Effects of Both Japanese-Style Dietary Patterns and Nutrition on Falling Incidents among Community-Dwelling Elderly Individuals: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Recruitment and Participants
2.3. Sample Size Calculation
2.4. Dietary Assessment
2.5. Japanese Modified Mediterranean Diet Score
2.6. Outcome Variable, Falling Incident
2.7. Body Composition
2.8. Physical Function
2.9. Oral Examination
2.10. Blood Examination
2.11. Others
2.12. Statistical Analyses
3. Results
3.1. Basic Characteristics of Study Populations
3.2. JMD Food Intake and Falling
3.3. Nutrient Intake and Falling
3.4. Logistic Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matsuda, R. Life-style choices and falls. An empirical study of older people. In Health Inequalities in Japan; Kondo, K., Ed.; Trans Pac. Press: Melbourne, Australia, 2010; pp. 37–50. [Google Scholar]
- Daly, R.M. Exercise and nutritional approaches to prevent frail bones, falls and fractures: An update. Climacteric 2017, 20, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Guideline for the Prevention of Falls in Older Persons. American Geriatrics Society, British Geriatrics Society, and American Academy of Orthopaedic Surgeons Panel on Falls Prevention. J. Am. Geriatr. Soc. 2001, 49, 664–672. [Google Scholar]
- Yamamoto, T.; Kondo, K.; Misawa, J.; Hirai, H.; Nakade, M.; Aida, J.; Kondo, N.; Kawachi, I.; Hirata, Y. Dental status and incident falls among older Japanese: A prospective cohort study. BMJ Open 2012, 2, e001262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzoli, R.; Biver, E.; Brennan-Speranza, T.C. Nutritional intake and bone health. Lancet Diabetes Endocrinol. 2021, 9, 606–621. [Google Scholar] [CrossRef]
- Ballesteros, J.M.; Struijk, E.A.; Rodriguez-Artalejo, F.; Lopez-Garcia, E. Mediterranean diet and risk of falling in community-dwelling older adults. Clin. Nutr. 2020, 39, 276–281. [Google Scholar] [CrossRef]
- Malmir, H.; Saneei, P.; Larijani, B.; Esmaillzadeh, A. Adherence to Mediterranean diet in relation to bone mineral density and risk of fracture: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2018, 57, 2147–2160. [Google Scholar] [CrossRef]
- Cervo, M.M.C.; Scott, D.; Seibel, M.J.; Cumming, R.G.; Naganathan, V.; Blyth, F.M.; Le Couteur, D.G.; Handelsman, D.J.; Ribeiro, R.V.; Waite, L.M.; et al. Adherence to Mediterranean diet and its associations with circulating cytokines, musculoskeletal health and incident falls in community-dwelling older men: The Concord Health and Ageing in Men Project. Clin. Nutr. 2021, 40, 5753–5763. [Google Scholar] [CrossRef]
- van Vliet, S.; Burd, N.A.; van Loon, L.J. The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption. J. Nutr. 2015, 145, 1981–1991. [Google Scholar] [CrossRef] [Green Version]
- Putra, C.; Konow, N.; Gage, M.; York, C.G.; Mangano, K.M. Protein Source and Muscle Health in Older Adults: A Literature Review. Nutrients 2021, 13, 743. [Google Scholar] [CrossRef]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Kanauchi, M.; Kanauchi, K. Development of a Mediterranean diet score adapted to Japan and its relation to obesity risk. Food Nutr. Res. 2016, 60, 32172. [Google Scholar] [CrossRef] [PubMed]
- Nevitt, M.C.; Cummings, S.R.; Kidd, S.; Black, D. Risk factors for recurrent nonsyncopal falls. A prospective study. JAMA 1989, 261, 2663–2668. [Google Scholar] [CrossRef] [PubMed]
- Lord, S.R.; Clark, R.D.; Webster, I.W. Physiological factors associated with falls in an elderly population. J. Am. Geriatr. Soc. 1991, 39, 1194–1200. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef]
- Hiroshimaya, T.; Iwasaki, M.; Sakai, R.; Kakuta, S.; Hamasaki, T.; Kataoka, S.; Tutsui, S.; Ansai, T. A pilot study of the relationship between whole-body skeletal mass and tongue pressure in ≥75-year-ols individualas requiring home-based support. J. Dent. Health 2018, 68, 145–152. (In Japanese) [Google Scholar] [CrossRef]
- Horita, M.; Sugimoto, S.; Hokazono, E.; Osawa, S. Establishment of mail medical examination system using immediate plasma separating device by the self-collection blood--the method of dilution ratio calculation by using Internal standard for the sample with different amount of collecting blood. Rinsho Byori 2008, 56, 577–583. [Google Scholar] [PubMed]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.M.; Sundararajan, V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Hagino, H. Epidemiology and evidence of prevention for falls. Jpn J. Rehabil. Med. 2018, 55, 898–904. [Google Scholar] [CrossRef] [Green Version]
- Sharif, S.I.; Al-Harbi, A.B.; Al-Shihabi, A.M.; Al-Daour, D.S.; Sharif, R.S. Falls in the elderly: Assessment of prevalence and risk factors. Pharm Pr. 2018, 16, 1206. [Google Scholar] [CrossRef] [Green Version]
- Cederholm, T.; Cruz-Jentoft, A.J.; Maggi, S. Sarcopenia and fragility fractures. Eur J. Phys. Rehabil. Med. 2013, 49, 111–117. [Google Scholar]
- Romero, A.; Rivas, A. Adherence to Mediterranean diet and bone health. Nutr. Hosp. 2014, 29, 989–996. [Google Scholar]
- Lin, C.H.; Chen, K.H.; Chen, C.M.; Chang, C.H.; Huang, T.J.; Hsu, H.C.; Huang, S.Y. Low vegetable intake increases the risk of fall-related fragility fracture in postmenopausal Taiwanese women, a prospective pilot study in the community. Biomed. J. 2016, 39, 214–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umezawa, A.; Miwa, T.; Shibui, E.; Namikawa, T.; Tanaka, N.; Ishikawa, M. Total vegetable intake and homegrown vegetable intake in the rural area residents of Hokkaido. Jpn. J. Nutr. Diet. 2012, 70, 283–293. [Google Scholar] [CrossRef]
- Lemming, E.; Byberg, L.; Höijer, J.; Larsson, S.C.; Wolk, A.; Michaësson, K. Combinations of dietary calcium intake and Mediterranean-style diet on risk of hip fracture: A longitudinal cohort study of 82,000 women and men. Clin. Nutr. 2021, 40, 4161–4170. [Google Scholar] [CrossRef] [PubMed]
- Tucker, K.L.; Hannan, M.T.; Chen, H.; Cupples, L.A.; Wilson, P.W.; Kiel, D.P. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am. J. Clin. Nutr 1999, 69, 727–736. [Google Scholar] [CrossRef] [Green Version]
- Orchard, T.S.; Larson, J.C.; Alghothani, N.; Bout-Tabaku, S.; Cauley, J.A.; Chen, Z.; LaCroix, A.Z.; Wactawski-Wende, J.; Jackson, R.D. Magnesium intake, bone mineral density, and fractures: Results from the Women’s Health Initiative Observational Study. Am. J. Clin. Nutr. 2014, 99, 926–933. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health, Labour and Welfare. National Health and Nutrition Survey. Available online: https://www.mhlw.go.jp/bunya/kenkou/kenkou_eiyou_chousa.html (accessed on 11 October 2022).
- Yin, W.; Li, Z.; Zhang, W. Modulation of Bone and Marrow Niche by Cholesterol. Nutrients 2019, 11, 1394. [Google Scholar] [CrossRef] [Green Version]
- Oikawa, S.Y.; Bahniwal, R.; Holloway, T.M.; Lim, C.; McLeod, J.C.; McGlory, C.; Baker, S.K.; Phillips, S.M. Potato Protein Isolate Stimulates Muscle Protein Synthesis at Rest and with Resistance Exercise in Young Women. Nutrients 2020, 12, 1235. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Comparison of relative validity of food group intakes estimated by comprehensive and brief-type self-administered diet history questionnaires against 16 d dietary records in Japanese adults. Public Health Nutr. 2011, 14, 1200–1211. [Google Scholar] [CrossRef] [Green Version]
Non-Faller n = 138 | Faller n = 48 | p | |||||
---|---|---|---|---|---|---|---|
Systemic health status | |||||||
Age | Years | 82.0 (76.0–88.0) | 84.0 (80.0–88.0) | 0.15 b | |||
Gender | Male (M) | 48 | (34.8) | 19 | (39.6) | 0.55 c | |
Female (F) | 90 | (65.2) | 29 | (60.4) | |||
BMI | ≥18.5 kg/m2 | 121 | (87.7) | 41 | (85.4) | 0.69 c | |
<18.5 kg/m2 | 17 | (12.3) | 7 | (14.6) | |||
Energy intake | M | kcal/day | 1979.1 | (575.7) | 1795.0 | (416.0) | 0.21 a |
F | kcal/day | 1527.0 | (456.5) | 1560.0 | (505.7) | 0.74 a | |
SMI | M | <7.0 kg/m2 | 24 | (51.1) | 10 | (55.6) | 0.75 c |
F | <5.7 kg/m2 | 49 | (55.1) | 15 | (53.6) | 0.93 c | |
Hand grip strength | M | <28 kg | 31 | (66.0) | 15 | (78.9) | 0.30 c |
F | <18 kg | 55 | (61.1) | 21 | (72.4) | 0.27 c | |
Calf circumference | M | <34 cm | 27 | (56.3) | 12 | (63.2) | 0.61 c |
F | <33 cm | 54 | (60.0) | 20 | (69.0) | 0.39 c | |
Alb | g/dl | 4.3 | (4.0–4.4) | 4.2 | (3.9–4.4) | 0.24 b | |
Hypertension | n (%) | 62 | (44.9) | 23 | (47.9) | 0.72 c | |
Cardiovascular disease | n (%) | 11 | (8.0) | 6 | (12.5) | 0.35 c | |
Cerebrovascular disease | n (%) | 21 | (15.2) | 10 | (20.8) | 0.37 c | |
Dementia | n (%) | 34 | (24.6) | 8 | (16.7) | 0.26 c | |
Articular disease | n (%) | 41 | (29.7) | 23 | (47.9) | 0.02 c | |
Osteoporosis | n (%) | 8 | (5.8) | 4 | (8.3) | 0.54 c | |
Cancer | n (%) | 22 | (15.9) | 2 | (4.2) | 0.04 c | |
Depression | n (%) | 3 | (2.2) | 1 | (2.1) | 0.97 c | |
Sarcopenia | n (%) | 51 | (37.0) | 21 | (43.8) | 0.41 c | |
CCI | ≥2 score | 53 | (38.4) | 17 | (35.4) | 0.71 c | |
<2 score | 85 | (61.6) | 31 | (64.6) | |||
Oral health status | |||||||
Number of present teeth | ≥20 | 63 | (45.7) | 22 | (45.8) | 0.98 c | |
<20 | 75 | (54.3) | 26 | (54.2) | |||
Denture status (Upper) | Partial denture | 42 | (30.4) | 16 | (33.3) | 0.91 c | |
Full denture | 31 | (22.5) | 11 | (22.9) | |||
No denture | 65 | (47.1) | 21 | (43.8) | |||
Denture status (Lower) | Partial denture | 43 | (31.2) | 18 | (37.5) | 0.67 c | |
Full denture | 25 | (18.1) | 9 | (18.8) | |||
No denture | 70 | (50.7) | 21 | (43.8) | |||
Lifestyle factors | |||||||
Alcohol consumption | Yes | 37 | (26.8) | 8 | (16.7) | 0.16 c | |
No | 101 | (73.2) | 40 | (83.3) | |||
Smoking status | Current smoker | 4 | (2.9) | 1 | (2.1) | 0.86 c | |
Former smoker | 36 | (26.1) | 11 | (22.9) | |||
Never smoker | 98 | (71.0) | 36 | (75.0) | |||
Social factors | |||||||
Education | Elementary school | 17 | (12.4) | 2 | (4.2) | 0.05 c | |
Middle school | 26 | (18.8) | 16 | (33.3) | |||
≥High school | 95 | (68.8) | 30 | (62.5) |
Non-Faller | Faller | p | |||
---|---|---|---|---|---|
n = 138 | n = 48 | ||||
Food (g/1000 kcal) * | Mean (SD) | Mean (SD) | |||
Components | |||||
Vegetables (g/day) | 150.6 | (78.7) | 136.2 | (66.8) | 0.55 |
Fruits (g/day) a | 1.7 | (0.34) | 1.6 | (0.40) | 0.11 |
Legumes (g/day) | 42.9 | (24.8) | 41.6 | (25.4) | 0.69 |
Fish (g/day) | 59.3 | (34.3) | 48.2 | (25.5) | 0.01 |
Eggs (g/day) | 27.6 | (18.3) | 20.8 | (14.3) | 0.03 |
Grains (g/day) b | 221.2 | (66.6) | 234.5 | (71.3) | 0.21 |
Poultry (g/day) a | 1.1 | (0.3) | 1.1 | (0.3) | 0.32 |
MUFA/SFA (ratio) c | 1.4 | (0.2) | 1.3 | (0.3) | 0.66 |
Potatoes (g/day) a | 1.5 | (0.5) | 1.3 | (0.4) | 0.04 |
Dairy products (g/day) | 64.4 | (54.9) | 78.5 | (59.6) | 0.45 |
Red and processed meat (g/day) | 23.2 | (13.0) | 20.5 | (12.3) | 0.16 |
Sweets (g/day) | 25.2 | (21.6) | 28.3 | (26.6) | 0.64 |
Alcohol (g/day) | 1.4 | (4.8) | 0.9 | (3.9) | 0.47 |
Non-Faller | Faller | p | |||
---|---|---|---|---|---|
n = 138 | n = 48 | ||||
Food (g/1000 kcal) * | Mean (SD) | Mean (SD) | |||
Nutritional component | |||||
Energy (kcal/day) | 1684.3 | (543.9) | 1653.0 | (481.8) | 0.70 |
Protein (g/day) | 42.7 | (9.1) | 39.3 | (7.3) | 0.01 |
Animal protein (g/day) | 26.0 | (9.8) | 22.4 | (7.8) | <0.01 |
Plant protein (g/day) | 16.7 | (2.7) | 16.9 | (2.0) | 0.24 |
Fat (g/day) | 28.7 | (6.0) | 27.9 | (6.0) | 0.61 |
Carbohydrate (g/day) | 138.2 | (19.4) | 143.1 | (18.5) | 0.07 |
Sodium (mg/day) | 2441.8 | (621.6) | 2397.1 | (472.6) | 0.40 |
Potassium (mg/day) | 1584.6 | (434.0) | 1442.8 | (388.3) | <0.05 |
Calcium (mg/day) | 328.9 | (106.2) | 319.8 | (107.9) | 0.34 |
Magnesium (mg/day) | 152.4 | (34.6) | 140.0 | (30.9) | 0.03 |
Iron (mg/day) | 5.1 | (1.3) | 4.6 | (1.2) | 0.05 |
Phosphorus (mg/day) | 647.5 | (145.6) | 595.4 | (133.5) | 0.07 |
Vitamin D (μg/day) | 10.9 | (5.5) | 9.4 | (5.3) | 0.08 |
Vitamin E (mg/day) | 4.3 | (1.1) | 4.0 | (1.0) | 0.07 |
Vitamin C (mg/day) | 86.0 | (36.6) | 76.1 | (34.3) | 0.06 |
Folic acids (μg/day) | 230.7 | (78.0) | 210.3 | (74.7) | 0.15 |
Zinc (mg/day) | 4.9 | (0.8) | 4.5 | (0.7) | 0.02 |
Cholesterol (mg/day) | 249.8 | (97.5) | 206.4 | (84.0) | <0.01 |
Variables | Crude Model OR (95% CI) | p | Model 1 OR (95% CI) | p | Model 2 OR (95% CI) | p | Model 3 OR (95% CI) | p |
---|---|---|---|---|---|---|---|---|
jMD (per one point increase) (continuous) | 0.78 (0.63–0.96) | 0.017 | 0.77 (0.62–0.95) | 0.016 | 0.76 (0.61–0.94) | 0.013 | 0.72 (0.57–0.91) | 0.005 |
Female (male: Ref) | 0.67 (0.33–1.36) | 0.26 | 0.67 (0.33–1.37) | 0.27 | 0.64 (0.31–1.36) | 0.25 | ||
Age (≥80) (<80: Ref) | 2.19 (1.01–4.74) | 0.046 | 1.88 (0.85–4.16) | 0.12 | 2.59 (1.12–6.02) | 0.027 | ||
BMI (kg/m2) (continuous) | 1.02 (0.93–1.12) | 0.62 | 1.02 (0.93–1.12) | 0.70 | 1.02 (0.93–1.13) | 0.62 | ||
Articular disease | 2.02 (0.98–4.16) | 0.06 | 2.15 (1.00–4.59) | 0.049 | ||||
Osteoporosis | 0.97 (0.26–3.70) | 0.97 | 1.29 (0.32–5.22) | 0.72 | ||||
Number of present teeth (<20) (≥20: Ref) | 0.52 (0.24–1.13) | 0.10 | ||||||
Education level (elementary) (middle) (≥high school: Ref) | 0.21(0.04–1.03) 1.81(0.81–4.03) | 0.05 | ||||||
0.15 | ||||||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-W.; Kakuta, S.; Sakai, R.; Hamasaki, T.; Ansai, T. Effects of Both Japanese-Style Dietary Patterns and Nutrition on Falling Incidents among Community-Dwelling Elderly Individuals: A Cross-Sectional Study. Nutrients 2022, 14, 4663. https://doi.org/10.3390/nu14214663
Park J-W, Kakuta S, Sakai R, Hamasaki T, Ansai T. Effects of Both Japanese-Style Dietary Patterns and Nutrition on Falling Incidents among Community-Dwelling Elderly Individuals: A Cross-Sectional Study. Nutrients. 2022; 14(21):4663. https://doi.org/10.3390/nu14214663
Chicago/Turabian StylePark, Ji-Woo, Satoko Kakuta, Rie Sakai, Tomoko Hamasaki, and Toshihiro Ansai. 2022. "Effects of Both Japanese-Style Dietary Patterns and Nutrition on Falling Incidents among Community-Dwelling Elderly Individuals: A Cross-Sectional Study" Nutrients 14, no. 21: 4663. https://doi.org/10.3390/nu14214663
APA StylePark, J. -W., Kakuta, S., Sakai, R., Hamasaki, T., & Ansai, T. (2022). Effects of Both Japanese-Style Dietary Patterns and Nutrition on Falling Incidents among Community-Dwelling Elderly Individuals: A Cross-Sectional Study. Nutrients, 14(21), 4663. https://doi.org/10.3390/nu14214663