Visceral Adipose Tissue Assessment Enhances the Prognostic Value of GLIM Criteria in Patients with Gastric Cancer Undergoing Radical Gastrectomy after Neoadjuvant Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Acquisition
2.3. Follow Up
2.4. Measurements of Body Composition
2.5. Diagnosis of Malnutrition Using the GLIM Criteria
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. NT-Related AEs
3.3. Long-Term Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liang, H.; Li, Z.; Xue, Y.; Wang, Y.; Zhou, Z.; Yu, J.; Bu, Z.; Chen, L.; Du, Y.; et al. Perioperative or postoperative adjuvant oxaliplatin with S-1 versus adjuvant oxaliplatin with capecitabine in patients with locally advanced gastric or gastro-oesophageal junction adenocarcinoma undergoing D2 gastrectomy (RESOLVE): An open-label, superiority and non-inferiority, phase 3 randomised controlled trial. Lancet Oncol. 2021, 22, 1081–1092. [Google Scholar] [CrossRef] [PubMed]
- Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Niksic, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Esteve, J.; et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018, 391, 1023–1075. [Google Scholar] [CrossRef] [Green Version]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hutterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cederholm, T.; Jensen, G.L.; Correia, M.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wan, Z.; Zhu, Y.; Wan, H. Predictive validity of the GLIM criteria in treatment outcomes in cancer patients with radiotherapy. Clin. Nutr. 2022, 41, 855–861. [Google Scholar] [CrossRef]
- Huang, D.D.; Wu, G.F.; Luo, X.; Song, H.N.; Wang, W.B.; Liu, N.X.; Yu, Z.; Dong, Q.T.; Chen, X.L.; Yan, J.Y. Value of muscle quality, strength and gait speed in supporting the predictive power of GLIM-defined malnutrition for postoperative outcomes in overweight patients with gastric cancer. Clin. Nutr. 2021, 40, 4201–4208. [Google Scholar] [CrossRef]
- Huang, D.D.; Yu, D.Y.; Wang, W.B.; Song, H.N.; Luo, X.; Wu, G.F.; Chen, X.L.; Yu, Z.; Yan, J.Y. Global leadership initiative in malnutrition (GLIM) criteria using hand-grip strength adequately predicts postoperative complications and long-term survival in patients underwent radical gastrectomy for gastric cancer. Eur. J. Clin. Nutr. 2022, 76, 1323–1331. [Google Scholar] [CrossRef]
- Huang, D.D.; Yu, D.Y.; Song, H.N.; Wang, W.B.; Luo, X.; Wu, G.F.; Yu, Z.; Liu, N.X.; Dong, Q.T.; Chen, X.L.; et al. The relationship between the GLIM-defined malnutrition, body composition and functional parameters, and clinical outcomes in elderly patients undergoing radical gastrectomy for gastric cancer. Eur. J. Surg. Oncol. 2021, 47, 2323–2331. [Google Scholar] [CrossRef]
- Yin, L.; Song, C.; Cui, J.; Wang, N.; Fan, Y.; Lin, X.; Zhang, L.; Zhang, M.; Wang, C.; Liang, T.; et al. Low fat mass index outperforms handgrip weakness and GLIM-defined malnutrition in predicting cancer survival: Derivation of cutoff values and joint analysis in an observational cohort. Clin. Nutr. 2022, 41, 153–164. [Google Scholar] [CrossRef]
- Yin, L.; Fan, Y.; Lin, X.; Zhang, L.; Li, N.; Liu, J.; Guo, J.; Zhang, M.; He, X.; Liu, L.; et al. Fat mass assessment using the triceps skinfold thickness enhances the prognostic value of the Global Leadership Initiative on Malnutrition criteria in patients with lung cancer. Br. J. Nutr. 2022, 127, 1506–1516. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Z.; Jiang, L.; Xue, Z.; Ma, Z.; Kang, W.; Ye, X.; Liu, Y.; Jin, Z.; Yu, J. Impact of body composition on clinical outcomes in people with gastric cancer undergoing radical gastrectomy after neoadjuvant treatment. Nutrition 2021, 85, 111135. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Z.; Jiang, L.; Xue, Z.; Ma, Z.; Kang, W.; Ye, X.; Liu, Y.; Jin, Z.; Yu, J. Marked loss of adipose tissue during neoadjuvant therapy as a predictor for poor prognosis in patients with gastric cancer: A retrospective cohort study. J. Hum. Nutr. Diet. 2021, 34, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Matsui, R.; Inaki, N.; Tsuji, T. Impact of visceral adipose tissue on long-term outcomes after gastrectomy for advanced gastric cancer. Nutrition 2022, 97, 111619. [Google Scholar] [CrossRef]
- Matsui, R.; Inaki, N.; Tsuji, T. Impact of visceral adipose tissue on compliance of adjuvant chemotherapy and relapse-free survival after gastrectomy for gastric cancer: A propensity score matching analysis. Clin. Nutr. 2021, 40, 2745–2753. [Google Scholar] [CrossRef] [PubMed]
- Ottery, F.D. Definition of standardized nutritional assessment and interventional pathways in oncology. Nutrition 1996, 12, S15–S19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, J. The role of MRI in the diagnosis and treatment of gastric cancer. Diagn. Interv. Radiol. 2020, 26, 176–182. [Google Scholar] [CrossRef]
- Institute, N.C. Common Terminology Criteria for Adverse Events (CTCAE), version 4.0; National Institutes of Health: Bethesda, MD, USA, 2009. [Google Scholar]
- WHO. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment; Health Communications Australia: Sydney, Australia, 2000; Available online: https://apps.who.int/iris/handle/10665/206936 (accessed on 9 June 2022).
- Teufel, F.; Seiglie, J.A.; Geldsetzer, P.; Theilmann, M.; Marcus, M.E.; Ebert, C.; Arboleda, W.A.L.; Agoudavi, K.; Andall-Brereton, G.; Aryal, K.K.; et al. Body-mass index and diabetes risk in 57 low-income and middle-income countries: A cross-sectional study of nationally representative, individual-level data in 685 616 adults. Lancet 2021, 398, 238–248. [Google Scholar] [CrossRef]
- Feliciano, E.M.C.; Kroenke, C.H.; Meyerhardt, J.A.; Prado, C.M.; Bradshaw, P.T.; Kwan, M.L.; Xiao, J.; Alexeeff, S.; Corley, D.; Weltzien, E.; et al. Association of Systemic Inflammation and Sarcopenia with Survival in Nonmetastatic Colorectal Cancer: Results From the C SCANS Study. JAMA Oncol. 2017, 3, e172319. [Google Scholar] [CrossRef]
- Jia, R.R.; Zhong, J.H.; Huo, R.R.; Su, Q.B.; Xiang, X.; Zhao, F.L.; Qin, Z.B.; Chen, J.H.; Liao, Y.Y.; Ma, L.; et al. Correlation between serum prealbumin and prognosis of patients with hepatocellular carcinoma after hepatectomy. J. Surg. Oncol. 2019, 119, 794–800. [Google Scholar] [CrossRef]
- Amin, M.B.; Edge, S.B.; Greene, F.L.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C.; et al. (Eds.) AJCC Cancer Staging Manual, 8th ed.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Burgart, L.J.; Chopp, W.V.; Jain, D. Protocol for the Examination of Specimens from Patients with Carcinoma of the Stomach. 2020. Available online: https://documents.cap.org/protocols/Stomach_4.2.1.0.REL_CAPCP.pdf (accessed on 9 June 2022).
- Seidell, J.C.; Bakker, C.J.; van der Kooy, K. Imaging techniques for measuring adipose-tissue distribution--a comparison between computed tomography and 1.5-T magnetic resonance. Am. J. Clin. Nutr. 1990, 51, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Perez, S.L.; Haus, J.M.; Sheean, P.; Patel, B.; Mar, W.; Chaudhry, V.; McKeever, L.; Braunschweig, C. Measuring Abdominal Circumference and Skeletal Muscle from a Single Cross-Sectional Computed Tomography Image: A Step-by-Step Guide for Clinicians Using National Institutes of Health ImageJ. JPEN J. Parenter. Enter. Nutr. 2016, 40, 308–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Barazzoni, R.; Jensen, G.L.; Correia, M.; Gonzalez, M.C.; Higashiguchi, T.; Shi, H.P.; Bischoff, S.C.; Boirie, Y.; Carrasco, F.; Cruz-Jentoft, A.; et al. Guidance for assessment of the muscle mass phenotypic criterion for the Global Leadership Initiative on Malnutrition (GLIM) diagnosis of malnutrition. Clin. Nutr. 2022, 41, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Baba, Y.; Ishimoto, T.; Kosumi, K.; Tokunaga, R.; Izumi, D.; Ida, S.; Imamura, Y.; Iwagami, S.; Miyamoto, Y.; et al. Low Visceral Fat Content is Associated with Poor Prognosis in a Database of 507 Upper Gastrointestinal Cancers. Ann. Surg. Oncol. 2015, 22, 3946–3953. [Google Scholar] [CrossRef] [PubMed]
- He, W.Z.; Jiang, C.; Liu, L.L.; Yin, C.X.; Rong, Y.M.; Hu, W.M.; Yang, L.; Wang, L.; Jin, Y.N.; Lin, X.P.; et al. Association of body composition with survival and inflammatory responses in patients with non-metastatic nasopharyngeal cancer. Oral. Oncol. 2020, 108, 104771. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, G.; Miyajima, A.; Yuge, K.; Yazawa, S.; Mizuno, R.; Kikuchi, E.; Jinzaki, M.; Oya, M. Visceral obesity is associated with better recurrence-free survival after curative surgery for Japanese patients with localized clear cell renal cell carcinoma. Jpn. J. Clin. Oncol. 2015, 45, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Fouladiun, M.; Korner, U.; Bosaeus, I.; Daneryd, P.; Hyltander, A.; Lundholm, K.G. Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care--correlations with food intake, metabolism, exercise capacity, and hormones. Cancer 2005, 103, 2189–2198. [Google Scholar] [CrossRef]
- Doyle, S.L.; Donohoe, C.L.; Lysaght, J.; Reynolds, J.V. Visceral obesity, metabolic syndrome, insulin resistance and cancer. Proc. Nutr. Soc. 2012, 71, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Mathis, D. Immunological goings-on in visceral adipose tissue. Cell Metab. 2013, 17, 851–859. [Google Scholar] [CrossRef]
Characteristics | Overall Cohort (n = 182) | |
---|---|---|
Patient characteristics | ||
Age, y | 62 (15.0) | |
Sex | ||
Male | 135 (74.2) | |
Female | 47 (25.8) | |
Height, m | 1.7 (0.1) | |
CCI | ||
2 | 122 (67.0) | |
≥3 | 60 (33.0) | |
Clinical stage | ||
II | 46 (25.3) | |
III–IV | 136 (74.7) | |
Before NT | ||
Body weight, kg | 67.4 (10.6) | |
BMI, kg/m2 | ||
<18.5 | 7 (3.8) | |
18.5–22.9 | 71 (39.0) | |
23–24.9 | 45 (24.8) | |
≥25 | 59 (32.4) | |
NRS2002 | ||
<3 | 100 (54.9) | |
≥3 | 82 (45.1) | |
NLR | ||
≤3 | 144 (79.1) | |
>3 | 38 (20.9) | |
Serum PA, mg/L | ||
<200 | 46 (25.3) | |
≥200 | 136 (74.7) | |
After NT | ||
Body weight, kg | 66 (15.3) | |
BMI, kg/m2 | ||
<18.5 | 8 (4.4) | |
18.5–22.9 | 71 (39.0) | |
23–24.9 | 44 (24.2) | |
≥25 | 59 (32.4) | |
NRS2002 | ||
<3 | 116 (63.7) | |
≥3 | 66 (36.3) | |
NLR | ||
≤3 | 149 (81.9) | |
>3 | 33 (18.1) | |
Serum PA, mg/L | ||
<200 | 43 (23.6) | |
≥200 | 139 (76.4) | |
Neoadjuvant treatments | ||
NT scheme | ||
NAC | 147 (80.8) | |
NCRT | 35 (19.2) | |
NAC regimen | ||
SOX | 172 (94.5) | |
XELOX/FOLFOX | 10 (5.5) | |
Operations performed | ||
Type of resection | ||
Total gastrectomy | 87 (47.8) | |
Distal gastrectomy | 91 (50.0) | |
Proximal gastrectomy | 4 (2.2) | |
Type of reconstruction | ||
Roux-en-Y | 106 (58.2) | |
Billroth I | 76 (41.8) | |
Tumor characteristics | ||
Tumor location | ||
Upper | 42 (23.1) | |
Middle | 46 (25.3) | |
Lower | 94 (51.6) | |
ypstage | ||
0 | 29 (15.9) | |
I | 63 (34.7) | |
II | 45 (24.7) | |
III | 45 (24.7) | |
CAP-TRG | ||
0 | 29 (15.9) | |
1 | 19 (10.4) | |
2 | 70 (38.5) | |
3 | 64 (35.2) |
Before NT | After NT | |||||
---|---|---|---|---|---|---|
Non-Malnutrition (n = 116) | GLIM-Malnutrition (n = 66) | p Value | Non-Malnutrition (n = 127) | GLIM-Malnutrition (n = 55) | p Value | |
TSM (cm2) | 144.6 ± 49.7 | 128.8 ± 25.4 | 0.001 | 149.0 ± 51.4 | 122.0 ± 16.8 | <0.001 |
VAT (cm2) | 140.3 ± 69.0 | 75.8 ± 67.0 | <0.001 | 108.8 ± 103.7 | 71.8 ± 78.8 | 0.001 |
Univariable Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Variables | GLIM-Malnutrition | GLIM-Malnutrition + Low VAT | ||||
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | |
Age (≥65) | 0.881 (0.446–1.742) | 0.717 | ||||
Sex (female) | 2.952 (1.467–5.941) | 0.002 | 3.232 (1.576–6.626) | 0.001 | 3.198 (1.539–6.645) | 0.002 |
CCI (≥3) | 0.428 (0.201–0.908) | 0.027 | ||||
NT regimen (NCRT) | 2.151 (1.002–4.621) | 0.05 | 2.481 (1.119–5.503) | 0.025 | 2.651 (1.172–5.996) | 0.019 |
Clinical stage (III-IV/II) | 0.919 (0.443–1.907) | 0.821 | ||||
Before NT | ||||||
BMI (≥23) | 0.781 (0.410–1.486) | 0.452 | ||||
NLR (>3) | 1.159 (0.535–2.514) | 0.708 | ||||
Serum PA (<200) | 1.855 (0.916–3.758) | 0.086 | ||||
GLIM-malnutrition | 1.714 (0.891–3.298) | 0.106 | ||||
GLIM-malnutrition + low VAT | 2.151 (1.093–4.233) | 0.027 | 2.234 (1.095–4.558) | 0.027 |
Factors | Sensitivity (%) | Specificity (%) | Accuracy (%) | PPV (%) | NPV (%) |
---|---|---|---|---|---|
GLIM-malnutrition | 45.28 | 67.44 | 60.99 | 36.36 | 75.00 |
GLIM-malnutrition + low VAT | 41.51 | 75.19 | 65.38 | 40.74 | 75.78 |
Univariable Analysis | Multivariate Analysis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Before NT | After NT | |||||||||
Variables | GLIM-Malnutrition | GLIM-Malnutrition + Low VAT | GLIM-Malnutrition | GLIM-Malnutrition + Low VAT | ||||||
HR (95% CI) | p Value | HR (95% CI) | p Value | HR (95% CI) | p Value | HR (95% CI) | p Value | HR (95% CI) | p Value | |
Age (≥65) | 1.153 (0.675–1.971) | 0.602 | ||||||||
Sex (female) | 1.325 (0.759–2.312) | 0.322 | ||||||||
CCI (≥3) | 0.811 (0.455–1.443) | 0.475 | ||||||||
NT regimen (NCRT) | 0.960 (0.497–1.854) | 0.903 | ||||||||
ypstage (III/0-II) | 6.089 (3.580–10.357) | <0.001 | 4.931 (2.862–8.495) | <0.001 | 5.253 (3.065–9.003) | <0.001 | 5.194 (2.980–9.053) | <0.001 | 5.188 (2.986–9.015) | <0.001 |
Pathologic response (CAP 3/0-2) | 2.184 (1.302–3.663) | 0.003 | ||||||||
Before NT | ||||||||||
BMI (≥23) | 0.630 (0.376–1.056) | 0.08 | ||||||||
NLR (>3) | 2.335 (1.365–3.992) | 0.002 | ||||||||
Serum PA (<200) | 1.372 (0.785–2.399) | 0.267 | ||||||||
GLIM-malnutrition | 3.555 (2.089–6.051) | <0.001 | 2.635 (1.527–4.547) | 0.001 | ||||||
GLIM-malnutrition + low VAT | 3.644 (2.168–6.123) | <0.001 | 2.963 (1.750–5.016) | <0.001 | ||||||
After NT | ||||||||||
BMI (≥23) | 0.788 (0.471–1.319) | 0.365 | ||||||||
NLR (>3) | 0.818 (0.401–1.668) | 0.581 | ||||||||
Serum PA (<200) | 2.266 (1.324–3.880) | 0.003 | ||||||||
GLIM-malnutrition | 2.682 (1.600–4.494) | <0.001 | 1.736 (1.010–2.985) | 0.046 | ||||||
GLIM-malnutrition + low VAT | 2.989 (1.752–5.102) | <0.001 | 1.921 (1.101–3.352) | 0.022 |
Univariable Analysis | Multivariate Analysis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Before NT | After NT | |||||||||
Variables | GLIM-Malnutrition | GLIM-Malnutrition + Low VAT | GLIM-Malnutrition | GLIM-Malnutrition + Low VAT | ||||||
HR (95% CI) | p Value | HR (95% CI) | p Value | HR (95% CI) | p Value | HR (95% CI) | p Value | HR (95% CI) | p Value | |
Age (≥65) | 1.132 (0.693–1.850) | 0.62 | ||||||||
Sex (female) | 1.298 (0.777–2.168) | 0.319 | ||||||||
CCI (≥3) | 0.955 (0.576–1.585) | 0.859 | ||||||||
NT regimen (NCRT) | 1.197 (0.675–2.122) | 0.538 | ||||||||
ypstage (III/0-II) | 6.249 (3.846–10.152) | <0.001 | 5.394 (3.281–8.868) | <0.001 | 5.647 (3.452–9.239) | <0.001 | 5.394 (3.245–8.967) | <0.001 | 5.481 (3.309–9.081) | <0.001 |
Pathologic response (CAP 3/0-2) | 2.335 (1.454–3.752) | <0.001 | ||||||||
Before NT | ||||||||||
BMI (≥23) | 0.638 (0.398–1.024) | 0.063 | ||||||||
NLR (>3) | 2.140 (1.296–3.532) | 0.003 | ||||||||
Serum PA (<200) | 1.486 (0.895–2.465) | 0.126 | ||||||||
GLIM-malnutrition | 2.749 (1.709–4.423) | <0.001 | 2.038 (1.252–3.319) | 0.004 | ||||||
GLIM-malnutrition + low VAT | 2.823 (1.757–4.536) | <0.001 | 2.312 (1.429–3.741) | 0.001 | ||||||
After NT | ||||||||||
BMI (≥23) | 0.890 (0.554–1.431) | 0.631 | ||||||||
NLR (>3) | 1.206 (0.670–2.170) | 0.532 | ||||||||
Serum PA (<200) | 2.195 (1.336–3.607) | 0.002 | ||||||||
GLIM-malnutrition | 2.587 (1.609–4.159) | <0.001 | 1.662 (1.009–2.736) | 0.046 | ||||||
GLIM-malnutrition + low VAT | 2.695 (1.637–4.437) | <0.001 | 1.701 (1.012–2.859) | 0.045 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Jiang, L.; Su, P.; Yu, T.; Ma, Z.; Kang, W.; Liu, Y.; Jin, Z.; Yu, J. Visceral Adipose Tissue Assessment Enhances the Prognostic Value of GLIM Criteria in Patients with Gastric Cancer Undergoing Radical Gastrectomy after Neoadjuvant Treatment. Nutrients 2022, 14, 5047. https://doi.org/10.3390/nu14235047
Zhang Y, Jiang L, Su P, Yu T, Ma Z, Kang W, Liu Y, Jin Z, Yu J. Visceral Adipose Tissue Assessment Enhances the Prognostic Value of GLIM Criteria in Patients with Gastric Cancer Undergoing Radical Gastrectomy after Neoadjuvant Treatment. Nutrients. 2022; 14(23):5047. https://doi.org/10.3390/nu14235047
Chicago/Turabian StyleZhang, Yingjing, Lin Jiang, Pengfei Su, Tian Yu, Zhiqiang Ma, Weiming Kang, Yuqin Liu, Zhengyu Jin, and Jianchun Yu. 2022. "Visceral Adipose Tissue Assessment Enhances the Prognostic Value of GLIM Criteria in Patients with Gastric Cancer Undergoing Radical Gastrectomy after Neoadjuvant Treatment" Nutrients 14, no. 23: 5047. https://doi.org/10.3390/nu14235047
APA StyleZhang, Y., Jiang, L., Su, P., Yu, T., Ma, Z., Kang, W., Liu, Y., Jin, Z., & Yu, J. (2022). Visceral Adipose Tissue Assessment Enhances the Prognostic Value of GLIM Criteria in Patients with Gastric Cancer Undergoing Radical Gastrectomy after Neoadjuvant Treatment. Nutrients, 14(23), 5047. https://doi.org/10.3390/nu14235047