Validation of Asian Body Mass Index Cutoff Values for the Classification of Malnutrition Severity According to the Global Leadership Initiative on Malnutrition Criteria in Patients with Chronic Obstructive Pulmonary Disease Exacerbations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Patient Selection
2.3. BMI Cutoff Values for Asians to Classify the Severity of GLIM-Defined Malnutrition
2.4. Outcomes
2.5. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. A Comparison of Outcomes
3.3. 30-Day In-Hospital Mortality
3.4. Length of Stay and 90-Day Readmission Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Initiative for Chronic Obstructive Lung Disease. Washington: Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2022 Report). Available online: https://goldcopd.org/2022-gold-reports-2/ (accessed on 24 July 2022).
- Varmaghani, M.; Dehghani, M.; Heidari, E.; Sharifi, F.; Moghaddam, S.S.; Farzadfar, F. Global prevalence of chronic obstructive pulmonary disease: Systematic review and meta-analysis. East Mediterr. Health J. 2019, 25, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Mathioudakis, A.G.; Janssens, W.; Sivapalan, P.; Singanayagam, A.; Dransfield, M.T.; Jensen, J.S.; Vestbo, J. Acute exacerbations of chronic obstructive pulmonary disease: In search of diagnostic biomarkers and treatable traits. Thorax 2020, 75, 520–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raad, S.; Smith, C.; Allen, K. Nutrition Status and Chronic Obstructive Pulmonary Disease: Can We Move Beyond the Body Mass Index? Nutr. Clin. Pract. 2019, 34, 330–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matkovic, Z.; Cvetko, D.; Rahelic, D.; Esquinas, C.; Zarak, M.; Miravitlles, M.; Tudoric, N. Nutritional Status of Patients with Chronic Obstructive Pulmonary Disease in Relation to their Physical Performance. COPD 2017, 14, 626–634. [Google Scholar] [CrossRef]
- Munhoz da Rocha Lemos Costa, T.; Costa, F.M.; Jonasson, T.H.; Moreira, C.A.; Boguszewski, C.L.; Borba, V.Z.C. Body composition and sarcopenia in patients with chronic obstructive pulmonary disease. Endocrine 2018, 60, 95–102. [Google Scholar] [CrossRef]
- Ter Beek, L.; van der Vaart, H.; Wempe, J.B.; Dzialendzik, A.O.; Roodenburg, J.L.; van der Schans, C.P.; Keller, H.H.; Jager-Wittenaar, H. Dietary resilience in patients with severe COPD at the start of a pulmonary rehabilitation program. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 1317–1324. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.; Collins, P.F.; Pavey, T.G.; Nguyen, N.V.; Pham, T.D.; Gallegos, D.L. Nutritional status, dietary intake, and health-related quality of life in outpatients with COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2019, 14, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Itoh, M.; Tsuji, T.; Nemoto, K.; Nakamura, H.; Aoshiba, K. Undernutrition in patients with COPD and its treatment. Nutrients 2013, 5, 1316–1335. [Google Scholar] [CrossRef]
- Hoong, J.M.; Ferguson, M.; Hukins, C.; Collins, P.F. Economic and operational burden associated with malnutrition in chronic obstructive pulmonary disease. Clin. Nutr. 2017, 36, 1105–1109. [Google Scholar] [CrossRef] [Green Version]
- De Araujo, B.E.; Kowalski, V.; Leites, G.M.; da Silva Fink, J.; Silva, F.M. AND-ASPEN and ESPEN consensus, and GLIM criteria for malnutrition identification in AECOPD patients: A longitudinal study comparing concurrent and predictive validity. Eur. J. Clin. Nutr. 2022, 76, 685–692. [Google Scholar] [CrossRef]
- Keogh, E.; Mark Williams, E. Managing malnutrition in COPD: A review. Respir. Med. 2021, 176, 106248. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef]
- NICE, Chronic Obstructive Pulmonary Disease in over 16s: Diagnosis and Management. 2018. Available online: https://www.nice.org.uk/guidance/ng115 (accessed on 27 October 2022).
- Rawal, G.; Yadav, S. Nutrition in chronic obstructive pulmonary disease: A review. J. Transl. Int. Med. 2015, 3, 151–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, G.L.; Cederholm, T.; Correia, M.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; de Baptista, G.A.; Barazzoni, R.; Blaauw, R.; Coats, A.J.S.; et al. GLIM Criteria for the Diagnosis of Malnutrition: A Consensus Report from the Global Clinical Nutrition Community. JPEN J. Parenter. Enteral. Nutr. 2019, 43, 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skeie, E.; Tangvik, R.J.; Nymo, L.S.; Harthug, S.; Lassen, K.; Viste, A. Weight loss and BMI criteria in GLIM’s definition of malnutrition is associated with postoperative complications following abdominal resections—Results from a National Quality Registry. Clin. Nutr. 2020, 39, 1593–1599. [Google Scholar] [CrossRef] [Green Version]
- Sanz-París, A.; Martín-Palmero, A.; Gomez-Candela, C.; García-Almeida, J.M.; Burgos-Pelaez, R.; Sanz-Arque, A.; Espina, S.; Arbones-Mainar, J.M. GLIM Criteria at Hospital Admission Predict 8-Year All-Cause Mortality in Elderly Patients with Type 2 Diabetes Mellitus: Results from VIDA Study. JPEN J. Parenter. Enteral. Nutr. 2020, 44, 1492–1500. [Google Scholar] [CrossRef]
- Maeda, K.; Ishida, Y.; Nonogaki, T.; Mori, N. Reference body mass index values and the prevalence of malnutrition according to the Global Leadership Initiative on Malnutrition criteria. Clin. Nutr. 2020, 39, 180–184. [Google Scholar] [CrossRef]
- Shimizu, A.; Maeda, K.; Wakabayashi, H.; Nishioka, S.; Nagano, A.; Kayashita, J.; Fujishima, I.; Momosaki, R. Validity of Body Mass Index Cutoff Values Used in the Global Leadership Initiative on Malnutrition Criteria for Discriminating Severe and Moderate Malnutrition Based on In-Patients with Pneumonia in Asians. JPEN J. Parenter. Enteral. Nutr. 2021, 45, 941–950. [Google Scholar] [CrossRef]
- Davalos-Yerovi, V.; Marco, E.; Sanchez-Rodriguez, D.; Duran, X.; Meza-Valderrama, D.; Rodriguez, D.A.; Munoz, E.; Tejero-Sanchez, M.; Muns, M.D.; Guillen-Sola, A.; et al. Malnutrition According to GLIM Criteria Is Associated with Mortality and Hospitalizations in Rehabilitation Patients with Stable Chronic Obstructive Pulmonary Disease. Nutrients 2021, 13, 369. [Google Scholar] [CrossRef]
- Nagai, K.; Tanaka, T.; Kodaira, N.; Kimura, S.; Takahashi, Y.; Nakayama, T. Data resource profile: JMDC claims datebase sourced from health insurance societies. J. Gen. Fam. Med. 2021, 22, 118–127. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Hugh-Jones, P.; Lambert, A.V. A simple standard exercise test and its use for measuring exertion dyspnoea. Br. Med. J. 1952, 1, 65–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahoney, F.I.; Barthel, D.W. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar] [PubMed]
- The effect of bronchitis, smoking, and occupation on ventilation. Am. Rev. Respir. Dis. 1963, 87, 684–693. [CrossRef]
- Kojima, S.; Sakakibara, H.; Motani, S.; Hirose, K.; Mizuno, F.; Ochiai, M.; Hashimoto, S. Incidence of chronic obstructive pulmonary disease, and the relationship between age and smoking in a Japanese population. J. Epidemiol. 2007, 17, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Marcos, P.J.; Sanjuan, P.; Huerta, A.; Nieto-Codesido, I.; Ferreira-Gonzalez, L.; Sibila, O.; Restrepo, M.I. Relationship Between Severity Classification of Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Clinical Outcomes in Hospitalized Patients. Cureus 2017, 9, e988. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Zhou, M.; Smith, M.; Yang, G.; Peto, R.; Wang, J.; Boreham, J.; Hu, Y.; Chen, Z. Body mass index and chronic obstructive pulmonary disease-related mortality: A nationally representative prospective study of 220,000 men in China. Int. J. Epidemiol. 2010, 39, 1027–1036. [Google Scholar] [CrossRef]
- Wada, H.; Ikeda, A.; Maruyama, K.; Yamagishi, K.; Barnes, P.J.; Tanigawa, T.; Tamakoshi, A.; Iso, H. Low BMI and weight loss aggravate COPD mortality in men, findings from a large prospective cohort: The JACC study. Sci. Rep. 2021, 11, 1531. [Google Scholar] [CrossRef]
- Kim, E.K.; Singh, D.; Park, J.H.; Park, Y.B.; Kim, S.I.; Park, B.; Park, J.; Kim, J.H.; Kim, M.A.; Lee, J.H.; et al. Impact of Body Mass Index Change on the Prognosis of Chronic Obstructive Pulmonary Disease. Respiration 2020, 99, 943–953. [Google Scholar] [CrossRef]
- Tomohara-Ichishima, H.; Wakabayashi, H.; Maeda, K.; Nishioka, S.; Momosaki, R. Relationship of body mass index on activities of daily living in hospitalized patients with chronic obstructive pulmonary disease. Respir. Med. Res. 2022, 81, 100899. [Google Scholar] [CrossRef]
- Park, H.J.; Cho, J.H.; Kim, H.J.; Park, J.-Y.; Lee, H.S.; Byun, M.K. The effect of low body mass index on the development of chronic obstructive pulmonary disease and mortality. J. Intern. Med. 2019, 286, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Agustí, A.; Morlá, M.; Sauleda, J.; Saus, C.; Busquets, X. NF-kappaB activation and iNOS upregulation in skeletal muscle of patients with COPD and low body weight. Thorax 2004, 59, 483–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, F.V.C.; Spruit, M.A.; Groenen, M.T.J.; Houben-Wilke, S.; van Melick, P.P.; Hernandes, N.A.; Schols, A.; Pitta, F.; Wouters, E.F.M.; Franssen, F.M.E. Frequency and functional translation of low muscle mass in overweight and obese patients with COPD. Respir. Res. 2021, 22, 93. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Haß, U.; Pirlich, M. Malnutrition in Older Adults—Recent Advances and Remaining Challenges. Nutrients 2021, 13, 2764. [Google Scholar] [CrossRef]
- Bone, A.E.; Hepgul, N.; Kon, S.; Maddocks, M. Sarcopenia and frailty in chronic respiratory disease. Chron. Respir. Dis. 2017, 14, 85–99. [Google Scholar] [CrossRef]
Variables | Severely Low BMI (n = 624) | Moderately Low BMI (n = 444) | Control (n = 1052) | p-Value |
---|---|---|---|---|
Female sex, n (%) | 147 (23.6) | 75 (16.9) | 192 (18.3) | 0.009 |
Age, years | <0.001 | |||
≤64 | 33 (5.3) | 20 (4.5) | 106 (10.1) | |
65–74 | 177 (28.4) | 101 (22.7) | 288 (27.4) | |
75–89 | 358 (57.4) | 278 (62.6) | 549 (52.2) | |
≥90 | 56 (9.0) | 45 (10.1) | 109 (10.4) | |
Body mass index, kg/m2 | 15.68 ± 1.41 | 18.68 ± 0.73 | 23.12 ± 3.01 | <0.001 |
Charlson Comorbidity Index, points | 1.0 [1.0–2.0] | 1.0 [1.0–2.0] | 2.0 [1.0–2.0] | 0.367 |
Japan coma scale at admission, n (%) | 0.018 | |||
0 (Alert) | 489 (78.4) | 351 (79.1) | 855 (81.3) | |
1–3 (Dull) | 82 (13.1) | 69 (15.5) | 151 (14.4) | |
10–30 (Somnolence) | 27 (4.3) | 10 (2.3) | 19 (1.8) | |
100–300 (Coma) | 19 (3.0) | 6 (1.4) | 18 (1.7) | |
Missing | 7 (1.1) | 8 (1.8) | 9 (0.9) | |
Smoking index | 0.757 | |||
None | 156 (25.0) | 108 (24.3) | 278 (26.4) | |
1–499 | 78 (12.5) | 50 (11.3) | 120 (11.4) | |
500–999 | 142 (22.8) | 100 (22.5) | 255 (24.2) | |
≥1000 | 171 (27.4) | 138 (31.1) | 275 (26.1) | |
Unspecified/missing | 77 (12.3) | 48 (10.8) | 124 (11.8) | |
Use of ventilator at admission, n (%) | 116 (18.6) | 63 (14.2) | 130 (12.4) | 0.002 |
Hugh–Jones dyspnea scale, n (%) | <0.001 | |||
1 | 38 (6.1) | 32 (7.2) | 91 (8.7) | |
2 | 51 (8.2) | 41 (9.2) | 112 (10.6) | |
3 | 58 (9.3) | 35 (7.9) | 150 (14.3) | |
4 | 161 (25.8) | 107 (24.1) | 261 (24.8) | |
5 | 316 (50.6) | 229 (51.6) | 438 (41.6) | |
Barthel Index at admission, n (%) | 0.093 | |||
0–20 | 173 (27.7) | 113 (25.5) | 242 (23.0) | |
25–45 | 89 (14.3) | 56 (12.6) | 111 (10.6) | |
50–70 | 109 (17.5) | 77 (17.3) | 185 (17.6) | |
75–95 | 45 (7.2) | 42 (9.5) | 104 (9.9) | |
100 | 112 (17.9) | 81 (18.2) | 232 (22.1) | |
Missing | 96 (15.4) | 75 (16.9) | 178 (16.9) | |
Number of beds, n (%) | 0.187 | |||
20–99 | 13 (2.1) | 10 (2.3) | 15 (1.4) | |
100–199 | 156 (25.0) | 111 (25.0) | 213 (20.2) | |
200–299 | 86 (13.8) | 59 (13.3) | 158 (15.0) | |
300–499 | 245 (39.3) | 174 (39.2) | 415 (39.4) | |
≥500 | 124 (19.9) | 90 (20.3) | 251 (23.9) | |
Year of admission, n (%) | 0.935 | |||
2014 | 30 (4.8) | 25 (5.6) | 41 (3.9) | |
2015 | 60 (9.6) | 39 (8.8) | 95 (9.0) | |
2016 | 79 (12.7) | 54 (12.2) | 150 (14.3) | |
2017 | 95 (15.2) | 68 (15.3) | 175 (16.6) | |
2018 | 143 (22.9) | 106 (23.9) | 247 (23.5) | |
2019 | 156 (25.0) | 105 (23.6) | 248 (23.6) | |
2020 | 61 (9.8) | 47 (10.6) | 96 (9.1) |
Variables | Severely Low BMI | Moderately low BMI | Control | p-Value |
---|---|---|---|---|
30-day in-hospital mortality, n (%) | 62 (9.9) | 31 (7.0) | 34 (3.2) | <0.001 |
Length of hospital stay in survival cases, d | 15.0 [9.0–26.0] | 13.0 [8.0–23.0] | 12.0 [7.0–20.0] | <0.001 |
90-day readmission in survival cases, n (%) | 18 (3.3) | 15 (3.8) | 11 (1.1) | 0.002 |
Variables | Hazard Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
Nutrition status | |||
Control (reference) | – | – | – |
Moderately low BMI | 1.87 | 1.13–3.08 | 0.014 |
Severely low BMI | 2.55 | 1.66–3.92 | <0.001 |
Variables | Coefficient | 95% Confidence Interval | p-Value |
---|---|---|---|
Nutrition status | |||
Control (reference) | – | – | – |
Moderately low BMI | 1.57 | −0.52–3.67 | 0.141 |
Severely low BMI | 3.40 | 1.51–5.29 | <0.001 |
Variables | Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
Nutrition status | |||
Control (reference) | – | – | – |
Moderately low BMI | 3.68 | 1.63–8.31 | 0.002 |
Severely low BMI | 2.75 | 1.26–6.02 | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirai, Y.; Momosaki, R.; Kokura, Y.; Kato, Y.; Okugawa, Y.; Shimizu, A. Validation of Asian Body Mass Index Cutoff Values for the Classification of Malnutrition Severity According to the Global Leadership Initiative on Malnutrition Criteria in Patients with Chronic Obstructive Pulmonary Disease Exacerbations. Nutrients 2022, 14, 4746. https://doi.org/10.3390/nu14224746
Shirai Y, Momosaki R, Kokura Y, Kato Y, Okugawa Y, Shimizu A. Validation of Asian Body Mass Index Cutoff Values for the Classification of Malnutrition Severity According to the Global Leadership Initiative on Malnutrition Criteria in Patients with Chronic Obstructive Pulmonary Disease Exacerbations. Nutrients. 2022; 14(22):4746. https://doi.org/10.3390/nu14224746
Chicago/Turabian StyleShirai, Yuka, Ryo Momosaki, Yoji Kokura, Yuki Kato, Yoshinaga Okugawa, and Akio Shimizu. 2022. "Validation of Asian Body Mass Index Cutoff Values for the Classification of Malnutrition Severity According to the Global Leadership Initiative on Malnutrition Criteria in Patients with Chronic Obstructive Pulmonary Disease Exacerbations" Nutrients 14, no. 22: 4746. https://doi.org/10.3390/nu14224746
APA StyleShirai, Y., Momosaki, R., Kokura, Y., Kato, Y., Okugawa, Y., & Shimizu, A. (2022). Validation of Asian Body Mass Index Cutoff Values for the Classification of Malnutrition Severity According to the Global Leadership Initiative on Malnutrition Criteria in Patients with Chronic Obstructive Pulmonary Disease Exacerbations. Nutrients, 14(22), 4746. https://doi.org/10.3390/nu14224746