Dielectric Barrier Discharge for Solid Food Applications
Abstract
:1. Introduction
2. Methods
3. Mechanism of Action
4. Application of DBD in Food for Decontamination
4.1. Meat and Fish
4.2. Fruits and Vegetables
4.3. Dairy Products
4.4. Cereals
Food | Microorganism | Treatment | Parameters | Log Reduction | Reference |
---|---|---|---|---|---|
Wheat and Barley | Microflora (bacteria and fungi) and inoculated bacteria (E. coli, B. atrophaeus vergetativas, B. atrophaeus endospores y P verrucosum spores). | 80 kV 5–20 min. | Microbial control and seed germination. | Barley: 2.4 and 2.1 log CFU/g for bacteria and fungi respectively Wheat: 1.5 and 2.5 log CFU/g for bacteria and fungi respectively. | [55] |
Cereal | Bacilo spp., Lactobacillus spp. and E. coli and B. atrophaeus endospores. | 120 kV 5, 20, 30 min. | Bacterial inactivation, biofilms and spores. | 5 min: reduced biofilms of E. coli spp., B. subtilis y Lactobacillus spp. > 3 log. 20 min: reduced B. atrophaeus spores in liquids by >5 log. 30 min: reduced spores on hydrophobic surface by > 6 and maximum reductions of 4.4 log were achieved with spores attached to the hydrophilic surface. | [51] |
Brown rice | Bacillus cereus, Bacillus subtilis, and Escherichia coli O157:H7. | 250 W, 15 kHz 5,10, 20 min. | Bacterial inactivation. | 20 min: 2,30 log UFC/g. | [56] |
Korean rice cakes | Salmonella, indigenous mesophilic aerobic bacteria. | 25 kV 1 and 3 min. | Bacterial inactivation. | 2 ± 0.1 log CFU/g in indigenous bacteria, inactivated indigenous yeasts and moulds and Salmonella by 1.7 ± 0.1 log CFU/g and 3.9 ± 0.3 log CFU/g, respectively. | [52] |
Cooked white and brown rice | Bacillus cereus (KCTC 3624), E. coli O157:H7 (KCCM 40406) and aerobic mesophilic and coliform bacteria. | 250 W 5, 10,20 min. | Microbial analysis, physicochemical properties (pH, sticking, texture, sugar reduction, lipid oxidation). | E. coli inoculated on cooked brown and white rice at: 5.79 and 5.80 log CFU/g respectively. After treatment: 2.01 and 2.03 log CFU/g in brown and white cooked rice respectively. Bacillus cereus initial in brown and white rice at levels of 5.68 and 5.67 log CFU/g, respectively After the 5, 10 and 20 min treatment, B. cereus on cooked brown and white rice decreased from 5.30 to 3.39 and from 5.29 to 0.05 log CFU/g, respectively. Aerobic mesophilic bacteria and coliforms were reduced by approx. 2 log post treatment. | [53] |
Organic wheat grains (Triticum aestivum L.). | Bacillus atrophaeus var. niger ATCC 937, Aspergillus niger ATCC 16404, Penicillium citrinum DSM 1179 and Penicillium verrucosum DSM 12639, A. flavus/oryzae, A. candidus and P. chrysogenum, spoilage flora. | 80 kV 5 and 20 min. | Bacterial inactivation. | Higher levels of inactivation for A. niger, P. chrysogenum, A. flavus and endospores and vegetative cells of B. atrophaeus after 20 min direct mode of treatment. | [54] |
5. Hybrid Technologies
6. Scale up Challenges and Industrial Application
7. Strengths and Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO/OMS. 2002. Available online: www.fao.org/3/x6865s/x6865s.pdf (accessed on 19 September 2022).
- Gómez, P.; Salvatori, D.; Garcia-Loredo, A.; Alzamora, S. Pulsed light treatment of cut apple: Dose effect of color structure and microbiological stability. Food Bioprocess Technol. 2012, 5, 2311–2322. [Google Scholar] [CrossRef]
- Soria, A.; Villamiel, M. Effect of ultrasound on the technological properties and bioactivity of food: A review. Trends Food Sci. Technol. 2010, 21, 323–331. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, M.; Xu, B.; Adhikari, B.; Sun, J. The principles of ultrasound and its application in freezing related processes of food materials: A review. Ultrason Sonochem. 2015, 27, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, A.; Rajauria, G.; O’Donnell, C.; Tiwari, B.K. Emerging food processing technologies and factors impacting their industrial adoption. Crit. Rev. Food Sci. Nutr. 2019, 53, 3082–3101. [Google Scholar] [CrossRef] [PubMed]
- Cheigh, C.; Park, M.; Chung, M.; Shin, J.; Park, Y. Comparison of intense pulsed light- and ultraviolet (UVC)-induced cell damage in Lysteria monocytogenes and escherichia coli O157:H7. Food Control 2012, 25, 654–659. [Google Scholar] [CrossRef]
- Niu, D.; Zeng, X.; Ren, E.; Xu, F.; Li, J.; Wang, M. Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Res. Int. 2020, 137, 109715. [Google Scholar] [CrossRef]
- Bintsis, T.; Litopoulou-Tzanetaki, E.; Robinson, R. Existing and potential applications of ultraviolet light in the food industry—A critical review. J. Sci. Food Agric. 2000, 80, 637–645. [Google Scholar] [CrossRef]
- Misra, N.N.; Tiwari, B.K.; Raghavarao, K.S.M.S.; Cullen, P.J. Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Eng. Rev. 2011, 3, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Schlüter, O.; Ehlbeck, J.; Hertel, C.; Habermeyer, M.; Roth, A.; Engel, K.H.; Holzhauser, T.; Knorr, D.; Eisenbrand, G. Opinion on the use of plasma processes for treatment of foods. Mol. Nutr. Food Res. 2013, 57, 920–927. [Google Scholar] [CrossRef]
- Varilla, C.; Marcone, M.; Annor, G. Potential of cold plasma technology in ensuring the safety of foods: A review. Foods 2020, 9, 1435. [Google Scholar] [CrossRef]
- Mandal, R.; Singh, A.; Pratap-Singh, A. Recent developments in cold plasma decontamination technology in the food industry. Trends Food Sci. Technol. 2018, 80, 93–103. [Google Scholar] [CrossRef]
- Laroque, D.A.; Seó, S.T.; Valencia, G.A.; Laurindo, J.B.; Carciofi, B.A.M. Cold plasma in food processing: Design, mechanisms, and application. J. Food Eng. 2022, 312, 110748. [Google Scholar] [CrossRef]
- Feizollah, E.; Misra, N.; Roopesh, M. Factors influencing the antimicrobial efficacy of dielectric barrier discharge (DBD)atmospheric cold plasma (ACP)in food processing applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 666–689. [Google Scholar] [CrossRef] [PubMed]
- Misra, N.N.; Patil, S.; Moiseev, T.; Bourke, P.; Mosnier, J.P.; Keener, K.M.; Cullen, P.J. In-package atmospheric pressure cold plasma treatment of strawberries. J. Food Eng. 2014, 125, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Smet, C.; Baka, M.; Dickenson, A.; Walsh, J.; Valdramidis, V.; Van-Impe, J. Antimicrobial efficacy of cold atmospheric plasma for different intrinsic and extrinsic parameters. Plasma Process. Polym. 2018, 15, 2. [Google Scholar] [CrossRef]
- Zhao, Y.; de Alba, M.; Sun, D.; Tiwari, B.K. Principles and recent applications of novel non-thermal processing technologies for the fish industry-a review. Crit. Rev. Food Sci. Nutr. 2019, 59, 728–742. [Google Scholar] [CrossRef]
- Niedzwiedz, I.; Wasko, A.; Pawlat, J.; Polak-Berecka, M. The state of research on antimicrobial activity of cold plasma. Pol. J. Microbiol. 2019, 68, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Zhuang, H.; Zhao, J.; Wang, J.; Yan, W.; Zhang, J. Differences in cellular damages induced by dielectric barrier discharge plasma between Salmonella Typhimurium and Staphylococcus aureus. Bioelectrochemistry 2020, 132. [Google Scholar] [CrossRef]
- Ganesan, A.; Tiwari, U.; Ezhilarasi, P.; Rajauria, G. Application of cold plasma on food matrices: A review on current and future prospects. J. Food Process. Preserv. 2020, 4, 1. [Google Scholar] [CrossRef]
- Lee, E.; Cheigh, C.; Kang, J.; Lee, S.; Min, S. Evaluation of in-package atmospheric dielectric barrier discharge cold plasma treatment as an Intervention technology for decontaminating bulk ready-to-eat chicken breast cubes in plastic containers. Appl. Sci. 2020, 10, 6301. [Google Scholar] [CrossRef]
- Zhuang, H.; Rothrock, M.; Hiett, K.; Lawrence, K.; Gamble, G.; Bowker, B.; Keener, K.M. In-package air cold plasma treatment of chicken breast meat: Treatment time effect. J. Food Qual. 2019, 2019, 1837351. [Google Scholar] [CrossRef] [Green Version]
- Patange, A.; Boehm, D.; Bueno-Ferrer, C.; Cullen, P.J.; Bourke, P. Controlling Brochothrix thermosphacta as a spoilage risk using in-package. Food Microbiol. 2017, 66, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Ziuzina, D.; Heslin, C.; Boehm, D.; Patange, A.; Sango, D.; Valdramidis, V.; Cullen, P.J.; Bourke, P. Controlling microbial safety challenges of meat using high voltage atmospheric cold plasma. Front. Microbiol. 2016, 7, 977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.; Wang, J.; Zhuang, H.; Yan, W.; Zhao, J.; Zhang, J. Effect of in-package high voltage dielectric barrier discharge on microbiological, color and oxidation properties of pork in modified atmosphere packaging during storage. Meat Sci. 2019, 149, 107–113. [Google Scholar] [CrossRef]
- Albertos, I.; Martin-Diana, A.; Cullen, P.J.; Tiwari, B.K.; Ojha, S.; Bourke, P.; Álvarez, C.; Rico, D. Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parameters of fresh mackerel (Scomber scombrus) fillets. IFSET 2017, 44, 117–122. [Google Scholar] [CrossRef]
- Mohamed, E.E.; Younis, E.; Mohamed, E.A. Impact of atmospheric cold plasma (ACP) on maintaining bolti fish (Tilapia nilotica) freshness and quality criteria during cold storing. J. Food Process. Preserv. 2021, 45, e15442. [Google Scholar] [CrossRef]
- Albertos, I.; Martin-Diana, A.; Cullen, P.J.; Tiwari, B.K.; Ojha, K.; Bourke, P.; Rico, D. Shelf-life extension of herring (Clupea harengus) using in-package atmospheric plasma technology. IFSET 2019, 53, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wang, S.Z.; Chen, J.Y.; Chen, D.Z.; Deng, S.G.; Xu, B. Effect of cold plasma on maintaining the quality of chub mackerel (Scomber japonicus): Biochemical and sensory attributes. J. Sci. Food Agric. 2019, 99, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, M.S.; Jeon, E.; Kim, J.; Choi, E.; Lim, J.; Choi, J.; Park, S. Impact of non-thermal dielectric barrier discharge plasma on Staphylococcus aureus and Bacillus cereus and quality of dried blackmouth angler (Lophiomus setigerus). J. Food Eng. 2020, 278, 109952. [Google Scholar] [CrossRef]
- Tappi, S.; Gozzi, G.; Vannini, L.; Berardinelli, A.; Romani, S.; Ragni, L.; Rocculi, P. Cold plasma treatment for fresh-cut melon stabilization. IFSET 2016, 33, 225–233. [Google Scholar] [CrossRef]
- Pasquali, F.; Stratakos, A.C.; Koidis, A.; Berardinelli, A.; Cevoli, C.; Ragni, L.; Mancusi, R.; Manfreda, G.; Trevisani, M. Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control 2016, 60, 552–559. [Google Scholar] [CrossRef] [Green Version]
- Mahnot, N.; Siyu, L.; Wan, Z.; Keneer, K.; Misra, N. In-package cold plasma decontamination of fresh-cut carrots: Microbial and quality aspects. J. Phys. D-Appl Phys. 2020, 53, 15. [Google Scholar]
- Kim, S.; Bang, I.; Ming, S. Effects of packaging parameters on the inactivation of Salmonella contaminating mixed vegetables in plastic packages using atmospheric dielectric barrier discharge cold plasma treatment. J. Food Eng. 2019, 242, 55–67. [Google Scholar] [CrossRef]
- Ziuzina, D.; Misra, N.; Han, L.; Cullen, P.; Moiseev, T.; Mosnier, J.; Gaston, E.; Bourke, P. Investigation of a large gap cold plasma reactor for continuous in-package decontamination of fresh strawberries and spinach. IFSET 2020, 59, 102229. [Google Scholar] [CrossRef]
- Rana, S.; Mehta, D.; Bansal, V.; Shivhare, U.; Yadav, S. Atmospheric cold plasma (ACP) treatment improved in-package shelf-life of strawberry fruit. J. Food Sci. Tech-Mys. 2020, 57, 102–112. [Google Scholar] [CrossRef]
- Ziuzina, D.; Petil, S.; Cullen, P.; Keener, K.; Bourke, P. Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol. 2014, 42, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zhao, W.; Zeng, X.; Zhang, Q.; Gao, G.; Song, S. Effects of cold plasma treatment on cherry quality during storage. FSTI 2020, 27, 441–455. [Google Scholar] [CrossRef]
- Min, S.C.; Roh, S.H.; Boyd, G.; Sites, J.; Uknalis, J.; Fan, X.; Niemira, B.A. Inactivation of Escherichia coli O157: H7 and aerobic microorganisms in romaine lettuce packaged in a commercial polyethylene terephthalate container using atmospheric cold plasma. J. Food Prot. 2017, 80, 35–43. [Google Scholar] [CrossRef]
- Min, S.C.; Roh, S.H.; Niemira, B.; Sites, J.; Boyd, G.; Lacombe, A. Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce. Int. J. Food Microbiol. 2016, 237, 114–120. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Zhang, Y.; Hu, H.; Luo, S.; Zhang, L.; Zhou, H.; Li, P. Effects of in-package atmospheric cold plasma treatment on the qualitative, metabolic and microbial stability of fresh-cut pears. J. Sci. Food. 2021, 101, 4473–4480. [Google Scholar] [CrossRef]
- Giannoglou, M.; Stergiou, P.; Dimitrakellis, P.; Gogolides, E.; Stoforos, N.; Katsaros, G. Effect of cold atmospheric plasma processing on quality and shelf-life of ready-to-eat rocket leafy salad. IFSET 2020, 66, 102502. [Google Scholar] [CrossRef]
- Min, S.C.; Roh, S.H.; Niemira, B.A.; Boyd, G.; Sites, J.; Fan, X.; Sokorai, K.; Jin, T. In-package atmospheric cold plasma treatment of bulk grape tomatoes for microbiological safety and preservation. Int. Food Res. J. 2018, 108, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Kilonzo-Nthenge, A.; Liu, S.; Yannam, S.; Patras, A. Atmospheric cold plasma inactivation of Salmonella and Escherichia coli on the surface of golden delicious apples. Front. Nutr. 2018, 5, 120. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.Y.; Yang, Y.L. A novel approach to enhance blueberry quality during storage using cold plasma at atmospheric air pressure. Food Bioproc. Tech. 2019, 12, 1409–1421. [Google Scholar] [CrossRef]
- Ahmadnia, M.; Sadeghi, M.; Abbaszadeh, R.; Marzdashti, H. Decontamination of whole strawberry via dielectric barrier discharge cold plasma and effects on quality attributes. J. Food Process. Preserv. 2021, 45, 1. [Google Scholar] [CrossRef]
- Han, J.Y.; Song, W.H.; Eom, S.; Kim, S.; Kang, D. Antimicrobial efficacy of cold plasma treatment against food-borne pathogens on various foods. J. Phys. D Appl. phys. 2020, 53, 20. [Google Scholar] [CrossRef]
- Coutinho, N.M.; Silveira, M.R.; Rocha, R.S.; Moraes, J.; Ferreira, M.V.S.; Pimentel, T.C.; Freitas, M.Q.; Silva, M.C.; Raices, R.S.; Ranadheera, C.S.; et al. Cold plasma processing of milk and dairy products. Trends Food Sci Technol. 2018, 74, 56–68. [Google Scholar] [CrossRef]
- Wan, Z.F.; Pankaj, S.; Mosher, C.; Keener, K. Effect of high voltage atmospheric cold plasma on inactivation of Listeria innocua on queso fresco cheese, cheese model and tryptic soy agar. LWT-Food Sci Technol. 2019, 102, 268–275. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, C.; Hsu, C. Non-thermal atmospheric gas plasma for decontamination of sliced cheese and changes in quality. FSTI 2020, 26, 715–726. [Google Scholar] [CrossRef]
- Los, A.; Ziuzina, D.; Boehm, D.; Cullen, P.; Bourke, P. The potential of atmospheric air cold plasma for control of bacterial contaminants relevant to cereal grain production. IFSET 2017, 44, 36–45. [Google Scholar] [CrossRef]
- Kang, J.H.; Bai, J.; Min, S.C. Inactivation of indigenous microorganisms and Salmonella in korean rice cakes by in-package cold plasma treatment. Int. J. Environ. Res. Public Health 2021, 18, 3360. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Woo, K.S.; Yong, H.I.; Jo, C.; Lee, S.K.; Lee, B.W.; Oh, S.K.; Lee, Y.Y.; Lee, B.; Kim, H.J. Assessment of microbial safety and quality changes of brown and white cooked rice treated with atmospheric pressure plasma. Food Sci. Biotechnol. 2018, 27, 3. [Google Scholar] [CrossRef] [PubMed]
- Los, A.; Ziuzina, D.; Boehm, D.; Bourke, P. Effects of cold plasma on wheat grain microbiome and antimicrobial efficacy against challenge pathogens and their resistance. Int. J. Food Microbiol. 2020, 335, 108889. [Google Scholar] [CrossRef]
- Los, A.; Ziuzina, D.; Akkermans, S.; Boehm, D.; Cullen, P.J.; Van Impe, J.; Bourke, P. Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Food Res. Int. 2018, 106, 509–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.H.; Kim, H.J.; Woo, K.S.; Jo, C.; Kim, J.K.; Kim, S.H.; Park, H.Y.; Oh, S.K.; Kim, W.H. Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT-Food Sci. Technol. 2016, 73, 442–447. [Google Scholar] [CrossRef]
- Liao, X.; Cullen, P.J.; Muhammad, A.I.; Jiang, Z.; Ye, X.; Liu, D.; Ding, T. Cold Plasma-Based Hurdle Interventions: New Strategies for Improving Food Safety. Food Eng. Rev. 2020, 12, 3. [Google Scholar] [CrossRef]
- Chen, C.W.; Lee, H.M.; Chen, S.H.; Chen, H.L.; Chang, M.B. Ultrasound-Assisted Plasma: A Novel Technique for Inactivation of Aquatic Microorganisms. Environ. Sci. Technol. 2009, 43, 12. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, Y.; Cheng, J.H.; Sun, D.W. Inactivation of Listeria Monocytogenes at various growth temperatures by ultrasound pretreatment and cold plasma. LWT Food Sci Technol. 2020, 118, 108635. [Google Scholar] [CrossRef]
- Umair, M.; Jabbar, S.; Nasiru, M.M.; Sultana, T.; Senan, A.M.; Awad, F.N.; Hong, Z.; Zhang, J. Exploring the potential of high-voltage electric field (HVCP) using a dielectric barrier discharge (DBD) as a plasma source on the quality parameters of carrot juice. Antibiotics 2019, 8, 235. [Google Scholar] [CrossRef] [Green Version]
- Mehta, D.; Yadav, S.K. Impact of atmospheric non-thermal plasma and hydrothermal treatment on bioactive compounds and microbial inactivation of strawberry juice: A hurdle technology approach. Food Sci. Tech. Int. 2019, 26, 1. [Google Scholar] [CrossRef]
- Shan, C.J.; Wu, H.; Zhou, J.; Yan, W.; Zhang, J.; Liu, X. Synergistic Effects of Bacteriocin from Lactobacillus panis C-M2 Combined with Dielectric Barrier Discharged Non-Thermal Plasma (DBD-NTP) on Morganella sp. in Aquatic Foods. Antibiotics 2020, 9, 593. [Google Scholar] [CrossRef] [PubMed]
- De la Ossa, J.G.; El Kadri, H.; Gutierrez-Merino, J.; Wantock, T.; Harle, T.; Seggiani, M.; Danti, S.; Di Stefano, R.; Velliou, E. Combined Antimicrobial Effect of Bio-Waste Olive Leaf Extract and Remote Cold Atmospheric Plasma Effluent. Molecules 2021, 26, 1890. [Google Scholar] [CrossRef] [PubMed]
- Trevisani, M.; Berardinelli, A.; Cevoli, C.; Cecchini, M.; Ragni, L.; Pasquali, F. Effects of sanitizing treatments with atmospheric cold plasma, SDS and lactic acid on verotoxin-producing Escherichia coli and Listeria monocytogenes in red chicory (radicchio). Food Control 2017, 78, 138–143. [Google Scholar] [CrossRef]
- Hernández-Torres, C.J.; Reyes-Acosta, Y.K.; Chávez-González, M.L.; Dávila-Medina, M.D.; Verma, D.K.; Martínez-Hernández, J.L.; Narro-Céspedes, R.I.; Aguilar, C.N. Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi J. Biol. Sci. 2021, 29, 1957–1980. [Google Scholar] [CrossRef] [PubMed]
- Cullen, P.J.; Lalor, J.; Scally, L.; Boehm, D.; Milosavljević, V.; Bourke, P.; Keener, K. Translation of plasma technology from the lab to the food industry. Plasma Process. Polym. 2018, 15, 2. [Google Scholar] [CrossRef]
- Calvo, T.; Álvarez-Ordóñez, A.; Prieto, M.; González-Raurich, M.; López, M. Influence of processing parameters and stress adaptation on the inactivation of Listeria monocytogenes by Non-Thermal Atmospheric Plasma (NTAP). Food Res. Int. 2016, 89, 631–637. [Google Scholar] [CrossRef]
- Bourke, P.; Ziuzina, D.; Boehm, D.; Cullen, P.J.; Keener, K. The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol. 2018, 36, 615–626. [Google Scholar] [CrossRef]
Food | Microorganism | Treatment | Parameters | Log Reduction | Citation |
---|---|---|---|---|---|
Poultry meat | Native mesophilic aerobic bacteria, Salmonella and Tulane virus. | 24 kV and 3 min. | Microbial inactivation, nitrates and nitrites, oral toxicity and storage quality. | 0.70 ± 0.12 log CFU/cube, 1.45 ± 0.05 log CFU/cube, 1.08 ± 0.15 log CFU/cube, respectively. | [21] |
Poultry meat | Psychrophilic, Campylobacter jejuni, Salmonella typhimurium. | 60, 180, 300 s. | Microbial analysis, ozone formation, colour. | 60 s: 0.5, 0.7 and 0.4 red. Log. Respectively. 180 s: reduced psychrophils by an additional 0.6 logs. | [22] |
Lamb meat | Brochothrix thermosphacta. | 80 Kv, 30 s and 5 min. | Microbial reduction. | 30 s: below detection levels. 5 min: 2 log cycles (complexed meat model medium and adherent cells). | [23] |
Meat | Listeria monocytogenes, Staphilococcus aureus and Escherichia coli (O157:H7). | 60,70 y 80 kV 60 s. | Bacterial inactivation. | 60 s: undetectable in PBS. | [24] |
Pork meat | Altering microflora. | 85 kV 60 s. | Bacterial inactivation. | Significant logarithmic reduction in treated group. | [25] |
Fresh mackerel (Scomber scombrus) | Spoilage bacteria (total aerobic psychrotrophic, pseudomonads and lactic acid bacteria). | 70 y 80 kV 1, 3 and 5 min. | Microbial parameters and quality (pH, colour, lipid oxidation, protein structure, water distribution). | Psychrotrophic bacteria, LAB and pseudomonas were significantly reduced (p < 0.05). Higher inactivation at higher time and voltage. | [26] |
Bolti fish (tilapia nilótica) | Altering microflora (TVC or variable total count). | 40, 50 y 60 kV 1, 2, 3 and 4 min. | Endogenous enzyme activity, quality characteristics and quality during storage. | 60 kV and 4 min, increased shelf life of tilapia fish to 10 days. | [27] |
Herring (clupea harengus) | Total aerobic mesophiles, psychrotrophs, pseudomonads, lactic acid bacteria and enterobacteriae. | 70, 80 kV 5 min. | Microbiological analysis, pH, barbituric acid reactive substances (TBARS), colour, water mobility during storage. | Initial LAB counts: 2.10 ±0.01 (80 kV for 5 min) at 3.80 ± 0.71 CFU/g (Control) on day 1. Day 11: 5.10 ± 0.02 CFU/g (80 kV for 5 min) at 6.05 ± 0.07. | [28] |
Mackerel (Scomber japonicus) | Altering bacterial flora (TVC or variable total count). | 10, 20, 30, 40, 50, 60 and 70 kV. 15, 30, 45, 60 and 75 s. | 45 s 60 kV: TVC decreased from 5.02 ± 0.48 log CFU/g fish flesh to 2.64 ± 0.16 log CFU/g fish flesh. 60 s: 3.15 log cycles 75 s: no longer significantly reduced. | [29] | |
Dry blackmouth triggerfish | Staphylococcus aureus and Bacillus cereus. | 15, 10, 20 and 30 min. | Physicochemical properties (pH colour, reactive barbituric acid) and sensory quality. | S. aureus and B. cereus:15, 10, 20 and 30 min: 0.10 and 1.03 log CFU/g and 0.14 to 1.06 log CFU/g, respectively. 30: >90% reduction of S. aureus and B. cereus with no overall adverse changes. | [30] |
Food | Microorganisms | Treatment | Parameters | Log Reduction | Citation |
---|---|---|---|---|---|
Strawberries | Microflora (mesophilic bacteria, yeasts and moulds). | 60 kV 5 min. | Ozone concentration, microbial inactivation, colour, firmness and respiration rate. | 2 log within 24 h post treatment. | [15] |
Melon | Total mesophilic and psychrotrophic bacteria, lactococci, lactobacilli and yeasts. | 15 kV, 30 min and 60 min. | Qualitative (titratable acidity, soluble solid content, dry matrix, colour, texture) and microbiological characteristics. | Mesophilic and lactic bacteria: 60 min: 3.4 and 2 Log CFU/g respectively. significant increase in shelf life. | [31] |
Red chicory | Escherichia coli, Listeria monocytogenes. | 15 kV, 15, 30 min. | Bacterial reduction, antioxidant activity and quality. | E. coli 15 min: 1.35 log MPN/cm2 L. monocytogenes 30 min: 2.2 log UFC/cm2. | [32] |
Carrot | Natural carrot microflora (mesophiles, yeasts and moulds). | 60, 80 and 100 kV 5 min. | Inactivation of spoilage bacteria. | Maximum reduction of 2,1 log 10 CFU/g at 100 kV. | [33] |
Packaged vegetable mix (grape tomato, romaine lettuce, red cabbage, carrot)) | Salmonella, mesophilic aerobic bacteria, yeast and moulds. | hasta 50 kV 3 min. | Bacterial reduction. | Polyethylene container Cherry Tomatoes: 1.2 log CFU/tomato Polyethylene terephthalate packaging achieved 0.8 log CFU/tomato. Salmonella, yeast and mould on romaine lettuce, red cabbage and carrot remained ~1 log CFU/sample. | [34] |
Strawberries and spinach | E. coli y L. innocua. | 2.5 min. | Shelf life, microbiological activity, quality: colour, pH, firmness, total soluble solids (Brix). | *Static mode: Strawberries(E. coli): 2.0 log 10 CFU Spinach(E. coli):2.2 log CFU Strawberries (L.innocua): 1.3 log CFU Spinach (L.innocua):1.7 log CFU *Continuous mode: L. innocua:0.9 and 2.9 for strawberries and spinach respectively. | [35] |
Strawberries | Microflora | 60 kV 10, 15 and 30 min. | Bacterial inactivation, phenolic compounds, antioxidant capacity, physico-chemical parameters. | At 60 kV: 2 log extended the shelf life of the strawberry for 3 days at 25 °C. | [36] |
Cherry tomato and strawberry | Escherichia coli, Salmonella enterica typhimurium and Listeria monocytogenes. | 70 kV 10–120 s and 300 s. | Microbial inactivation | Tomatoes, 10 s: Salmonella undetectable 60 s: L. monocytogenes at 5.1 log CFU/sample and E. coli at undetectable levels. 120 s: L. monocytogenes to undetectable levels. 300 s: strawberries: reductions of E. coli, Salmonella and L. monocytogenes 3.5, 3.8 and 4.2 log CFU/sample respectively. | [37] |
Cherry | Non-specific bacterial colonies. | 40–80 kV 60–140 s. | Microbial inactivation and quality (spoilage rate, respiration rate, total soluble solids, total phenolic compounds, flavonoids, anthocyanin, VC, titratable acidity). | At 60 kV in 60 s it can inactivate most microorganisms. | [38] |
Romaine lettuce in package | Escherichia coli O157: H7 and mesophilic aerobic microorganisms, yeasts and moulds. | 34.8 kV 5 min | Microbial inactivation, colouring, CO2 generation, weight loss, surface morphology of lettuce. | E. coli O157: H7, mesophilic aerobic and yeasts and moulds during storage: 0.8 to 1.5, 0.7 to 1.9 and 0.9 to 1.7 log CFU/g respectively. | [39] |
Romaine lettuce | Escherichia coli O157:H7, Salmonella, Listeria monocytogenes and Tulane virus. | 34.8 kV 5 min. | Microbial inactivation. | E. coli O157:H7, Salmonella, L. monocytogenes, and Tulane virus was 1.1 ± 0.4, 0.4 ± 03, 1.0 ± 0.5 log CFU/g, and 13 ± 0.1 log CFU/g, respectively. | [40] |
Pears | Aerobic mesophilic bacteria, yeast and mould. | 65 kV 1 min. | Bacterial growth, organoleptic properties and quality, pectin activity, methylesterase. | At 65 kV for 1 min, quality attributes were preserved, inhibiting the microorganisms studied. | [41] |
Arugula in package | Total viable flora, pseudomonas spp., yeasts and moulds and lactic acid bacteria. | 6 kV 5–20 min. | Microbiological analysis, quality, (texture, pH, colour). | 10 min: where the microbial load decreased by 1.020, 0.298, 0.493 and 0.996 log CFU/g for total viable flora, Pseudomonas spp., yeasts/moulds and LAB, respectively. | [42] |
Grape tomato | Salmonella. | 35 kV 3 min. | Quality (colour, firmness, weight loss, lycopene and ascorbic acid concentration, microbial safety). | Immediate effect: 3.3 ± 0.5 log CFU/tomato. | [43] |
Apple | Salmonella (Salmonella Typhimurium, ATCC 13311; Salmonella Choleraesuis, ATCC 10708) and E. coli. (ATCC 25922, ATCC 11775). | 200 W 30, 60, 120, 180 and 240 s. | Bacterial inactivation. | Ranged from 1.3 to 5.3 and 0.6 to 5.5 log CFU/cm2 for Salmonella and E. coli, respectively. Both bacteria decreased significantly at 180 and 240 s. | [44] |
Blueberries | Native bacteria and fungi (yeast and mould). | 36 V 0, 2, 4, 6, 8 and 10 min. | Quality, in terms of microbial growth, antioxidant value and decay rate. | 10 min: total bacterial count showed a decrease of 2.01 log CFU g-1FW. FW and fungal counts decreased by 0.58 log CFU g−1FW. | [45] |
Strawberry | Aerobic mesophilic bacteria and yeasts/moulds. | 30 W y 12 kV 5–20 min. | Decontamination and quality (weight loss, colour changes, firmness). | Bacterial and yeast/mould reduction after 20 min reached 1.46 and 2.75 log CFU/g. | [46] |
Fresh vegetables, fruits and nuts. | Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes, | 51,7 W 20 min. | Antimicrobial effect of atmospheric cold plasma. | Various levels of efficacy were determined, depending on food type and surface area. Effective for vegetables and fruits. | [47] |
Food | Microorganism | Treatment | Parameters | Log Reduction | Reference |
---|---|---|---|---|---|
Fresh cheese and model cheese | Listeria innocua. | 100 kV 5 min. | Bacterial reduction. | Direct exposure: 1.6 and 3.5 log CFU/g, in fresh cheese and model cheese respectively. Indirect exposure: 0.8 and 2.2 log CFU/g respectively. | [49] |
Cheese | Escherichia coli, Listeria innocua. | 30, 50, 70 W 0, 1, 3, 5, 7 m. | Microbial inactivation. | 50 W for 10 min: 4.75 ± 0.02 and 0.72 ± 0.01, respectively. | [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueroa-Pinochet, M.F.; Castro-Alija, M.J.; Tiwari, B.K.; Jiménez, J.M.; López-Vallecillo, M.; Cao, M.J.; Albertos, I. Dielectric Barrier Discharge for Solid Food Applications. Nutrients 2022, 14, 4653. https://doi.org/10.3390/nu14214653
Figueroa-Pinochet MF, Castro-Alija MJ, Tiwari BK, Jiménez JM, López-Vallecillo M, Cao MJ, Albertos I. Dielectric Barrier Discharge for Solid Food Applications. Nutrients. 2022; 14(21):4653. https://doi.org/10.3390/nu14214653
Chicago/Turabian StyleFigueroa-Pinochet, María Fernanda, María José Castro-Alija, Brijesh Kumar Tiwari, José María Jiménez, María López-Vallecillo, María José Cao, and Irene Albertos. 2022. "Dielectric Barrier Discharge for Solid Food Applications" Nutrients 14, no. 21: 4653. https://doi.org/10.3390/nu14214653
APA StyleFigueroa-Pinochet, M. F., Castro-Alija, M. J., Tiwari, B. K., Jiménez, J. M., López-Vallecillo, M., Cao, M. J., & Albertos, I. (2022). Dielectric Barrier Discharge for Solid Food Applications. Nutrients, 14(21), 4653. https://doi.org/10.3390/nu14214653