Muscle Function, Body Composition, Insulin Sensitivity and Physical Activity in Adolescents Born Preterm: Impact of Gestation and Vitamin D Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Visit Schedule
2.2. Anthropometry including Body Composition Determination
2.3. Biochemistry including Assessments of Insulin Sensitivity and Vitamin D Status
2.4. Assessment of Physical Activity Levels
2.5. Magnetic Resonance Spectroscopy
2.6. Statistics
3. Results
3.1. Baseline Characteristics and Recruitment Flowchart
3.2. Anthropometry
3.3. Insulin Sensitivity
3.4. Accelerometery
3.5. Vitamin D (25-OHD) Concentrations
3.6. Magnetic Resonance Spectroscopy
3.7. Stepwise Linear Regression with τ½PCr as the Outcome Variable
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parkinson, J.R.C.; Hyde, M.J.; Gale, C.; Santhakumaran, S.; Modi, N. Preterm Birth and the Metabolic Syndrome in Adult Life: A Systematic Review and Meta-analysis. Pediatrics 2013, 131, e1240–e1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, E.L.; Parkinson, J.R.; Hyde, M.J.; Yap, I.K.; Holmes, E.; Doré, C.J.; Bell, J.D.; Modi, N. Aberrant Adiposity and Ectopic Lipid Deposition Characterize the Adult Phenotype of the Preterm Infant. Pediatr. Res. 2011, 70, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.E. Skeletal muscle fat oxidation: Timing and flexibility are everything. J. Clin. Investig. 2005, 115, 1699–1702. [Google Scholar] [CrossRef] [Green Version]
- Kaseva, N.; Wehkalampi, K.; Strang-Karlsson, S.; Salonen, M.; Pesonen, A.K.; Räikkönen, K.; Tammelin, T.; Hovi, P.; Lahti, J.; Heinonen, K.; et al. Lower Conditioning Leisure-Time Physical Activity in Young Adults Born Preterm at Very Low Birth Weight. PLoS ONE 2012, 7, e32430. [Google Scholar] [CrossRef]
- Lim, E.L.; Hollingsworth, K.G.; Smith, F.E.; Thelwall, P.E.; Taylor, R. Inhibition of lipolysis in Type 2 diabetes normalizes glucose disposal without change in muscle glycogen synthesis rates. Clin. Sci. 2011, 121, 169–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trenell, M.I.; Hollingsworth, K.G.; Lim, E.L.; Taylor, R. Increased Daily Walking Improves Lipid Oxidation Without Changes in Mitochondrial Function in Type 2 Diabetes. Diabetes Care 2008, 31, 1644–1649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, A.; Hollingsworth, K.G.; Ball, S.; Cheetham, T. Improving the Vitamin D Status of Vitamin D Deficient Adults Is Associated With Improved Mitochondrial Oxidative Function in Skeletal Muscle. J. Clin. Endocrinol. Metab. 2013, 98, E509–E513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monangi, N.; Slaughter, J.L.; Dawodu, A.; Smith, C.; Akinbi, H.T. Vitamin D status of early preterm infants and the effects of vitamin D intake during hospital stay. Arch. Dis. Child.-Fetal Neonatal Ed. 2014, 99, F166–F168. [Google Scholar] [CrossRef]
- McCarthy, R.A.; McKenna, M.J.; Oyefeso, O.; Uduma, O.; Murray, B.F.; Brady, J.J.; Kilbane, M.T.; Murphy, J.F.; Twomey, A.; O’Donnell, C.P.; et al. Vitamin D nutritional status in preterm infants and response to supplementation. Br. J. Nutr. 2013, 110, 156–163. [Google Scholar] [CrossRef]
- Wood, C.L.; Tinnion, R.J.; Korada, S.M.; Cheetham, T.D.; Relton, C.L.; Cooke, R.J.; Pearce, M.S.; Hollingsworth, K.G.; Trenell, M.I.; Embleton, N.D. Growth and metabolic outcome in adolescents born preterm (GROWMORE): Follow-up protocol for the Newcastle Preterm Birth Growth study (PTBGS). BMC Pediatr. 2013, 13, 213. [Google Scholar] [CrossRef]
- Cooke, R.J.; McCormick, K.; Griffin, I.J.; Embleton, N.; Faulkner, K.; Wells, J.C.; Rawlings, D.C. Feeding preterm infants after hospital discharge: Effect of diet on body composition. Pediatr. Res. 1999, 46, 461–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Embleton, N.D.; Cooke, R.J. Protein requirements in preterm infants: Effect of different levels of protein intake on growth and body composition. Pediatr. Res. 2005, 58, 855–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fields, D.A.; Goran, M.I.; McCrory, M.A. Body-composition assessment via air-displacement plethysmography in adults and children: A review. Am. J. Clin. Nutr. 2002, 75, 453–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fields, D.A.; Hull, H.R.; Cheline, A.J.; Yao, M.; Higgins, P.B. Child-Specific Thoracic Gas Volume Prediction Equations for Air-Displacement Plethysmography. Obes. Res. 2004, 12, 1797–1804. [Google Scholar] [CrossRef] [Green Version]
- Cole, T.J.; Freeman, J.V.; Preece, M.A. British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. Stat. Med. 1998, 17, 407–429. Available online: http://www.ncbi.nlm.nih.gov/pubmed/9496720 (accessed on 11 July 2016). [CrossRef]
- Vidmar, S.; Carlin, J.; Hesketh, K.; Cole, T. Standardizing anthropometric measures in children and adolescents with new functions for egen. Stata J. 2004, 4, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Campisi, S.C.; Marchand, J.D.; Siddiqui, F.J.; Islam, M.; Bhutta, Z.A.; Palmert, M.R. Can we rely on adolescents to self-assess puberty stage? A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2020, 105, dgaa135. [Google Scholar] [CrossRef]
- Colley, C.M.; Larner, J.R. The Use of Fortical in Glucose Tolerance Tests. Ann. Clin. Biochem. Int. J. Biochem. Lab. Med. 1990, 27, 496–498. [Google Scholar] [CrossRef] [Green Version]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of HOMA modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, M.; DeFronzo, R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef]
- Hossain, M.J.; Levinson, A.; George, D.; Canas, J.; Kumar, S.; Balagopal, P.B. Vitamin D Status and Cardiovascular Risk in Obesity: Effect of Physical Activity in Nonvitamin D Supplemented Adolescents. Metab. Syndr. Relat. Disord. 2018, 16, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.L.; Emond, J.A.; Flatt, S.W.; Heath, D.D.; Karanja, N.; Pakiz, B.; Sherwood, N.E.; Thomson, C.A. Weight loss is associated with increased serum 25-hydroxyvitamin D in overweight or obese women. Obesity 2012, 20, 2296–2301. [Google Scholar] [CrossRef] [Green Version]
- Evenson, K.R.; Catellier, D.J.; Gill, K.; Ondrak, K.S.; McMurray, R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2008, 26, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Basterfield, L.; Pearce, M.S.; Adamson, A.J.; Frary, J.K.; Parkinson, K.N.; Wright, C.M.; Reilly, J.J.; Gateshead Millennium Study Core Team. Physical Activity, Sedentary Behavior, and Adiposity in English Children. Am. J. Prev. Med. 2012, 42, 445–451. [Google Scholar] [CrossRef]
- Jones, D.E.J.; Hollingsworth, K.G.; Taylor, R.; Blamire, A.M.; Newton, J.L. Abnormalities in pH handling by peripheral muscle and potential regulation by the autonomic nervous system in chronic fatigue syndrome. J. Intern. Med. 2010, 267, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Vanhamme, L.; van Huffel, S.; van Hecke, P.; van Ormondt, D. Time-Domain Quantification of Series of Biomedical Magnetic Resonance Spectroscopy Signals. J. Magn. Reson. 1999, 140, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Strong, W.B.; Malina, R.M.; Blimkie, C.J.; Daniels, S.R.; Dishman, R.K.; Gutin, B.; Hergenroeder, A.C.; Must, A.; Nixon, P.A.; Pivarnik, J.M.; et al. Evidence Based Physical Activity for School-age Youth. J. Pediatr. 2005, 146, 732–737. [Google Scholar] [CrossRef]
- Basterfield, L.; Adamson, A.J.; Parkinson, K.N.; Maute, U.; Li, P.X.; Reilly, J.J.; Gateshead Millennium Study Core Team. Surveillance of physical activity in the UK is flawed: Validation of the Health Survey for England Physical Activity Questionnaire. Arch. Dis. Child. 2008, 93, 1054–1058. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, R.R.; Duncan, M.J.; Caperchione, C.M.; Kolt, G.S.; Vandelanotte, C.; Maeder, A.J.; Savage, T.N.; Mummery, W.K. Validity of the Stages of Change in Steps instrument (SoC-Step) for achieving the physical activity goal of 10,000 steps per day. BMC Public Health 2015, 15, 1197. [Google Scholar] [CrossRef] [Green Version]
- Bertocci, L.A.; Mize, C.E.; Uauy, R. Muscle phosphorus energy state in very-low-birth-weight infants: Effect of exercise. Am. J. Physiol. 1992, 262 Pt 1, E289–E294. [Google Scholar] [CrossRef]
- Rogers, M.; Fay, T.B.; Whitfield, M.F.; Tomlinson, J.; Grunau, R.E. Aerobic Capacity, Strength, Flexibility, and Activity Level in Unimpaired Extremely Low Birth Weight (<=800 g) Survivors at 17 Years of Age Compared With Term-Born Control Subjects. Pediatrics 2005, 116, e58–e65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keens, T.G.; Bryan, A.C.; Levison, H.; Ianuzzo, C.D. Developmental pattern of muscle fiber types in human ventilatory muscles. J. Appl. Physiol. 1978, 44, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Schloon, H.; Schlottmann, J.; Lenard, H.G.; Goebel, H.H. The development of skeletal muscles in premature infants. I. Fibre size and histochemical differentiation. Eur. J. Pediatr. 1979, 131, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Vogler, C.; Bove, K.E. Morphology of skeletal muscle in children. An assessment of normal growth and differentiation. Arch. Pathol. Lab. Med. 1985, 109, 238–242. [Google Scholar] [PubMed]
- Burris, H.H.; Van Marter, L.J.; McElrath, T.F.; Tabatabai, P.; Litonjua, A.A.; Weiss, S.T.; Christou, H. Vitamin D status among preterm and full-term infants at birth. Pediatr. Res. 2014, 75, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Chiu, K.C.; Chu, A.; Go, V.L.W.; Saad, M.F. Hypovitaminosis D is associated with insulin resistance and β cell dysfunction. Am. J. Clin. Nutr. 2004, 79, 820–825. [Google Scholar] [CrossRef] [Green Version]
- Forouhi, N.G.; Luan, J.; Cooper, A.; Boucher, B.J.; Wareham, N.J. Baseline Serum 25-Hydroxy Vitamin D Is Predictive of Future Glycemic Status and Insulin Resistance: The Medical Research Council Ely Prospective Study 1990-2000. Diabetes 2008, 57, 2619–2625. [Google Scholar] [CrossRef] [Green Version]
- Liu, E.; Meigs, J.B.; Pittas, A.G.; McKeown, N.M.; Economos, C.D.; Booth, S.L.; Jacques, P.F. Plasma 25-Hydroxyvitamin D Is Associated with Markers of the Insulin Resistant Phenotype in Nondiabetic Adults. J. Nutr. 2009, 139, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Baz-Hecht, M.; Goldfine, A.B. The impact of vitamin D deficiency on diabetes and cardiovascular risk. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 113–119. [Google Scholar] [CrossRef]
- Belenchia, A.M.; Tosh, A.K.; Hillman, L.S.; Peterson, C.A. Correcting vitamin D insufficiency improves insulin sensitivity in obese adolescents: A randomized controlled trial. Am. J. Clin. Nutr. 2013, 97, 774–781. [Google Scholar] [CrossRef]
- Kelishadi, R.; Salek, S.; Salek, M.; Hashemipour, M.; Movahedian, M. Effects of vitamin D supplementation on insulin resistance and cardiometabolic risk factors in children with metabolic syndrome: A triple-masked controlled trial. J. Pediatr. (Rio J.) 2014, 90, 28–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Psarra, A.-M.G.; Solakidi, S.; Sekeris, C.E. The mitochondrion as a primary site of action of steroid and thyroid hormones: Presence and action of steroid and thyroid hormone receptors in mitochondria of animal cells. Mol. Cell Endocrinol. 2006, 246, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Pavón, D.; Kelly, J.; Reilly, J.J. Associations between objectively measured habitual physical activity and adiposity in children and adolescents: Systematic review. Int. J. Pediatr. Obes. 2010, 5, 3–18. [Google Scholar] [CrossRef]
- Basterfield, L.; Adamson, A.J.; Pearce, M.S.; Reilly, J.J. Stability of habitual physical activity and sedentary behavior monitoring by accelerometry in 6- to 8-year-olds. J. Phys. Act Health 2011, 8, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Embleton, N.D.; Korada, M.; Wood, C.L.; Pearce, M.S.; Swamy, R.; Cheetham, T.D. Catch-up growth and metabolic outcomes in adolescents born preterm. Arch. Dis. Child. 2016, 101, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Tinnion, R.; Gillone, J.; Cheetham, T.; Embleton, N. Preterm birth and subsequent insulin sensitivity: A systematic review. Arch. Dis. Child. 2014, 99, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, F.; Amaral, F.; Lima, N.; Ornelas, E.; Simardi, L.; Maifrino, L.B.M. Effect of different exercise intensities on the pancreas of animals with metabolic syndrome. Diabetes Metab. Syndr. Obes. Targets Ther. 2015, 8, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loprinzi, P.D.; Lee, H.; Cardinal, B.J. Evidence to Support Including Lifestyle Light-Intensity Recommendations in Physical Activity Guidelines for Older Adults. Am. J. Health Promot. 2015, 29, 277–284. [Google Scholar] [CrossRef]
- Herzig, K.-H.; Ahola, R.; Leppäluoto, J.; Jokelainen, J.; Jämsä, T.; Keinänen-Kiukaanniemi, S. Light physical activity determined by a motion sensor decreases insulin resistance, improves lipid homeostasis and reduces visceral fat in high-risk subjects: PreDiabEx study RCT. Int. J. Obes. 2014, 38, 1089–1096. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.; Hollingsworth, K.G.; Ball, S.; Cheetham, T. Impaired quality of life in growth hormone-deficient adults is independent of the altered skeletal muscle oxidative metabolism found in conditions with peripheral fatigue. Clin. Endocrinol. 2014, 80, 107–114. [Google Scholar] [CrossRef]
- Iotti, S.; Lodi, R.; Frassineti, C.; Zaniol, P.; Barbiroli, B. In vivo assessment of mitochondrial functionality in human gastrocnemius muscle by 31P MRS. The role of pH in the evaluation of phosphocreatine and inorganic phosphate recoveries from exercise. NMR Biomed. 1993, 6, 248–253. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean (SD) or Median (Range) |
---|---|
Sex (Male: Female) | 25 (42%): 35 (58%) |
Birth weight (kg), n = 60 | 1.37 (0.25) |
Birthweight z-score, n = 60 | −0.72 (−3.81, 1.37) |
Gestation at birth (weeks), n = 60 | 31.0 (1.9) |
Age (years), n = 60 | 15.6 (12.1–18.8) |
Weight z-score, n = 60 | 0.02 (1.21) |
Height z-score, n = 60 | −0.19 (0.90) |
BMI z-score, n = 60 | 0.16 (1.21) |
Pubertal status by Tanner staging (1–5), n = 60 | Stage 1—8% |
Stage 2—3% | |
Stage 3—27% | |
Stage 4—40% | |
Stage 5—22% | |
25(OH)D (nmol/L), n = 46 | 59.3 (21.9–102.6) |
Systolic blood pressure (mm Hg), n = 60 | 116.1 (13.0) |
Diastolic blood pressure (mm Hg), n = 60 | 73.1 (7.24) |
Mean blood pressure (mm Hg), n = 60 | 83.5 (7.5) |
Cholesterol (mmol/L), n = 46 | 4.1 (3.2–6.5) |
Triglyceride (mmol/L), n = 46 | 0.7 (0.4–2.6) |
Total body fat mass from BodPod (kg/m2), n = 58 | 3.4 (0.4–15.1) |
Total body fat-free mass from BodPod (kg/m2), n = 58 | 15.9 (13.2–20.1) |
Waist circumference (cm), n = 60 | 71.7 (57.0–108.7) |
Variable | Mean (SD) or Median (IQR) | Male | Female | p-Value for Male v Female |
---|---|---|---|---|
Moderate to vigorous physical activity (mins/day) n = 44 | 45.0 (22.8) | 52.1 (21.5) | 39.7 (22.7) | 0.06 |
Sedentary activity (mins/day), n = 44 | 500.0 (84.2) | 483.1 (93.2) | 512.9 (76.0) | 0.02 |
Light activity (mins/day), n = 44 | 143.3 (47.5) | 154.7 (44.9) | 134.7 (48.5) | 0.02 |
Insulin sensitivity assessed by Matsuda index, n = 50 | 4.9 (3.0–7.1) | 5.6 (3.5–8.7) | 4.0 (2.9–5.2) | 0.13 |
Insulin sensitivity assessed by HOMA (%), n = 46 | 79.7 (65.9–114.1) | 98.1 (66.9–118.4) | 78.3 (62.6–111.0) | 0.32 |
PCr recovery time, τ½PCr (s), n = 50 | 33.8 (7.3) | 31.5 (7.9) | 34.2 (8.8) | 0.28 |
(A) | |||
Variable | MVPA (Mean Mins) | Sedentary Activity (Mean Mins) | Light Activity (Mean Mins) |
Gestational age | −0.26 | 0.02 | 0.04 |
FMI (Bodpod) | −0.18 | 0.03 | −0.21 |
Current BMI z-score | 0.00 | 0.11 | −0.14 |
Waist circumference (cm) | −0.15 | 0.12 | −0.25 |
Matsuda Index | 0.03 | 0.05 | 0.32 * |
(B) | |||
Variable | Matsuda Index | HOMA %S | |
Gestational age | −0.05 | −0.06 | |
Birthweight z-score | −0.03 | −0.16 | |
FMI (Bodpod) | −0.41 ** | −0.39 ** | |
Waist circumference (cm) | −0.30 * | −0.34 * | |
BMI z-score | −0.41 ** | −0.39 ** |
Independent Variable | Co-eff | 95% CI | p-Value |
---|---|---|---|
Gestational age at birth (days) | −0.21 | −0.39, −0.03 | 0.03 * |
Serum Vitamin D + | −0.11 | −0.21, −0.01 | 0.03 * |
Fat mass index (measured by BodPod) | −1.07 | −4.36, 2.21 | 0.52 |
Mean step-count/day | 1.70 | −3.86, 7.26 | 0.54 |
Matsuda index of insulin sensitivity+ | 3.01 | −1.32, 7.35 | 0.17 |
Birthweight z-score | 1.15 | −1.46, 3.75 | 0.38 |
Female sex | 2.61 | −2.23, 7.45 | 0.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wood, C.L.; Tinnion, R.; Hollingsworth, K.G.; Trenell, M.I.; Pearce, M.S.; Cheetham, T.D.; Embleton, N.D. Muscle Function, Body Composition, Insulin Sensitivity and Physical Activity in Adolescents Born Preterm: Impact of Gestation and Vitamin D Status. Nutrients 2022, 14, 5045. https://doi.org/10.3390/nu14235045
Wood CL, Tinnion R, Hollingsworth KG, Trenell MI, Pearce MS, Cheetham TD, Embleton ND. Muscle Function, Body Composition, Insulin Sensitivity and Physical Activity in Adolescents Born Preterm: Impact of Gestation and Vitamin D Status. Nutrients. 2022; 14(23):5045. https://doi.org/10.3390/nu14235045
Chicago/Turabian StyleWood, Claire L., Robert Tinnion, Kieren G. Hollingsworth, Michael I. Trenell, Mark S. Pearce, Tim D. Cheetham, and Nicholas D. Embleton. 2022. "Muscle Function, Body Composition, Insulin Sensitivity and Physical Activity in Adolescents Born Preterm: Impact of Gestation and Vitamin D Status" Nutrients 14, no. 23: 5045. https://doi.org/10.3390/nu14235045
APA StyleWood, C. L., Tinnion, R., Hollingsworth, K. G., Trenell, M. I., Pearce, M. S., Cheetham, T. D., & Embleton, N. D. (2022). Muscle Function, Body Composition, Insulin Sensitivity and Physical Activity in Adolescents Born Preterm: Impact of Gestation and Vitamin D Status. Nutrients, 14(23), 5045. https://doi.org/10.3390/nu14235045