Association of 100% Fruit Juice Consumption with Cognitive Measures, Anxiety, and Depression in US Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. Study Population
2.3. Estimation of Dietary Intake
2.4. Estimation of Neurocognitive Markers
- Neurobehavioral Evaluation System 2 (NES2) consisting of the simple reaction time task (SRTT) measuring visuomotor speed, the symbol digit substitution test (SDST) measuring information-processing speed, and the single digit learning test (SDLT) measuring learning and recall were used to measure cognitive function.
- Data on the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) Word List Learning Test, the CERAD Word List Recall Test, the Animal Fluency test (AFT), and the Digit Symbol Substitution Test (DSST) were used to measure cognitive function.
- Response to the question “During the past 7 days, how often have you had trouble remembering where you put things like keys or wallet?” was used to assess memory impairment and its severity as a measure of dementia.
- Response to the question “How often do you feel worried, anxious?” and “In the past 12 months, did you have a period of a month or more when most days you felt worried or tense or anxious about everyday problems such as work or family?” were used to measure anxiety.
- Response to the question “Over the last 2 weeks, how often have you been bothered by the following problems: feeling down, depressed, or hopeless?” was used to measure depression.
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guralnik, J.M.; Ferrucci, L.; Simonsick, E.M.; Salive, M.E.; Wallace, R.B. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N. Engl. J. Med. 1995, 332, 556–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauvaget, C.; Yamada, M.; Fujiwara, S.; Sasaki, H.; Mimori, Y. Dementia as a predictor of functional disability: A four-year follow-up study. Gerontology 2002, 48, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Dodge, H.H.; Kadowaki, T.; Hayakawa, T.; Yamakawa, M.; Sekikawa, A.; Ueshima, H. Cognitive Impairment as a Strong Predictor of Incident Disability in Specific ADL-IADL Tasks among Community-Dwelling Elders: The Azuchi Study. Gerontologist 2005, 45, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Ganguli, M.; Seaberg, E.; Belle, S.; Fischer, L.; Kuller, L.H. Cognitive impairment and the use of health services in an elderly rural population: The MoVIES project. Monongahela Valley Independent Elders Survey. J. Am. Geriatr. Soc. 1993, 41, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Rice, D.P.; Fillit, H.M.; Max, W.; Knopman, D.S.; Lloyd, J.R.; Duttagupta, S. Prevalence, costs, and treatment of Alzheimer’s disease and related dementia: A managed care perspective. Am. J. Manag. Care 2001, 7, 809–818. [Google Scholar] [PubMed]
- Trautmann, S.; Rehm, J.; Wittchen, H.U. The Economic Costs of Mental Disorders: Do Our Societies React Appropriately to the Burden of Mental Disorders? EMBO Rep. 2016, 17, 1245–1249. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.M.; Currie, K.C. Depression, anxiety and their relationship with chronic diseases: A review of the epidemiology, risk and treatment evidence. Med. J. Aust. 2009, 190, S54–S60. [Google Scholar] [CrossRef] [PubMed]
- Tough, H.; Siegrist, J.; Fekete, C. Social relationships, mental health and wellbeing in physical disability: A systematic review. BMC Public Health 2017, 17, 414. [Google Scholar] [CrossRef] [Green Version]
- Hohls, J.K.; Konig, H.-H.; Quirke, E.; Hajek, A. Association between Anxiety, Depression and Quality of Life: Study Protocol for a Systematic Review of Evidence from Longitudinal Studies. BMJ Open 2019, 9, e027218. [Google Scholar] [CrossRef] [Green Version]
- Luchsinger, J.A.; Mayeux, R. Dietary factors and Alzheimer’s disease. Lancet Neurol. 2004, 3, 579–587. [Google Scholar] [CrossRef]
- Del Parigi, A.; Panza, F.; Capurso, C.; Solfrizzi, V. Nutritional factors, cognitive decline, and dementia. Brain Res. Bull. 2006, 69, 1–19. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, A.; Quirk, S.E.; Housden, S.; Brennan, S.L.; Williams, L.J.; Pasco, J.A.; Berk, M.; Jacka, F.N. Relationship between diet and mental health in children and adolescents: A systematic review. Am. J. Public Health 2014, 104, e31–e42. [Google Scholar] [CrossRef] [PubMed]
- Poulose, S.M.; Miller, M.G.; Scott, T.; Shukitt-Hale, B. Nutritional Factors Affecting Adult Neurogenesis and Cognitive Function. Adv. Nutr. 2017, 8, 804–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bremner, J.D.; Moazzami, K.; Wittbrodt, M.T.; Nye, J.A.; Lima, B.B.; Gillespie, C.F.; Rapaport, M.H.; Pearce, B.D.; Shah, A.J.; Vaccarino, V. Diet, Stress and Mental Health. Nutrients 2020, 12, 2428. [Google Scholar] [CrossRef] [PubMed]
- Lourida, I.; Soni, M.; Thompson-Coon, J.; Purandare, N.; Lang, I.; Ukoumunne, O.C.; Llewellyn, D.J. Mediterranean diet, cognitive function, and dementia: A systematic review. Epidemiology 2013, 24, 479–489. [Google Scholar] [CrossRef]
- Valls-Pedret, C.; Sala-Vila, A.; Serra-Mir, M.; Corella, D.; de la Torre, R.; Martínez-González, M.Á.; Martínez-Lapiscina, E.H.; Fitó, M.; Pérez-Heras, A.; Salas-Salvadó, J.; et al. Mediterranean Diet and Age-Related Cognitive Decline: A Randomized Clinical Trial. JAMA Intern. Med. 2015, 175, 1094–1103. [Google Scholar] [CrossRef] [Green Version]
- Petersson, S.D.; Philippou, E. Mediterranean Diet, Cognitive Function, and Dementia: A Systematic Review of the Evidence. Adv. Nutr. 2016, 7, 889–904. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Sun, D.; Tan, Y. Intake of Fruit and Vegetables and the Incident Risk of Cognitive Disorders: A Systematic Review and Meta-Analysis of Cohort Studies. J. Nutr. Health Aging 2017, 21, 1284–1290. [Google Scholar] [CrossRef]
- Yuan, C.; Fondell, E.; Bhushan, A.; Ascherio, A.; Okereke, O.I.; Grodstein, F.; Willett, W.C. Long-term intake of vegetables and fruits and subjective cognitive function in US men. Neurology 2019, 92, e63–e75. [Google Scholar] [CrossRef]
- Rajaram, S.; Jones, J.; Lee, G.J. Plant-Based Dietary Patterns, Plant Foods, and Age-Related Cognitive Decline. Adv. Nutr. 2019, 10, S422–S436. [Google Scholar] [CrossRef]
- Glabska, D.; Guzek, D.; Groele, B.; Gutkowska, K. Fruit and Vegetable Intake and Mental Health in Adults: A Systematic Review. Nutrients 2020, 12, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; December 2020. Available online: https://DietaryGuidelines.gov (accessed on 5 August 2022).
- Hung, H.C.; Joshipura, K.J.; Jiang, R.; Hu, F.B.; Hunter, D.; Smith-Warner, S.A.; Colditz, G.A.; Rosner, B.; Spiegelman, D.; Willett, W.C. Fruit and vegetable intake and risk of major chronic disease. J. Natl. Cancer Inst. 2004, 96, 1577–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, F.J.; Nowson, C.A.; Lucas, M.; MacGregor, G.A. Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: Meta-analysis of cohort studies. J. Hum. Hypertens. 2007, 21, 717–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 349, g4490. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Agriculture. Choose My Plate. Available online: https://www.choosemyplate.gov (accessed on 5 August 2022).
- Agarwal, S.; Fulgoni, V.L., III; Welland, D. Intake of 100% Fruit Juice Is Associated with Improved Diet Quality of Adults: NHANES 2013-2016 Analysis. Nutrients 2019, 11, 2513. [Google Scholar] [CrossRef] [Green Version]
- Bellisle, F.; Hébel, P.; Fourniret, A.; Sauvage, E. Consumption of 100% Pure Fruit Juice and Dietary Quality in French Adults: Analysis of a Nationally Representative Survey in the Context of the WHO Recommended Limitation of Free Sugars. Nutrients 2018, 10, 459. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, C.E.; Nicklas, T.A.; Zanovec, M.; Fulgoni, V.L., 3rd. Diet quality is positively associated with 100% fruit juice consumption in children and adults in the United States: NHANES 2003–2006. Nutr. J. 2011, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Hyson, D.A. A Review and Critical Analysis of the Scientific Literature Related to 100% Fruit Juice and Human Health. Adv. Nutr. 2015, 6, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Auerbach, B.J.; Wolf, F.M.; Hikida, A.; Vallila-Buchman, P.; Littman, A.; Thompson, D.; Louden, D.; Taber, D.R.; Krieger, J. Fruit Juice and Change in BMI: A Meta-analysis. Pediatrics 2017, 139, e20162454. [Google Scholar] [CrossRef] [Green Version]
- Auerbach, B.J.; Dibey, S.; Vallila-Buchman, P.; Kratz, M.; Krieger, J. Review of 100% Fruit Juice and Chronic Health Conditions: Implications for Sugar-Sweetened Beverage Policy. Adv. Nutr. 2018, 9, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Guasch-Ferré, M.; Hu, F.B. Are Fruit Juices Just as Unhealthy as Sugar-Sweetened Beverages? JAMA Netw. Open 2019, 2, e193109. [Google Scholar] [CrossRef] [PubMed]
- Ruxton, C.H.S.; Derbyshire, E.; Sievenpiper, J.L. Pure 100% fruit juices-more than just a source of free sugars? A review of the evidence of their effect on risk of cardiovascular disease, type 2 diabetes and obesity. Nutr. Bull. 2021, 46, 415–431. [Google Scholar] [CrossRef]
- Ruxton, C.H.S.; Myers, M. Fruit Juices: Are They Helpful or Harmful? An Evidence Review. Nutrients 2021, 13, 1815. [Google Scholar] [CrossRef] [PubMed]
- Freije, S.L.; Senter, C.C.; Avery, A.D.; Hawes, S.E.; Jones-Smith, J.C. Association Between Consumption of Sugar-Sweetened Beverages and 100% Fruit Juice with Poor Mental Health Among US Adults in 11 US States and the District of Columbia. Prev. Chronic Dis. 2021, 18, 200574. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention; National Center for Health Statistics. National Health and Nutrition Examination Survey; National Center for Health Statistics: Hyattsville, MD, USA, 2021. Available online: https://www.cdc.gov/nchs/nhanes/index.htm (accessed on 4 August 2021).
- Raper, N.; Perloff, B.; Ingwersen, L.; Steinfeldt, L.; Anand, J. An overview of USDA’s dietary intake data system. J. Food Comp. Anal. 2004, 17, 545–555. [Google Scholar] [CrossRef]
- Tooze, J.A.; Kipnis, V.; Buckman, D.W.; Carroll, R.J.; Freedman, L.S.; Guenther, P.M.; Krebs-Smith, S.M.; Subar, A.F.; Dodd, K.W. A mixed-effects model approach for estimating the distribution of usual intake of nutrients: The NCI method. Stat. Med. 2010, 29, 2857–2868. [Google Scholar] [CrossRef] [Green Version]
- Kessler, R.C.; Petukhova, M.; Sampson, N.A.; Zaslavsky, A.M.; Wittchen, H.-U. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int. J. Methods Psychiatr. Res. 2012, 21, 169–184. [Google Scholar] [CrossRef]
- Am Psychiatric Assn. Available online: https://psychiatry.org/patients-families/anxiety-disorders/what-are-anxiety-disorders (accessed on 5 August 2022).
- NIH/NIMH. Anxiety Disorder. April 2022. Available online: https://www.nimh.nih.gov/health/topics/anxiety-disorders (accessed on 5 August 2022).
- Healthline. 20 July 2018. Available online: https://www.healthline.com/health/anxiety/effects-on-body (accessed on 5 August 2022).
- Kris-Etherton, P.M.; Petersen, K.S.; Hibbeln, J.R.; Hurley, D.; Kolick, V.; Peoples, S.; Rodriguez, N.; Woodward-Lopez, G. Nutrition and behavioral health disorders: Depression and anxiety. Nutr. Rev. 2021, 79, 247–260. [Google Scholar] [CrossRef]
- Hodge, A.; Almeida, O.P.; English, D.R.; Giles, G.G.; Flicker, L. Patterns of dietary intake and psychological distress in older Australians: Benefits not just from a Mediterranean diet. Int. Psychogeriatr. 2013, 25, 456–466. [Google Scholar] [CrossRef]
- Gibson-Smith, D.; Bot, M.; Brouwer, I.A.; Visser, M.; Giltay, E.J.; Penninx, B.W.J.H. Association of food groups with depression and anxiety disorders. Eur. J. Nutr. 2020, 59, 767–778. [Google Scholar] [CrossRef]
- Saghafian, F.; Malmir, H.; Saneei, P.; Keshteli, A.H.; Hosseinzadeh-Attar, M.J.; Afshar, H.; Siassi, F.; Esmaillzadeh, A.; Adibi, P. Consumption of fruit and vegetables in relation with psychological disorders in Iranian adults. Eur. J. Nutr. 2018, 57, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Beezhold, B.; Cynthia Radnitz Rinne, A.; DiMatteo, J. Vegans report less stress and anxiety than omnivores. Nutr. Neurosci. 2015, 18, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Aucoin, M.; LaChance, L.; Naidoo, U.; Remy, D.; Shekdar, T.; Sayar, N.; Cardozo, V.; Rawana, T.; Chan, I.; Cooley, K. Diet and Anxiety: A Scoping Review. Nutrients 2021, 13, 4418. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Borenstein, A.R.; Wu, Y.; Jackson, J.C.; Larson, E.B. Fruit and vegetable juices and Alzheimer’s disease: The Kame Project. Am. J. Med. 2006, 119, 751–759. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.K.H.Y.; Ferruzzi, M.G.; Wightman, J.D. Potential health benefits of (poly)phenols derived from fruit and 100% fruit juice. Nutr. Rev. 2020, 78, 145–174. [Google Scholar] [CrossRef]
- Grodstein, F.; Chen, J.; Willett, W.C. High-dose antioxidant supplements and cognitive function in community-dwelling elderly women. Am. J. Clin. Nutr. 2003, 77, 975–984. [Google Scholar] [CrossRef] [Green Version]
- Wengreen, H.J.; Munger, R.G.; Corcoran, C.D.; Zandi, P.; Hayden, K.M.; Fotuhi, M.; Skoog, I.; Norton, M.C.; Tschanz, J.; Breitner, J.C.; et al. Antioxidant intake and cognitive function of elderly men and women: The Cache County Study. J. Nutr. Health Aging 2007, 11, 230–237. [Google Scholar]
- Yasuno, F.; Tanimukai, S.; Sasaki, M.; Ikejima, C.; Yamashita, F.; Kodama, C.; Mizukami, K.; Asada, T. Combination of antioxidant supplements improved cognitive function in the elderly. J. Alzheimer’s Dis. 2012, 32, 895–903. [Google Scholar] [CrossRef]
- Kean, R.J.; Lamport, D.J.; Dodd, G.F.; Freeman, J.E.; Williams, C.M.; Ellis, J.A.; Butler, L.T.; Spencer, J.P. Chronic consumption of flavanone-rich orange juice is associated with cognitive benefits: An 8-wk, randomized, double-blind, placebo-controlled trial in healthy older adults. Am. J. Clin. Nutr. 2015, 101, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, M.H.; Lamport, D.J.; Dodd, G.F.; Saunders, C.; Harkness, L.; Butler, L.T.; Spencer, J.P. Flavonoid rich orange juice is associated with acute improvements in cognitive function in healthy middle aged males. Eur. J. Nutr. 2016, 55, 2021–2029. [Google Scholar] [CrossRef] [Green Version]
- Bowtell, J.L.; Aboo-Bakkar, Z.; Conway, M.E.; Adlam, A.R.; Fulford, J. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl. Physiol. Nutr. Metab. 2017, 42, 773–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godos, J.; Caraci, F.; Castellano, S.; Currenti, W.; Galvano, F.; Ferri, R.; Grosso, G. Association Between Dietary Flavonoids Intake and Cognitive Function in an Italian Cohort. Biomolecules 2020, 10, 1300. [Google Scholar] [CrossRef] [PubMed]
- Bakoyiannis, I.; Daskalopoulou, A.; Pergialiotis, V.; Perrea, D. Phytochemicals and cognitive health: Are flavonoids doing the trick? Biomed. Pharmacother. 2019, 109, 1488–1497. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.; Godos, J.; Privitera, A.; Lanza, G.; Castellano, S.; Chillemi, A.; Bruni, O.; Ferri, R.; Caraci, F.; Grosso, G. Phenolic Acids and Prevention of Cognitive Decline: Polyphenols with a Neuroprotective Role in Cognitive Disorders and Alzheimer’s Disease. Nutrients 2022, 14, 819. [Google Scholar] [CrossRef] [PubMed]
- Bonder-Montville, J.; Ahuja, J.K.C.; Ingwersen, L.A.; Haggerty, E.S.; Enns, C.W.; Perloff, P. USDA Food and Nutrient Database for Dietary Studies: Released on the Web. J. Food Compos. Anal. 2006, 19, S100–S107. [Google Scholar] [CrossRef]
NHANES Cycles | Neurocognitive Markers Measured | Age Group (Years) |
---|---|---|
1988–1994 | Simple Reaction Time Mean; Single Digit Learning Total Score; Symbol Digital Substitution Mean | 20+ |
1999–2000 | Anxious Month Period | 20–39 |
2001–2002 | ||
2003–2004 | ||
2005–2006 | Feeling Depressed Level | 20+ |
2007–2008 | ||
2009–2010 | ||
2011–2012 | Animal Fluency Score; CERAD: Score Delayed Recall; CERAD: Total Score Recall; Digital Symbol Score; Feeling Depressed Level; Trouble Remembering | 60+ and 20+ (only for depression) |
2013–2014 | ||
2015–2016 | Feel Anxious; Feeling Depressed Level | 20+ |
Age (Years) | N | Day 1 Intake Data | Usual Intake (g/day) | ||
---|---|---|---|---|---|
Consumers (N) | Consumers (%) | Intake (g) | |||
20+ | 62,606 | 14,172 | 20.8 ± 0.3 | 71.2 ± 1.5 | 69.1 ± 1.4 |
20–59 | 41,040 | 8051 | 18.4 ± 0.4 | 70.3 ± 1.8 | 67.7 ± 1.5 |
60+ | 21,566 | 6121 | 27.6 ± 0.6 | 73.8 ± 2.1 | 72.9 ± 1.9 |
Age (Years) | Neurocognitive Outcome | Non-Consumer | Consumer | Linear Trend | ||
---|---|---|---|---|---|---|
N | LSM ± SE | N | LSM ± SE | Beta | ||
20+ | Feel Anxious (days/month) | 6325 | 6.14 ± 0.22 | 2043 | 5.14 ± 0.27 abc | −0.005 ± 0.002 ab |
Feeling Depressed Level (0–3) | 20,590 | 0.33 ± 0.01 | 8705 | 0.32 ± 0.01 | 0.00002 ± 0.0001 | |
20–59 | Feel Anxious (days/month) | 4197 | 6.79 ± 0.27 | 1225 | 5.53 ± 0.38 abc | −0.007 ± 0.003 a |
Feeling Depressed Level (0–3) | 14,117 | 0.34 ± 0.01 | 5240 | 0.34 ± 0.01 | 0.0001 ± 0.0001 | |
Simple Reaction Time Mean (msec) | 3450 | 234 ± 1 | 1013 | 231 ± 2 | −0.012 ± 0.015 | |
Single Digit Learning Total Score (0–16) | 3340 | 4.48 ± 0.12 | 986 | 4.06 ± 0.20 | −0.002 ± 0.001 | |
Symbol Digital Substitution Mean (sec/digit) | 3414 | 2.66 ± 0.02 | 1000 | 2.65 ± 0.03 | 0.00002 ± 0.0002 | |
60+ | Animal Fluency Score (0–40) | 1696 | 17.9 ± 0.2 | 888 | 18.5 ± 0.3 | 0.001 ± 0.002 |
CERAD: Score Delayed Recall (0–10) | 1696 | 6.21 ± 0.10 | 899 | 6.23 ± 0.10 | −0.001 ± 0.001 c | |
CERAD: Total Score Recall (0–30) | 1697 | 19.6 ± 0.2 | 900 | 19.8 ± 0.2 | 0.001 ± 0.001 | |
Digital Symbol Score (0–133) | 1658 | 52.4 ± 0.4 | 876 | 52.5 ± 0.5 c | −0.006 ± 0.002 abc | |
Feel Anxious (days/month) | 2128 | 4.40 ± 0.28 | 818 | 4.20 ± 0.46 | 0.001 ± 0.003 | |
Feeling Depressed Level (0–3) | 6473 | 0.28 ± 0.01 | 3465 | 0.27 ± 0.01 | −0.0001 ± 0.0001 | |
Trouble Remembering (0/1) | 690 | 0.62 ± 0.03 | 388 | 0.67 ± 0.03 | 0.0005 ± 0.0003 |
Age (Years) | Neurocognitive Outcome | 100% Fruit Juice Consumption Levels | |||||
---|---|---|---|---|---|---|---|
0 oz | >0 to 4 oz | >4 to 8 oz | >8 to 12 oz | >12 oz | Group Trend | ||
20+ | Feel Anxious (days/month) | 6.14 ± 0.22 | 4.88 ± 0.44 abc | 5.39 ± 0.52 | 4.87 ± 0.57 a | 6.58 ± 2.80 | −0.436 ± 0.161 ab |
Feeling Depressed Level (0–3) | 0.33 ± 0.01 | 0.32 ± 0.01 | 0.31 ± 0.01 | 0.29 ± 0.02 | 0.37 ± 0.11 | −0.006 ± 0.007 | |
20–59 | Feel Anxious (days/month) | 6.79 ± 0.27 | 5.46 ± 0.62 ab | 5.52 ± 0.65 | 5.51 ± 0.67 | 7.38 ± 3.01 | −0.563 ± 0.198 ab |
Feeling Depressed Level (0–3) | 0.34 ± 0.01 | 0.34 ± 0.02 | 0.35 ± 0.02 | 0.31 ± 0.03 | 0.40 ± 0.13 | −0.0001 ± 0.008 | |
Simple Reaction Time Mean (msec) | 234 ± 1 | 233 ± 5 | 231 ± 2 | 228 ± 3 | 235 ± 16 | −1.239 ± 1.065 | |
Single Digit Learning Total Score (0–16) | 4.48 ± 0.12 | 4.16 ± 0.35 | 4.04 ± 0.26 | 4.08 ± 0.47 | 3.72 ± 0.54 | −0.196 ± 0.099 | |
Symbol Digital Substitution Mean (sec/digit) | 2.66 ± 0.02 | 2.69 ± 0.07 | 2.63 ± 0.04 | 2.65 ± 0.07 | 2.70 ± 0.13 | −0.009 ± 0.017 | |
60+ | Animal Fluency Score (0–40) | 17.9 ± 0.2 | 18.6 ± 0.4 | 18.5 ± 0.4 | 18.1 ± 0.9 | 19.1 ± 1.5 | 0.254 ± 0.184 |
CERAD: Score Delayed Recall (0–10) | 6.21 ± 0.10 | 6.31 ± 0.14 | 6.28 ± 0.12 | 5.73 ± 0.40 | 5.70 ± 0.87 | −0.034 ± 0.058 | |
CERAD: Total Score Recall (0–30) | 19.6 ± 0.2 | 20.0 ± 0.2 | 19.7 ± 0.3 | 18.6 ± 0.8 | 20.4 ± 0.9 | 0.037 ± 0.108 | |
Digital Symbol Score (0–133) | 52.4 ± 0.4 | 53.7 ± 1.1 | 52.1 ± 0.8 c | 51.2 ± 1.7 | 46.8 ± 2.3 abc | −0.338 ± 0.263 c | |
Feel Anxious (days/month) | 4.39 ± 0.28 | 3.49 ± 0.71 | 5.01 ± 0.68 | 4.07 ± 1.38 | 2.55 ± 2.25 c | 0.041 ± 0.282 | |
Feeling Depressed Level (0–3) | 0.28 ± 0.01 | 0.28 ± 0.02 | 0.25 ± 0.02 | 0.29 ± 0.04 | 0.25 ± 0.07 | −0.011 ± 0.009 | |
Trouble Remembering (0/1) | 0.62 ± 0.03 | 0.60 ± 0.05 | 0.72 ± 0.04 | 0.79 ± 0.10 c | 0.64 ± 0.19 | 0.043 ± 0.021 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, S.; Fulgoni, V.L., III; Jacques, P.F. Association of 100% Fruit Juice Consumption with Cognitive Measures, Anxiety, and Depression in US Adults. Nutrients 2022, 14, 4827. https://doi.org/10.3390/nu14224827
Agarwal S, Fulgoni VL III, Jacques PF. Association of 100% Fruit Juice Consumption with Cognitive Measures, Anxiety, and Depression in US Adults. Nutrients. 2022; 14(22):4827. https://doi.org/10.3390/nu14224827
Chicago/Turabian StyleAgarwal, Sanjiv, Victor L. Fulgoni, III, and Paul F. Jacques. 2022. "Association of 100% Fruit Juice Consumption with Cognitive Measures, Anxiety, and Depression in US Adults" Nutrients 14, no. 22: 4827. https://doi.org/10.3390/nu14224827
APA StyleAgarwal, S., Fulgoni, V. L., III, & Jacques, P. F. (2022). Association of 100% Fruit Juice Consumption with Cognitive Measures, Anxiety, and Depression in US Adults. Nutrients, 14(22), 4827. https://doi.org/10.3390/nu14224827