Sodium-to-Potassium Ratio as an Indicator of Diet Quality in Healthy Pregnant Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Body Mass Index, Body Composition, Body Fluid Status, and Arterial Blood Pressure Measurement
2.4. 24-h Urine Samples Analysis
2.5. Food Frequency Questionnaire (FFQ)
2.6. Statistical Analysis
3. Results
3.1. Gestational Weight Gain (GWG)
3.2. Body Composition, Body Fluid Status, and Arterial Blood Pressure
3.3. 24-h Urine
3.4. EPIC-Norfolk Food Frequency Questionnaire (FFQ)
3.5. Molar Sodium-to-Potassium Ratio
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Popkin, B.M.; Ng, S.W. The nutrition transition to a stage of high obesity and noncommunicable disease prevalence dominated by ultra-processed foods is not inevitable. Obes. Rev. 2022, 23, e13366. [Google Scholar] [CrossRef]
- Danielewicz, H.; Myszczyszyn, G.; Dębińska, A.; Myszkal, A.; Boznański, A.; Hirnle, L. Diet in pregnancy—More than food. Eur. J. Pediatr. 2017, 176, 1573–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellver, J.; Mariani, G. Impact of parental over- and underweight on the health of offspring. Fertil. Steril. 2019, 111, 1054–1064. [Google Scholar] [CrossRef] [PubMed]
- Mousa, A.; Naqash, A.; Lim, S. Macronutrient and Micronutrient Intake during Pregnancy: An Overview of Recent Evidence. Nutrients 2019, 11, 443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Most, J.; Dervis, S.; Haman, F.; Adamo, K.B.; Redman, L.M. Energy Intake Requirements in Pregnancy. Nutrients 2019, 11, 1812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Institute of Medicine (US) and National Research Council (US) and Committee to Reexamine IOM Pregnancy Weight Guidelines. Weight Gain during Pregnancy: Reexamining the Guidelines; National Academies Press: Washington, DC, USA, 2009.
- Kominiarek, M.A.; Rajan, P. Nutrition Recommendations in Pregnancy and Lactation. Med. Clin. N. Am. 2016, 100, 1199–1215. [Google Scholar] [CrossRef] [Green Version]
- Morrissey, E.; Giltinan, M.; Kehoe, L.; Nugent, A.P.; McNulty, B.A.; Flynn, A.; Walton, J. Sodium and Potassium Intakes and Their Ratio in Adults (18–90 y): Findings from the Irish National Adult Nutrition Survey. Nutrients 2020, 12, 938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drewnowski, A.; Rehm, C.D.; Maillot, M.; Monsivais, P. The relation of potassium and sodium intakes to diet cost among US adults. J. Hum. Hypertens. 2015, 29, 14–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binia, A.; Jaeger, J.; Hu, Y.; Singh, A.; Zimmermann, D. Daily potassium intake and sodium-to-potassium ratio in the reduction of blood pressure. J. Hypertens. 2015, 33, 1509–1520. [Google Scholar] [CrossRef] [PubMed]
- Iwahori, T.; Miura, K.; Ueshima, H. Time to Consider Use of the Sodium-to-Potassium Ratio for Practical Sodium Reduction and Potassium Increase. Nutrients 2017, 9, 700. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; Parker, E.A.; Rhodes, D.G.; Goldman, J.D.; Clemens, J.C.; Moshfegh, A.J.; Thuppal, S.V.; Weaver, C.M. Estimating Sodium and Potassium Intakes and Their Ratio in the American Diet: Data from the 2011–2012 NHANES. J. Nutr. 2015, 146, 745–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO Guideline: Sodium Intake for Adults and Children; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Cook, N.R. Joint Effects of Sodium and Potassium Intake on Subsequent Cardiovascular Disease. Arch. Intern. Med. 2009, 169, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, R.F.; Abell, S.K.; Ranasinha, S.; Misso, M.L.; Boyle, J.A.; Harrison, C.L.; Black, M.H.; Li, N.; Hu, G.; Corrado, F.; et al. Gestational weight gain across continents and ethnicity: Systematic review and meta-analysis of maternal and infant outcomes in more than one million women. BMC Med. 2018, 16, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viswanathan, M.; Siega-Riz, A.M.; Moos, M.K.; Deierlein, A.; Mumford, S.; Knaack, J.; Thieda, P.; Lux, L.J.; Lohr, K.N. Outcomes of maternal weight gain. Evid. Rep. Technol. Assess. 2008, 168, 1–223. [Google Scholar]
- Walker, L.O.; Hoke, M.M.; Brown, A. Risk Factors for Excessive or Inadequate Gestational Weight Gain Among Hispanic Women in a U.S.-Mexico Border State. J. Obstet. Gynecol. Neonatal Nurs. 2009, 38, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Weisman, C.S.; Hillemeier, M.M.; Symons Downs, D.; Chuang, C.H.; Dyer, A.-M. Preconception Predictors of Weight Gain During Pregnancy. Women’s Health Issues 2010, 20, 126–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, R.F.; Abell, S.K.; Ranasinha, S.; Misso, M.; Boyle, J.A.; Black, M.H.; Li, N.; Hu, G.; Corrado, F.; Rode, L.; et al. Association of Gestational Weight Gain With Maternal and Infant Outcomes. JAMA 2017, 317, 2207. [Google Scholar] [CrossRef]
- Keys, A.; Fidanza, F.; Karvonen, M.J.; Kimura, N.; Taylor, H.L. Indices of relative weight and obesity. J. Chronic Dis. 1972, 25, 329–343. [Google Scholar] [CrossRef]
- Mulligan, A.A.; Luben, R.N.; Bhaniani, A.; Parry-Smith, D.J.; O’Connor, L.; Khawaja, A.P.; Forouhi, N.G.; Khaw, K.-T. A new tool for converting food frequency questionnaire data into nutrient and food group values: FETA research methods and availability. BMJ Open 2014, 4, e004503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, N.; Oakes, S.; Luben, R.; Khaw, K.T.; Bingham, S.; Welch, A.; Wareham, N. EPIC-Norfolk: Study design and characteristics of the cohort. European Prospective Investigation of Cancer. Br. J. Cancer 1999, 80 (Suppl. 1), 95–103. [Google Scholar]
- Goldberg, G.R.; Black, A.E.; Jebb, S.A.; Cole, T.J.; Murgatroyd, P.R.; Coward, W.A.; Prentice, A.M. Critical evaluation of energy intake data using fundamental principles of energy physiology: Derivation of cut-off limits to identify under-recording. Eur. J. Clin. Nutr. 1991, 45, 569–581. [Google Scholar] [PubMed]
- Black, A. Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int. J. Obes. 2000, 24, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Powles, J.; Fahimi, S.; Micha, R.; Khatibzadeh, S.; Shi, P.; Ezzati, M.; Engell, R.E.; Lim, S.S.; Danaei, G.; Mozaffarian, D. Global, regional and national sodium intakes in 1990 and 2010: A systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 2013, 3, e003733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef]
- He, F.J.; Li, J.; MacGregor, G.A. Effect of longer-term modest salt reduction on blood pressure. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef] [PubMed]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A Clinical Trial of the Effects of Dietary Patterns on Blood Pressure. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R.; Simons-Morton, D.G.; et al. Effects on Blood Pressure of Reduced Dietary Sodium and the Dietary Approaches to Stop Hypertension (DASH) Diet. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Aburto, N.J.; Hanson, S.; Gutierrez, H.; Hooper, L.; Elliott, P.; Cappuccio, F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ 2013, 346, f1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drewnowski, A.; Rehm, C.D.; Maillot, M.; Mendoza, A.; Monsivais, P. The feasibility of meeting the WHO guidelines for sodium and potassium: A cross-national comparison study. BMJ Open 2015, 5, e006625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, I.J.; Tzoulaki, I.; Candeias, V.; Elliott, P. Salt intakes around the world: Implications for public health. Int. J. Epidemiol. 2009, 38, 791–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission Directorate-General Health and Consumers Survey on Members States’ Implementation of the EU Salt Reduction Framework. Available online: https://www.aesan.gob.es/AECOSAN/docs/documentos/nutricion/observatorio/encuesta_estados_miembros_sal.pdf (accessed on 30 June 2022).
- United States Department of Agriculture, ARS. What We Eat in America, 2013–2014; United States Department of Agriculture, ARS: Gainesville, FL, USA, 2014. Available online: www.ars.usda.gov/nea/bhnrc/fsrg (accessed on 30 June 2022).
- Jelaković, B.; Kaić-Rak, A.; Milicić, D.; Premuzić, V.; Skupnjak, B.; Reiner, Z. Less salt--more health. Croatian action on salt and health (CRASH). Lijec. Vjesn. 2016, 131, 87–92. [Google Scholar]
- Jelakovic, B. Salt Intake in Croatia—EHUH 2 Report. In Proceedings of the 41st Symposium Hypertension Highlights in 2020, Rijeka, Croatia; 2020. Available online: https://kongresi.emed.hr/course/info.php?id=149 (accessed on 20 October 2022).
- Cobb, L.K.; Anderson, C.A.M.; Elliott, P.; Hu, F.B.; Liu, K.; Neaton, J.D.; Whelton, P.K.; Woodward, M.; Appel, L.J. Methodological Issues in Cohort Studies That Relate Sodium Intake to Cardiovascular Disease Outcomes. Circulation 2014, 129, 1173–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buzzard, M.W.W. Nutritional Epidemiology. In 24-h Dietary Recall and Food Record Method, 2nd ed.; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Toft, U.; Kristoffersen, L.; Ladelund, S.; Bysted, A.; Jakobsen, J.; Lau, C.; Jørgensen, T.; Borch-Johnsen, K.; Ovesen, L. Relative validity of a food frequency questionnaire used in the Inter 99 study. Eur. J. Clin. Nutr. 2008, 62, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Okayama, A.; Okuda, N.; Miura, K.; Okamura, T.; Hayakawa, T.; Akasaka, H.; Ohnishi, H.; Saitoh, S.; Arai, Y.; Kiyohara, Y.; et al. Dietary sodium-to-potassium ratio as a risk factor for stroke, cardiovascular disease and all-cause mortality in Japan: The NIPPON DATA80 cohort study. BMJ Open 2016, 6, e011632. [Google Scholar] [CrossRef]
- Cohen, H.W.; Hailpern, S.M.; Fang, J.; Alderman, M.H. Sodium Intake and Mortality in the NHANES II Follow-up Study. Am. J. Med. 2006, 119, 275.e7–275.e14. [Google Scholar] [CrossRef] [PubMed]
- Intersalt Cooperative Research Group. Intersalt: An international study of electrolyte excretion and blood pressure. Results for 24 h urinary sodium and potassium excretion. BMJ 1988, 297, 319–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwahori, T.; Miura, K.; Ueshima, H.; Chan, Q.; Dyer, A.R.; Elliott, P.; Stamler, J. Estimating 24-h urinary sodium/potassium ratio from casual (‘spot’) urinary sodium/potassium ratio: The Intersalt Study. Int. J. Epidemiol. 2016, 46, dyw287. [Google Scholar] [CrossRef] [PubMed]
- Bates, B.; Lennox, A.; Prentice, A.; Bates, C.; Page, P.; Nicholson, S.; Swan, G. National Diet and Nutrition Survey. In Results from Years 1, 2, 3 and 4 (Combined) of the Rolling Programme (2008/2009–2011/2012); Public Health England: London, UK, 2014. [Google Scholar]
- RIVM. Dutch National Food Consumption Survey 2007–2010. In Part 8—A Sources of Micronutrients; RIVM: Utrecht, The Netherlands, 2012. [Google Scholar]
- Hasenegger, V.; Rust, P.; König, J.; Purtscher, A.; Erler, J.; Ekmekcioglu, C. Main Sources, Socio-Demographic and Anthropometric Correlates of Salt Intake in Austria. Nutrients 2018, 10, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuda, N.; Stamler, J.; Brown, I.J.; Ueshima, H.; Miura, K.; Okayama, A.; Saitoh, S.; Nakagawa, H.; Sakata, K.; Yoshita, K.; et al. Individual efforts to reduce salt intake in China, Japan, UK, USA. J. Hypertens. 2014, 32, 2385–2392. [Google Scholar] [CrossRef]
- World Health Organization. WHO Recommendations on Antenatal Care for a Positive Pregnancy Experience; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Medeiros, D.M. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. Am. J. Clin. Nutr. 2007, 85, 924. [Google Scholar] [CrossRef] [Green Version]
- Barua, S.; Kuizon, S.; Junaid, M.A. Folic acid supplementation in pregnancy and implications in health and disease. J. Biomed. Sci. 2014, 21, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cogswell, M.E.; Parvanta, I.; Ickes, L.; Yip, R.; Brittenham, G.M. Iron supplementation during pregnancy, anemia, and birth weight: A randomized controlled trial. Am. J. Clin. Nutr. 2003, 78, 773–781. [Google Scholar] [CrossRef] [Green Version]
- Peña-Rosas, J.P.; De-Regil, L.M.; Garcia-Casal, M.N.; Dowswell, T. Daily oral iron supplementation during pregnancy. Cochrane Database Syst. Rev. 2015, 2015, CD004736. [Google Scholar] [CrossRef] [PubMed]
- Baker, H.; DeAngelis, B.; Holland, B.; Gittens-Williams, L.; Barrett, T. Vitamin Profile of 563 Gravidas during Trimesters of Pregnancy. J. Am. Coll. Nutr. 2002, 21, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Coletta, J.M.; Bell, S.J.; Roman, A.S. Omega-3 Fatty acids and pregnancy. Rev. Obstet. Gynecol. 2010, 3, 163–171. [Google Scholar] [PubMed]
- Middleton, P.; Gomersall, J.C.; Gould, J.F.; Shepherd, E.; Olsen, S.F.; Makrides, M. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst. Rev. 2018, 11, CD003402. [Google Scholar] [CrossRef] [PubMed]
- Butte, N.F.; Ellis, K.J.; Wong, W.W.; Hopkinson, J.M.; Smith, E.O. Composition of gestational weight gain impacts maternal fat retention and infant birth weight. Am. J. Obstet. Gynecol. 2003, 189, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Lederman, S. Body Fat and Water Changes during Pregnancy in Women with Different Body Weight and Weight Gain. Obstet. Gynecol. 1997, 90, 483–488. [Google Scholar] [CrossRef]
Characteristics | ||||
---|---|---|---|---|
Number | 64 | |||
Age (years) | 29.4 ± 4.5 | |||
Period of gestation (weeks) | 37.9 ± 0.9 | |||
Height (m) | 1.68 ± 0.07 | |||
Initial body mass index (kg/m2) | 23.8 ± 4.3 | |||
Body mass index classification | Underweight (BMI ≤ 18.5) | Normal (BMI 18.6–25.0) | Overweight (BMI 25.1–30.0) | Obese (BMI ≥ 30.1) |
Number (%) | 2 (3.1%) | 45 (70.3%) | 11 (17.2%) | 6 (9.3%) |
Gestational weight gain (kg) * | 16.8 ± 5.4 | 15.1 ± 6.8 | ||
Gestational weight gain classification † | ||||
Number (%) | Low | 7 (14.9%) | Low | 1 (5.9%) |
Normal | 18 (38.3%) | Normal | 3 (17.6%) | |
High | 22 (46.8%) | High | 13 (76.5%) |
Characteristics | |
---|---|
Number of participants | 65 |
Body mass index (kg/m2) | 29.2 ± 4.6 |
RMR (kcal) | 1678 ± 93 |
Fat-free mass (%) | 68.6 ± 7.3 |
Fat mass (%) | 31.5 ± 7.3 |
Total body water (%) | 53.7 ± 6.2 |
Extracellular water (%) | 45.1 ± 1.8 |
Intracellular water (%) | 54.9 ± 1.8 |
ECW/ICW | 0.82 ± 0.06 |
Plasma fluid (L) | 4.07 ± 0.58 |
Interstitial fluid (L) | 14.2 ± 2.0 |
Body density (kg/L) | 1.03 ± 0.02 |
Systolic blood pressure (mmHg) | 111 ± 9 |
Diastolic blood pressure (mmHg) | 75 ± 6 |
Mean arterial pressure (mmHg) | 87 ± 6.6 |
Characteristics | |
---|---|
Number of participants | 65 |
Creatinine coefficient (μmol/24 h/kg) | 116 ± 34 |
Endogenous creatinine clearance | 1.93 ± 0.54 |
Proteins (mg/dU) | 202 ± 77 |
Albumin (mg/dU) | 11 ± 11 |
Sodium (mmol/dU) | 139.7 ± 46.8 |
Potassium (mmol/dU) | 55.0 ± 20.7 |
Estimated daily sodium intake (mg) | 3213 ± 1077 |
Estimated daily potassium intake (mg) | 2152 ± 808 |
Estimated daily salt (NaCl) intake (g/day) | 8.2 ± 2.7 |
Sodium-to-potassium ratio (molar ratio) | 2.74 ± 0.91 |
Nutrient | RDA * | FFQ | FFQ vs. RDA |
---|---|---|---|
Vitamin A (μg/day) | 770 | 880 ± 817 | ↔ |
Vitamin D (μg/day) | 15 | 2.72 ± 1.29 | ↓ |
Vitamin E (mg/day) | 15 | 12.1 ± 5.2 | ↓ |
Folate (μg/day) | 600 | 257 ± 77 | ↓ |
Niacin (mg/day) | 18 | 23.0 ± 6.6 | ↔ |
Riboflavin (mg/day) | 1.10 | 1.85 ± 0.62 | ↔ |
Thiamin (mg/day) | 1.4 | 1.55 ± 0.47 | ↔ |
Vitamin B6 (mg/day) | 1.9 | 2.11 ± 0.63 | ↔ |
Vitamin B12 (μg/day) | 2.6 | 6.49 ± 3.74 | ↑ |
Vitamin C (mg/day) | 85 | 136 ± 76 | ↑ |
Sodium (mg/day) | <2000 | 3012 ±1015 | ↑ |
Potassium (mg/day) | >3510 | 3399 ± 938 | ↔ |
Calcium (mg/day) | 1000 | 945 ± 308 | ↔ |
Iron (mg/day) | 27 | 9.686 ± 3.17 | ↓ |
Phosphorus (mg/day) | 700 | 1387 ± 392 | ↑ |
Selenium (μg/day) | 60 | 102 ± 43 | ↑ |
Zinc (mg/day) | 11 | 9.01 ± 2.72 | ↓ |
Sodium-to-potassium ratio (molar ratio) | 1.51 ± 0.45 | ||
Estimated daily salt (NaCl) intake (g/day) | 7.53 ± 2.54 |
FFQ | |
---|---|
EIrep (kcal/day) | 1941 ± 638 |
Protein (% of total energy/day) | 17.9% |
Carbohydrates (% of total energy/day) | 45.8% |
Fats (% of total energy/day) | 38.4% |
EIrep/RMR | 0.93 ± 0.32 |
LER, number (%) | 27 (42.2%) |
NonLER, number (%) | 37 (57.8%) |
Alcoholic beverages (g/day) | 17 ± 42 |
Cereals and cereal products (g/day) | 222 ± 104 |
Eggs and egg dishes (g/day) | 24 ± 23 |
Fats and oils (g/day) | 15 ± 8 |
Fish and fish products (g/day) | 27 ± 23 |
Fruit (g/day) | 330 ± 265 |
Meat and meat products (g/day) | 157 ± 122 |
Milk and milk products (g/day) | 391 ± 202 |
Non-alcoholic beverages (g/day) | 455 ± 279 |
Nuts and seeds (g/day) | 8.6 ± 8.7 |
Potatoes (g/day) | 72 ± 42 |
Soups and sauces (g/day) | 158 ± 83 |
Sugars (g/day) | 49 ± 43 |
Vegetables (g/day) | 200 ± 93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vulin, M.; Magušić, L.; Metzger, A.-M.; Muller, A.; Drenjančević, I.; Jukić, I.; Šijanović, S.; Lukić, M.; Stanojević, L.; Davidović Cvetko, E.; et al. Sodium-to-Potassium Ratio as an Indicator of Diet Quality in Healthy Pregnant Women. Nutrients 2022, 14, 5052. https://doi.org/10.3390/nu14235052
Vulin M, Magušić L, Metzger A-M, Muller A, Drenjančević I, Jukić I, Šijanović S, Lukić M, Stanojević L, Davidović Cvetko E, et al. Sodium-to-Potassium Ratio as an Indicator of Diet Quality in Healthy Pregnant Women. Nutrients. 2022; 14(23):5052. https://doi.org/10.3390/nu14235052
Chicago/Turabian StyleVulin, Martina, Lucija Magušić, Ana-Maria Metzger, Andrijana Muller, Ines Drenjančević, Ivana Jukić, Siniša Šijanović, Matea Lukić, Lorena Stanojević, Erna Davidović Cvetko, and et al. 2022. "Sodium-to-Potassium Ratio as an Indicator of Diet Quality in Healthy Pregnant Women" Nutrients 14, no. 23: 5052. https://doi.org/10.3390/nu14235052
APA StyleVulin, M., Magušić, L., Metzger, A. -M., Muller, A., Drenjančević, I., Jukić, I., Šijanović, S., Lukić, M., Stanojević, L., Davidović Cvetko, E., & Stupin, A. (2022). Sodium-to-Potassium Ratio as an Indicator of Diet Quality in Healthy Pregnant Women. Nutrients, 14(23), 5052. https://doi.org/10.3390/nu14235052