3.30) | <0.001 | |
Medium | 0.00 | 0.42 (−0.25 to 1.10) | 1.11 (0.39 to 1.83) | 1.73 (0.89 to 2.56) | <0.001 | |
High | 0.00 | 1.21 (0.33 to 2.10) | 1.00 (0.13 to 1.87) | 1.52 (0.62 to 2.42) | 0.006 | |
Urbanization | 0.045 | |||||
Low | 0.00 | 0.73 (0.05 to 1.40) | 1.03 (0.17 to 1.88) | 1.37 (0.12 to 2.62) | 0.003 | |
Medium | 0.00 | 0.09 (−0.57 to 0.75) | 1.38 (0.63 to 2.12) | 2.08 (1.21 to 2.95) | <0.001 | |
High | 0.00 | 0.99 (0.15 to 1.82) | 1.13 (0.32 to 1.95) | 1.76 (0.92 to 2.59) | <0.001 | |
Overweight/obesity | 0.362 | |||||
No | 0.00 | 0.41 (−0.04 to 0.86) | 1.09 (0.59 to 1.59) | 1.71 (1.14 to 2.27) | <0.001 | |
Yes | 0.00 | 1.15 (0.27 to 2.04) | 1.46 (0.54 to 2.38) | 2.05 (1.07 to 3.04) | <0.001 |
Q1 | Q2 | Q3 | Q4 | p trend | p interaction | |
---|---|---|---|---|---|---|
Age (years) | 0.497 | |||||
<60 | 0.00 | −0.71 (−1.52 to 0.09) | −0.61 (−1.43 to 0.22) | −1.87 (−2.79 to −0.94) | <0.001 | |
≥60 | 0.00 | −0.76 (−1.20 to −0.31) | −0.99 (−1.49 to −0.49) | −1.65 (−2.25 to −1.05) | <0.001 | |
Sex | 0.034 | |||||
Men | 0.00 | −0.53 (−1.19 to 0.14) | −1.20 (−1.88 to −0.51) | −1.78 (−2.55 to −1.02) | <0.001 | |
Women | 0.00 | −0.82 (−1.30 to −0.33) | −0.38 (−0.94 to 0.19) | −1.71 (−2.40 to −1.02) | <0.001 | |
Education | 0.530 | |||||
Low | 0.00 | −0.67 (−1.15 to −0.19) | −0.78 (−1.30 to −0.26) | −1.71 (−2.32 to −1.11) | <0.001 | |
Medium | 0.00 | −1.60 (−2.54 to −0.66) | −1.61 (−2.64 to −0.59) | −2.65 (−3.88 to −1.42) | <0.001 | |
High | 0.00 | −0.16 (−1.04 to 0.71) | −0.37 (−1.40 to 0.67) | −0.79 (−2.18 to 0.60) | 0.274 | |
Income | 0.309 | |||||
Low | 0.00 | −0.75 (−1.53 to 0.03) | −0.91 (−1.71 to −0.10) | −1.61 (−2.50 to −0.71) | <0.001 | |
Medium | 0.00 | −0.12 (−0.84 to 0.59) | −0.40 (−1.18 to 0.37) | −1.49 (−2.37 to −0.60) | <0.001 | |
High | 0.00 | −1.13 (−1.68 to −0.57) | −1.04 (−1.68 to −0.40) | −1.93 (−2.75 to −1.12) | <0.001 | |
Urbanization | 0.007 | |||||
Low | 0.00 | 0.75 (−0.36 to 1.86) | 0.47 (−0.60 to 1.55) | −0.65 (−1.77 to 0.46) | 0.017 | |
Medium | 0.00 | −1.53 (−2.41 to −0.65) | −1.41 (−2.31 to −0.51) | −1.92 (−2.90 to −0.93) | 0.002 | |
High | 0.00 | −0.62 (−1.10 to −0.15) | −0.85 (−1.41 to −0.28) | −2.14 (−2.91 to −1.37) | <0.001 | |
Overweight/obesity | 0.539 | |||||
No | 0.00 | −0.65 (−1.11 to −0.18) | −0.74 (−1.24 to −0.23) | −1.62 (−2.20 to −1.03) | <0.001 | |
Yes | 0.00 | −0.89 (−1.59 to −0.18) | −1.09 (−1.87 to −0.31) | −2.11 (−3.07 to −1.14) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Li, Z.; Chen, Y.; Xu, T.; Shu, J.; Shi, L.; Shi, Z. Interactive Effects of Methionine and Lead Intake on Cognitive Function among Chinese Adults. Nutrients 2022, 14, 4561. https://doi.org/10.3390/nu14214561
Sun X, Li Z, Chen Y, Xu T, Shu J, Shi L, Shi Z. Interactive Effects of Methionine and Lead Intake on Cognitive Function among Chinese Adults. Nutrients. 2022; 14(21):4561. https://doi.org/10.3390/nu14214561
Chicago/Turabian StyleSun, Xiaomin, Zhongying Li, Yingxin Chen, Tao Xu, Jing Shu, Lin Shi, and Zumin Shi. 2022. "Interactive Effects of Methionine and Lead Intake on Cognitive Function among Chinese Adults" Nutrients 14, no. 21: 4561. https://doi.org/10.3390/nu14214561
APA StyleSun, X., Li, Z., Chen, Y., Xu, T., Shu, J., Shi, L., & Shi, Z. (2022). Interactive Effects of Methionine and Lead Intake on Cognitive Function among Chinese Adults. Nutrients, 14(21), 4561. https://doi.org/10.3390/nu14214561