Association between Depression, Anxiety Symptoms and Gut Microbiota in Chinese Elderly with Functional Constipation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethic Approvals
2.2. Study Design and Participants
2.3. Measures
2.3.1. Questionnaire Survey
- Demographic information: age, gender, educational background, occupation, marital status, family monthly income, etc.;
- Constipation-related symptoms: the Patient Assessment of Symptoms (PAC-SYM) was used to assess the symptoms of constipation in the study subjects [20]. The PAC-SYM consists of 12 items in 3 dimensions (abdominal symptoms, rectal symptoms, and stool symptoms). The Likert 5-level scoring method was used to assign 0–4 points to “no such symptoms”, “mild”, “moderate”, “severe”, and “very severe”, respectively. The score of each dimension was the average score of all items in this dimension, and the total score was the average score of all items. The higher the score, the more severe the constipation symptoms. This study investigated the symptoms of constipation in participants over the previous week. In this study, the total scores of all the subjects were divided into three grades according to the percentile, with mild symptoms lower than 33.3%, severe symptoms higher than 66.7%, and moderate symptoms in the rest;
- Constipation-related quality of life: the Patient Assessment of Quality of Life (PAC-QOL) was used to assess the impact of constipation on quality of life over the previous two weeks [21]. This scale consists of 28 items divided into 4 facets, including physical discomfort, psychosocial discomfort, anxiety, and satisfaction. The score ranges from 0 to 112, with a lower score indicating a higher quality of life. In this study, the total scores of all the subjects were divided into three grades according to the percentile. A score lower than 33.3% indicated high quality of life, a score higher than 66.7% indicated low quality of life, and the remaining scores indicated medium quality of life;
- Depressive symptoms: Patient Health Questionnaire-9 (PHQ-9) was used to assess whether older people had experienced depressive symptoms in the past two weeks [22,23]. The PHQ-9 consists of nine items on a four-point response scale with scores ranging from “0” to “3” for “None”, “Few days”, “More than half of the days”, and “Almost every day”, respectively. The overall score ranges from 0 to 27, with a higher score meaning a higher degree of depressive symptoms. Participants with a score of 5 or higher were defined as “at least mild depression” [22,23].;
- Anxiety symptoms: Generalized Anxiety Disorder-7 (GAD-7) was used to investigate the anxiety status of the participants. GAD-7 consists of seven items on a four-point response scale (from 0, never, to 3, almost every day). Participants with a score of 5 or higher were defined as “at least mild anxiety” [22,23];
- Dietary intake: the Food Frequency Questionnaire (FFQ) was used to investigate the dietary intake of elderly patients with FC over the previous month. According to “Chinese Food Composition Table (Standard Edition, Volume I and Volume II)” [24], foods with fiber higher than 3.0/100 mg/g [25] were selected as the items of FFQ. The consumption frequency of each food item was asked and the response format ranged from “never” to “three times a day”. Then, the intake frequency of 37 kinds of food was recoded into times per week: never eaten = 0, <1 time/month = 0, 1~3 times/month = 0.5 times/week, 1~2 times/week = 1.5 times/week, 3~4 times/week = 3.5 times/week, and 5~6 times/week = 5.5 times/week; 1 times/day = 7 times/week, 2 times/day = 14 times/week, and 3 times/day or more = 21 times/week or more. In this study, the frequency of high dietary fiber intake in all subjects was divided into three grades according to tertile. The frequency of low fiber intake was lower than 33.3%, high fiber intake was higher than 66.7%, and the remaining participants had a medium intake;
- Physical activity level: physical activity was assessed using the short-form self-administered instruments of the International Physical Activity Questionnaire (IPAQ) [26]. The questionnaire consisted of seven items and used indicators in MET min/week (Metabolic equivalence, MET) to indicate the intensity of physical activity. The IPAQ was scored according to recommended guidelines [27]. The physical activities were categorized into low, moderate, and high, based on IPAQ guidelines. Physical activity levels were divided into three grades: low activity or inactivity, moderate physical activity, and high physical activity;
- Sleep Quality: Pittsburgh Sleep Quality Index (PSQI) was used to evaluate the Sleep Quality of the elderly in the past 1 month. Eighteen self-assessment items composed of seven components were involved in the scoring, and each component was scored according to the 0~3 level. The cumulative score of each component was the total PSQI score. The total score ranges from 0 to 21, with higher scores indicating worse sleep quality. A score of 5 or less indicates good sleep quality, while a score of more than 5 indicates poor sleep quality [28].
2.3.2. Anthropometry
2.3.3. Fecal Collection
2.4. Data Analysis
2.4.1. Statistical Analysis
2.4.2. Analysis of Intestinal Flora
3. Results
3.1. General Characteristics of Participants
3.2. Relationship between Depression, Anxiety and FC
3.3. Intestinal Microbiota Analysis Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bharucha, A.E.; Lacy, B.E. Mechanisms, Evaluation, and Management of Chronic Constipation. Gastroenterology 2020, 158, 1232–1249.e3. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Xie, R.; Zhang, Y.; Lu, Q.; Huang, H.; Chen, M.; Zhang, F. Individuals with persistent constipation tend to self-medicate and abuse drugs, which could affect the optimal timing of treatment and exacerbate the disease; all of these would impact the quality of life and lead to other chronic diseases. Chin. J. Clin. Healthc. 2022, 25, 337–340. [Google Scholar]
- Cheng, C.; Chan, A.O.; Hui, W.M.; Lam, S.K. Coping strategies, illness perception, anxiety and depression of patients with idiopathic constipation: A population-based study. Aliment. Pharmacol. Ther. 2003, 18, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Albiani, J.J.; Hart, S.L.; Katz, L.; Berian, J.; Del Rosario, A.; Lee, J.; Varma, M. Impact of depression and anxiety on the quality of life of constipated patients. J. Clin. Psychol. Med. Settings 2013, 20, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Fond, G.; Loundou, A.; Hamdani, N.; Boukouaci, W.; Dargel, A.; Oliveira, J.; Roger, M.; Tamouza, R.; Leboyer, M.; Boyer, L. Anxiety and depression comorbidities in irritable bowel syndrome (IBS): A systematic review and meta-analysis. Eur. Arch. Psychiatry Clin. Neurosci. 2014, 264, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Ballou, S.; Katon, J.; Singh, P.; Rangan, V.; Lee, H.N.; McMahon, C.; Iturrino, J.; Lembo, A.; Nee, J. Chronic Diarrhea and Constipation Are More Common in Depressed Individuals. Clin. Gastroenterol. Hepatol. 2019, 17, 2696–2703. [Google Scholar] [CrossRef]
- Emmanuel, A.; Mattace-Raso, F.; Neri, M.C.; Petersen, K.U.; Rey, E.; Rogers, J. Constipation in older people: A consensus statement. Int. J. Clin. Pract. 2017, 71, e12920. [Google Scholar] [CrossRef]
- Colorectal Surgery Group, Chinese Medical Association Surgery Branch. Chinese Clinical Practice Guidelines for Assessment and Surgical Management of chronic constipation in adults (2022 edition). Chin. J. Gastrointest. Surg. 2022, 25, 1–9. [Google Scholar]
- Sharma, A.; Rao, S. Constipation: Pathophysiology and Current Therapeutic Approaches. Handb. Exp. Pharm. 2017, 239, 59–74. [Google Scholar] [CrossRef]
- Vazquez Roque, M.; Bouras, E.P. Epidemiology and management of chronic constipation in elderly patients. Clin. Interv. Aging 2015, 10, 919–930. [Google Scholar] [CrossRef] [Green Version]
- Charach, G.; Greenstein, A.; Rabinovich, P.; Groskopf, I.; Weintraub, M. Alleviating constipation in the elderly improves lower urinary tract symptoms. Gerontology 2001, 47, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Liu, X.; An, Y.; Zhou, G.; Liu, Y.; Xu, M.; Dong, W.; Wang, S.; Yan, F.; Jiang, K.; et al. Dysbiosis contributes to chronic constipation development via regulation of serotonin transporter in the intestine. Sci. Rep. 2017, 7, 10322. [Google Scholar] [CrossRef] [PubMed]
- Ohkusa, T.; Koido, S.; Nishikawa, Y.; Sato, N. Gut Microbiota and Chronic Constipation: A Review and Update. Front. Med. 2019, 6, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancabelli, L.; Milani, C.; Lugli, G.A.; Turroni, F.; Mangifesta, M.; Viappiani, A.; Ticinesi, A.; Nouvenne, A.; Meschi, T.; van Sinderen, D.; et al. Unveiling the gut microbiota composition and functionality associated with constipation through metagenomic analyses. Sci. Rep. 2017, 7, 9879. [Google Scholar] [CrossRef] [Green Version]
- Wolf, P.G.; Parthasarathy, G.; Chen, J.; O’Connor, H.M.; Chia, N.; Bharucha, A.E.; Gaskins, H.R. Assessing the colonic microbiome, hydrogenogenic and hydrogenotrophic genes, transit and breath methane in constipation. Neurogastroenterol. Motil. 2017, 29, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.T.; Rowan-Nash, A.D.; Sheehan, A.E.; Walsh, R.F.L.; Sanzari, C.M.; Korry, B.J.; Belenky, P. Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain Behav. Immun. 2020, 88, 308–324. [Google Scholar] [CrossRef]
- Barandouzi, Z.A.; Starkweather, A.R.; Henderson, W.A.; Gyamfi, A.; Cong, X.S. Altered Composition of Gut Microbiota in Depression: A Systematic Review. Front. Psychiatry 2020, 11, 541. [Google Scholar] [CrossRef]
- Kurokawa, S.; Kishimoto, T.; Mizuno, S.; Masaoka, T.; Naganuma, M.; Liang, K.C.; Kitazawa, M.; Nakashima, M.; Shindo, C.; Suda, W.; et al. The effect of fecal microbiota transplantation on psychiatric symptoms among patients with irritable bowel syndrome, functional diarrhea and functional constipation: An open-label observational study. J. Affect. Disord. 2018, 235, 506–512. [Google Scholar] [CrossRef]
- Mearin, F.; Lacy, B.E.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel Disorders. Gastroenterology 2016, 150, 1393–1407. [Google Scholar] [CrossRef] [Green Version]
- Yiannakou, Y.; Tack, J.; Piessevaux, H.; Dubois, D.; Quigley, E.M.M.; Ke, M.Y.; Da Silva, S.; Joseph, A.; Kerstens, R. The PAC-SYM questionnaire for chronic constipation: Defining the minimal important difference. Aliment. Pharmacol. Ther. 2017, 46, 1103–1111. [Google Scholar] [CrossRef] [Green Version]
- Marquis, P.; De La Loge, C.; Dubois, D.; McDermott, A.; Chassany, O. Development and validation of the Patient Assessment of Constipation Quality of Life questionnaire. Scand. J. Gastroenterol. 2005, 40, 540–551. [Google Scholar] [CrossRef] [PubMed]
- Bot, M.; Brouwer, I.A.; Roca, M.; Kohls, E.; Penninx, B.; Watkins, E.; van Grootheest, G.; Cabout, M.; Hegerl, U.; Gili, M.; et al. Effect of Multinutrient Supplementation and Food-Related Behavioral Activation Therapy on Prevention of Major Depressive Disorder Among Overweight or Obese Adults with Subsyndromal Depressive Symptoms: The MooDFOOD Randomized Clinical Trial. JAMA 2019, 321, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Chen, B.; Duan, Z.; Xia, Z.; Ding, Y.; Chen, T.; Liu, H.; Wang, B.; Yang, B.; Wang, X.; et al. Depression and anxiety in patients with active ulcerative colitis: Crosstalk of gut microbiota, metabolomics and proteomics. Gut Microbes 2021, 13, 1987779. [Google Scholar] [CrossRef]
- Chinese Food Composition Table, Standard Edition 6, Volume 1 and 2 published. J. Nutr. 2019, 41, 426.
- Wang, L.; Wang, L. Dietary fiber and health. J. Inn. Mong. Univ. Natl. 2008, 30, 129–130. [Google Scholar]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, M.; Lyu, J.; He, P. Chinese guidelines for data processing and analysis concerning the International Physical Activity Questionnaire. Chin. J. Epidemiol. 2014, 35, 961–964. [Google Scholar]
- Ho, K.Y.; Lam, K.K.W.; Xia, W.; Chung, J.O.K.; Cheung, A.T.; Ho, L.L.K.; Chiu, S.Y.; Chan, G.C.F.; Li, W.H.C. Psychometric properties of the Chinese version of the Pittsburgh Sleep Quality Index (PSQI) among Hong Kong Chinese childhood cancer survivors. Health Qual. Life Outcomes 2021, 19, 176. [Google Scholar] [CrossRef]
- The Chinese Nutrition Society. Dietary Guidelines for Chinese Residents (2022); People’s Medical Publishing House: Beijing, China, 2022. [Google Scholar]
- Wang, Y.; Sheng, H.F.; He, Y.; Wu, J.Y.; Jiang, Y.X.; Tam, N.F.; Zhou, H.W. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 2012, 78, 8264–8271. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.J.; Walsh, D.C.I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol. Monogr. 2013, 83, 557–574. [Google Scholar] [CrossRef]
- Marungruang, N.; Tovar, J.; Björck, I.; Hållenius, F.F. Improvement in cardiometabolic risk markers following a multifunctional diet is associated with gut microbial taxa in healthy overweight and obese subjects. Eur. J. Nutr. 2018, 57, 2927–2936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gau, J.T.; Acharya, U.H.; Khan, M.S.; Kao, T.C. Risk factors associated with lower defecation frequency in hospitalized older adults: A case control study. BMC Geriatr. 2015, 15, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Zhang, D.J.; Shao, J.J.; Qi, X.D.; Tian, L. A meta-analysis of the prevalence of depressive symptoms in Chinese older adults. Arch. Gerontol. Geriatr. 2014, 58, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Šola, K.F.; Vladimir-Knežević, S.; Hrabač, P.; Mucalo, I.; Saso, L.; Verbanac, D. The effect of multistrain probiotics on functional constipation in the elderly: A randomized controlled trial. Eur. J. Clin. Nutr. 2022, 1–7. [Google Scholar] [CrossRef]
- Adibi, P.; Abdoli, M.; Daghaghzadeh, H.; Keshteli, A.H.; Afshar, H.; Roohafza, H.; Esmaillzadeh, A.; Feizi, A. Relationship between Depression and Constipation: Results from a Large Cross-sectional Study in Adults. Korean J. Gastroenterol. 2022, 80, 77–84. [Google Scholar] [CrossRef]
- Liu, J.; Lv, C.; Wu, D.; Wang, Y.; Sun, C.; Cheng, C.; Yu, Y. Subjective Taste and Smell Changes in Conjunction with Anxiety and Depression Are Associated with Symptoms in Patients with Functional Constipation and Irritable Bowel Syndrome. Gastroenterol. Res. Pract. 2021, 2021, 5491188. [Google Scholar] [CrossRef]
- Mönnikes, H.; Tebbe, J.J.; Hildebrandt, M.; Arck, P.; Osmanoglou, E.; Rose, M.; Klapp, B.; Wiedenmann, B.; Heymann-Mönnikes, I. Role of stress in functional gastrointestinal disorders. Evidence for stress-induced alterations in gastrointestinal motility and sensitivity. Dig. Dis. 2001, 19, 201–211. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Collins, S.M.; Surette, M.; Bercik, P. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 2012, 10, 735–742. [Google Scholar] [CrossRef]
- Dong, Z.; Shen, X.; Hao, Y.; Li, J.; Xu, H.; Yin, L.; Kuang, W. Gut microbiome: A potential indicator for predicting treatment outcomes in major depressive disorder. Front. Neurosci. 2022, 16, 813075. [Google Scholar] [CrossRef]
- Huang, Y.; Shi, X.; Li, Z.; Shen, Y.; Shi, X.; Wang, L.; Li, G.; Yuan, Y.; Wang, J.; Zhang, Y.; et al. Possible association of Firmicutes in the gut microbiota of patients with major depressive disorder. Neuropsychiatr. Dis. Treat. 2018, 14, 3329–3337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hope, C.; Shen, N.; Zhang, W.; Noh, H.I.; Hertzberg, V.S.; Kim, S.; Bai, J. A Pilot Study of the Gut Microbiota Associated with Depressive Symptoms and Sleep Disturbance Among Chinese and Korean Immigrants in the United States. Biol. Res. Nurs. 2022, 10998004221124273. [Google Scholar] [CrossRef] [PubMed]
- Peter, J.; Fournier, C.; Durdevic, M.; Knoblich, L.; Keip, B.; Dejaco, C.; Trauner, M.; Moser, G. A Microbial Signature of Psychological Distress in Irritable Bowel Syndrome. Psychosom. Med. 2018, 80, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Morgan, X.C.; Huttenhower, C. Chapter 12: Human microbiome analysis. PLoS Comput. Biol. 2012, 8, e1002808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolova, V.L.; Hall, M.R.B.; Hall, L.J.; Cleare, A.J.; Stone, J.M.; Young, A.H. Perturbations in Gut Microbiota Composition in Psychiatric Disorders: A Review and Meta-analysis. JAMA Psychiatry 2021, 78, 1343–1354. [Google Scholar] [CrossRef] [PubMed]
- Madan, A.; Thompson, D.; Fowler, J.C.; Ajami, N.J.; Salas, R.; Frueh, B.C.; Bradshaw, M.R.; Weinstein, B.L.; Oldham, J.M.; Petrosino, J.F. The gut microbiota is associated with psychiatric symptom severity and treatment outcome among individuals with serious mental illness. J. Affect. Disord. 2020, 264, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Jia, H.M.; Qin, L.L.; Zou, Z.M. Gut microbiota and gut tissue metabolites involved in development and prevention of depression. J. Affect. Disord. 2022, 297, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Xiong, H.; Zhu, X.; Ji, C.; Xue, J.; Li, R.; Ge, B.; Cui, H. Polysaccharide from Spirulina platensis ameliorates diphenoxylate-induced constipation symptoms in mice. Int. J. Biol. Macromol. 2019, 133, 1090–1101. [Google Scholar] [CrossRef]
- Aujoulat, F.; Mazuet, C.; Criscuolo, A.; Popoff, M.R.; Enault, C.; Diancourt, L.; Jumas-Bilak, E.; Lavigne, J.P.; Marchandin, H. Peptoniphilus nemausensis sp. nov. A new Gram-positive anaerobic coccus isolated from human clinical samples, an emendated description of the genus Peptoniphilus and an evaluation of the taxonomic status of Peptoniphilus species with not validly published names. Syst. Appl. Microbiol. 2021, 44, 126235. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zheng, P.; Li, Y.; Wu, J.; Tan, X.; Zhou, J.; Sun, Z.; Chen, X.; Zhang, G.; Zhang, H.; et al. Landscapes of bacterial and metabolic signatures and their interaction in major depressive disorders. Sci. Adv. 2020, 6, eaba8555. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Ye, C.; Yang, B.; Cui, J.; Zheng, Z.; Wu, C.; Zhou, S.; Lv, X.; Qin, N.; Qin, H.; et al. Gut Metagenome as a Potential Diagnostic and Predictive Biomarker in Slow Transit Constipation. Front. Med. 2021, 8, 777961. [Google Scholar] [CrossRef] [PubMed]
- Valles-Colomer, M.; Falony, G.; Darzi, Y.; Tigchelaar, E.F.; Wang, J.; Tito, R.Y.; Schiweck, C.; Kurilshikov, A.; Joossens, M.; Wijmenga, C.; et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 2019, 4, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Tapia, E.; Almeida-Toledano, L.; Sebastiani, G.; Serra-Delgado, M.; García-Algar, Ó.; Andreu-Fernández, V. Effects of Microbiota Imbalance in Anxiety and Eating Disorders: Probiotics as Novel Therapeutic Approaches. Int. J. Mol. Sci. 2021, 22, 2351. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.M.; Mendes, M.M.; Oliveira, A.C.; Magalhães, K.G.; Shivappa, N.; Hebert, J.R.; da Costa, T.H.M.; Botelho, P.B. Dietary inflammatory index and its relationship with gut microbiota in individuals with intestinal constipation: A cross-sectional study. Eur. J. Nutr. 2022, 61, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Gargari, G.; Taverniti, V.; Gardana, C.; Cremon, C.; Canducci, F.; Pagano, I.; Barbaro, M.R.; Bellacosa, L.; Castellazzi, A.M.; Valsecchi, C.; et al. Fecal Clostridiales distribution and short-chain fatty acids reflect bowel habits in irritable bowel syndrome. Environ. Microbiol. 2018, 20, 3201–3213. [Google Scholar] [CrossRef]
- Binda, C.; Lopetuso, L.R.; Rizzatti, G.; Gibiino, G.; Cennamo, V.; Gasbarrini, A. Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Dig. Liver Dis. 2018, 50, 421–428. [Google Scholar] [CrossRef]
- Wei, X.; Xue, M.; Kang, C.; Gao, L.; Zhang, M.; Ma, C.; Jia, W.; Zheng, Y.; Cao, L.; Chen, P.; et al. Increased NOX1 and DUOX2 expression in the colonic mucosa of patients with chronic functional constipation. Medicine 2022, 101, e30028. [Google Scholar] [CrossRef]
- Ling, Z.; Cheng, Y.; Chen, F.; Yan, X.; Liu, X.; Shao, L.; Jin, G.; Zhou, D.; Jiang, G.; Li, H.; et al. Changes in fecal microbiota composition and the cytokine expression profile in school-aged children with depression: A case-control study. Front. Immunol. 2022, 13, 964910. [Google Scholar] [CrossRef]
- Xie, J.; Yuan, Y.; Tan, H.; Bai, Y.; Zheng, Q.; Mao, L.; Wu, Y.; Wang, L.; Da, W.; Ye, Q.; et al. The combination of living Bifidobacterium, Lactobacillus, and Streptococcus improves social ranking and relieves anxiety-like behaviors in competitive mice in a social dominance tube test. Brain Behav. 2022, 12, e2453. [Google Scholar] [CrossRef]
- Ni, W.; Liu, W.; Zhao, Z.; Yuan, X.; Sun, Y.; Zhang, H.; Wang, L.; Zhou, M.; Yin, P.; Xu, J. Body Mass Index and Mortality in Chinese Older Adults -New Evidence from a Large Perspective Cohort in China. J. Nutr. Health Aging 2022, 26, 628–636. [Google Scholar] [CrossRef]
- Oreopoulos, A.; McAlister, F.A.; Kalantar-Zadeh, K.; Padwal, R.; Ezekowitz, J.A.; Sharma, A.M.; Kovesdy, C.P.; Fonarow, G.C.; Norris, C.M. The relationship between body mass index, treatment, and mortality in patients with established coronary artery disease: A report from APPROACH. Eur. Heart J. 2009, 30, 2584–2592. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, R.; Kohno, T.; Kohsaka, S.; Fukuoka, R.; Maekawa, Y.; Sano, M.; Takatsuki, S.; Fukuda, K. The prevalence of poor sleep quality and its association with depression and anxiety scores in patients admitted for cardiovascular disease: A cross-sectional designed study. Int. J. Cardiol. 2017, 228, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Difrancesco, S.; Lamers, F.; Riese, H.; Merikangas, K.R.; Beekman, A.T.F.; van Hemert, A.M.; Schoevers, R.A.; Penninx, B. Sleep, circadian rhythm, and physical activity patterns in depressive and anxiety disorders: A 2-week ambulatory assessment study. Depress. Anxiety 2019, 36, 975–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatahi, S.; Matin, S.S.; Sohouli, M.H.; Găman, M.A.; Raee, P.; Olang, B.; Kathirgamathamby, V.; Santos, H.O.; Guimarães, N.S.; Shidfar, F. Association of dietary fiber and depression symptom: A systematic review and meta-analysis of observational studies. Complement Complement. Ther. Med. 2021, 56, 102621. [Google Scholar] [CrossRef] [PubMed]
- Lassale, C.; Batty, G.D.; Baghdadli, A.; Jacka, F.; Sánchez-Villegas, A.; Kivimäki, M.; Akbaraly, T. Healthy dietary indices and risk of depressive outcomes: A systematic review and meta-analysis of observational studies. Mol. Psychiatry 2019, 24, 965–986. [Google Scholar] [CrossRef] [PubMed]
- Forte, C.; O’Sullivan, D.; McDowell, C.P.; Hallgren, M.; Woods, C.B.; Herring, M.P. Associations between screen-time, physical activity and depressive symptoms differ based on gender and screen-time mode. Eur. Child Adolesc. Psychiatry 2022. [Google Scholar] [CrossRef]
- Cheval, B.; Maltagliati, S.; Sieber, S.; Cullati, S.; Sander, D.; Boisgontier, M.P. Physical inactivity amplifies the negative association between sleep quality and depressive symptoms. Prev. Med. 2022, 164, 107233. [Google Scholar] [CrossRef]
Variables | Total | PAC-SYM | χ2 | p | ||
---|---|---|---|---|---|---|
Light 57 (28.8) | Moderate 78 (39.4) | Severe 63 (31.8) | ||||
Age | 6.491 | 0.165 | ||||
60–69 | 81 | 18 (31.6) | 32 (41.0) | 31 (49.2) | ||
70–79 | 86 | 32 (56.1) | 33 (42.3) | 21 (33.3) | ||
≥80 | 31 | 7 (12.3) | 13 (16.7) | 11 (17.5) | ||
Sex | 0.283 | 0.868 | ||||
Male | 85 | 26 (45.6) | 32 (41.0) | 27 (42.9) | ||
Female | 113 | 31 (54.4) | 46 (59.0) | 36 (57.1) | ||
BMI (kg/m2) | 11.572 | 0.021 | ||||
<20 | 19 | 2 (3.5) | 10 (12.8) | 7 (11.1) | ||
20.0–26.9 | 140 | 36 (63.2) | 58 (74.4) | 46 (73.0) | ||
<26.9 | 39 | 19 (33.3) | 10 (12.8) | 10 (15.9) | ||
Residence * | 0.046 | 0.977 | ||||
Urban | 191 | 55 (96.5) | 75 (96.2) | 61 (96.8) | ||
Town | 7 | 2 (3.5) | 3 (3.8) | 2 (3.2) | ||
Education | 6.434 | 0.376 | ||||
Primary school or below | 32 | 4 (7.0) | 15 (19.2) | 13 (20.6) | ||
middle school | 69 | 23 (40.4) | 28 (35.9) | 18 (28.6) | ||
high school | 78 | 24 (42.1) | 27 (34.6) | 27 (42.9) | ||
College or above | 19 | 6 (10.5) | 8 (10.3) | 5 (7.9) | ||
Marital status * | 3.040 | 0.551 | ||||
Married | 151 | 47 (82.5) | 55 (70.5) | 49 (77.8) | ||
Divorce | 9 | 2 (3.5) | 5 (6.4) | 2 (3.2) | ||
Widowed | 38 | 8 (14.0) | 18 (23.1) | 12 (19.0) | ||
Occupation before Retirement * | 2.278 | 0.320 | ||||
employed | 182 | 55 (96.5) | 70 (89.7) | 8 (90.5) | ||
Other/unemployed | 16 | 2 (3.5) | 8 (10.3) | 6 (9.5) | ||
Monthly household Income (RMB, yuan) | 3.351 | 0.764 | ||||
<2000 | 52 | 13 (22.8) | 23 (29.5) | 16 (25.4) | ||
2000–5999 | 81 | 23 (40.4) | 29 (37.2) | 29 (46.0) | ||
6000–10,000 | 50 | 17 (29.8) | 18 (23.1) | 15 (23.8) | ||
>10,000 | 15 | 4 (7.0) | 8 (10.3) | 3 (4.8) | ||
High dietary fiber intake | 15.365 | 0.004 | ||||
Low | 68 | 14 (24.6) | 23 (29.5) | 31 (49.2) | ||
Moderate | 65 | 20 (35.1) | 34 (43.6) | 11 (17.5) | ||
High | 65 | 23 (40.4) | 21 (26.9) | 21 (33.3) | ||
IPAQ | 1.545 | 0.819 | ||||
Low | 48 | 12 (21.1) | 22 (28.2) | 14 (22.2) | ||
Moderate | 119 | 35 (61.4) | 46 (59.0) | 38 (60.3) | ||
High | 31 | 10 (17.5) | 10 (12.8) | 11 (17.5) |
Total | PHQ-9 ≥ 5 | χ2 | p | GAD-7 ≥ 5 | χ2 | p | |
---|---|---|---|---|---|---|---|
Mild 61 (30.8) | Mild 43 (21.7) | ||||||
PAC-SYM | 11.802 | 0.003 | 10.619 | 0.005 | |||
Light | 57 | 10 (17.5) | 5 (8.8) | ||||
Moderate | 78 | 22 (28.2) | 17 (21.8) | ||||
Severe | 63 | 29 (46.0) | 21 (33.3) | ||||
PAC-QoL | 33.285 | <0.001 | 30.723 | <0.001 | |||
Low | 66 | 36 (54.5) | 29 (43.9) | ||||
Moderate | 63 | 19 (30.2) | 10 (15.9) | ||||
High | 69 | 6 (8.7) | 4 (5.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Zhao, Y.; Xi, Y.; Xiang, C.; Yong, C.; Huo, J.; Zou, H.; Hou, Y.; Pan, Y.; Wu, M.; et al. Association between Depression, Anxiety Symptoms and Gut Microbiota in Chinese Elderly with Functional Constipation. Nutrients 2022, 14, 5013. https://doi.org/10.3390/nu14235013
Liang J, Zhao Y, Xi Y, Xiang C, Yong C, Huo J, Zou H, Hou Y, Pan Y, Wu M, et al. Association between Depression, Anxiety Symptoms and Gut Microbiota in Chinese Elderly with Functional Constipation. Nutrients. 2022; 14(23):5013. https://doi.org/10.3390/nu14235013
Chicago/Turabian StyleLiang, Jiajing, Yueming Zhao, Yue Xi, Caihong Xiang, Cuiting Yong, Jiaqi Huo, Hanshuang Zou, Yanmei Hou, Yunfeng Pan, Minchan Wu, and et al. 2022. "Association between Depression, Anxiety Symptoms and Gut Microbiota in Chinese Elderly with Functional Constipation" Nutrients 14, no. 23: 5013. https://doi.org/10.3390/nu14235013
APA StyleLiang, J., Zhao, Y., Xi, Y., Xiang, C., Yong, C., Huo, J., Zou, H., Hou, Y., Pan, Y., Wu, M., Xie, Q., & Lin, Q. (2022). Association between Depression, Anxiety Symptoms and Gut Microbiota in Chinese Elderly with Functional Constipation. Nutrients, 14(23), 5013. https://doi.org/10.3390/nu14235013