Protective Effect and Mechanism of Placenta Extract on Liver
Abstract
:1. Introduction
Functions | Objects | Substances |
---|---|---|
Antioxidation | Human placenta Porcine placenta Goat placenta Cow placenta | Uridine, L-tyrosine, L-phenylalanine [14], Collagen polypeptides [15], L-tryptophan [16], Extract [17] Water-soluble proteins [18], Hydrolysate [19], Extract [20] Antioxidant peptides [21] Ribonuclease inhibitor [22] |
Immunomodulatory | Human placenta Goat placenta | Hydrolyzate [23] Protein extract [24], Immunomodulatory peptides [25], Immunoregulatory factor [26] |
Anticancer | Human placenta Porcine placenta Cow placenta — | Mesenchymal stem cell [27] Extract [20] Lipopolysaccharide [28] Placental growth factor [29], Placenta-specific 1 [30] |
Hair growth promotion | Human placenta Cow placenta | Extract [31], Extracellular matrix hydroge [32] Extract lotion [33], Extract [34] |
Skincare Wound healing | Porcine placenta Equine placenta Human placenta Procine placenta | Extract [20,35] Extract [36] Immunoglobulin isotype [37], Extract [38,39], Placental extract gel [40] Extract [41] |
Anti-inflammatory | Human placenta Porcine placenta Sheep placenta — | Extract [42,43,44,45,46], Hydrolyzate [23] Hydrolysate [19], A water-soluble portion [47] Extract [48] Cryopreserved placenta extract [49] |
Anti-apoptosis | Human placenta Sheep placenta | Extract [31,50], Hydrolysate [51], JBP485 [52], Laennec [53] Extract [48] |
Other | Porcine placenta Ovine placenta | Extract: obesity treatment [54], facilitate memory and learning [55] Promote mammogenesis, lactogenesis, and galactopoiesis [56] |
2. PE Improves Liver Histological Structures
3. PE Improves Liver Function
4. PE Improves Liver Oxidative Stress
5. PE Improves Liver Inflammation
6. PE Improves Liver Apoptosis and Autophagy
7. PE Improves Liver Fibrosis and Collagen Deposition
8. PE Promotes Hepatocyte Regeneration
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gui-Qin, Y. Research Advances on Chemical Compositions, Pharmacological Effect and Clinic Application of Placenta and Its Extract from Human and Animals. J. Shenyang Agric. Univ. 2003, 34, 150–154. [Google Scholar] [CrossRef]
- Joshi, M.G.; Kshersagar, J.; Desai, S.R.; Sharma, S. Antiviral properties of placental growth factors: A novel therapeutic approach for COVID-19 treatment. Placenta 2020, 99, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Kubes, P.; Jenne, C. Immune Responses in the Liver. Annu. Rev. Immunol. 2018, 36, 247–277. [Google Scholar] [CrossRef] [PubMed]
- Schuppan, D.; Afdhal, N.H. Liver cirrhosis. Lancet 2008, 371, 838–851. [Google Scholar] [CrossRef] [PubMed]
- Heymann, F.; Tacke, F. Immunology in the liver—From homeostasis to disease. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 88–110. [Google Scholar] [CrossRef]
- Szabo, G. Gut-liver axis in alcoholic liver disease. Gastroenterology 2015, 148, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Zhong, G.; Xu, G.; He, W.; Jing, Z.; Gao, Z.; Huang, Y.; Qi, Y.; Peng, B.; Wang, H.; et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 2012, 1, e49–e78. [Google Scholar] [CrossRef] [PubMed]
- Pineiro-Carrero, V.M.; Pineiro, E.O. Liver. Pediatrics 2004, 113, 1097–1106. [Google Scholar] [CrossRef]
- Oberholzer, H.M.; Bester, M.J.; van der Schoor, C. Rats on a High-energy Diet Showing No Weight Gain Present with Ultrastructural Changes Associated with Liver Fibrosis. Ultrastruct. Pathol. 2013, 37, 267–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanwar, S.; Rhodes, F.; Srivastava, A.; Trembling, P.M.; Rosenberg, W.M. Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World J. Gastroenterol. 2020, 26, 109–133. [Google Scholar] [CrossRef]
- Gines, P.; Castera, L.; Lammert, F.; Graupera, I.; Serra-Burriel, M.; Allen, A.M.; Wong, V.W.; Hartmann, P.; Thiele, M.; Caballeria, L.; et al. Population screening for liver fibrosis: Toward early diagnosis and intervention for chronic liver diseases. Hepatology 2022, 75, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Lytvyak, E.; Montano-Loza, A.J.; Mason, A.L. Combination antiretroviral studies for patients with primary biliary cirrhosis. World J. Gastroenterol. 2016, 22, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Stine, J.G.; Chalasani, N. Chronic liver injury induced by drugs: A systematic review. Liver Int. 2015, 35, 2343–2353. [Google Scholar] [CrossRef]
- Togashi, S.I.; Takahashi, N.; Kubo, Y.; Shigihara, A.; Higashiyama, K.; Watanabe, S.; Fukui, T. Purification and Identification of Antioxidant Substances in Human-Placenta Extracts. J. Health Sci. 2008, 46, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Togashi, S.; Takahashi, N.; Iwama, M.; Watanabe, S.; Tamagawa, K.; Fukui, T. Antioxidative collagen-derived peptides in human-placenta extract. Placenta 2002, 23, 497–502. [Google Scholar] [CrossRef]
- Watanabe, S.; Togashi, S.; Takahashi, N.; Fukui, T. L-tryptophan as an antioxidant in human placenta extract. J. Nutr. Sci. Vitaminol. 2002, 48, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Samiei, F.; Jamshidzadeh, A.; Noorafshan, A.; Ghaderi, A. Human Placental Extract Ameliorates Structural Lung Changes Iinduced by Amiodarone in Rats. Iran. J. Pharm. Res. 2016, 15, 75–82. [Google Scholar] [CrossRef]
- Tang, W.L.; Zhang, M.; Fang, Z. Optimization of ultrasound-assisted-extraction of porcine placenta water-soluble proteins and evaluation of the antioxidant activity. J. Food Sci. Technol. 2015, 52, 4042–4053. [Google Scholar] [CrossRef] [Green Version]
- Laosam, P.; Panpipat, W.; Yusakul, G.; Cheong, L.Z.; Chaijan, M. Porcine placenta hydrolysate as an alternate functional food ingredient: In Vitro antioxidant and antibacterial assessments. PLoS ONE. 2021, 16, e258445–e258470. [Google Scholar] [CrossRef]
- Yamasaki, M.; Hasegawa, S.; Takahashi, H.; Kobayashi, Y.; Sakai, C.; Ashizawa, Y.; Asai, Y.; Kanzaki, M.; Fukui, T. Placental extracts induce the expression of antioxidant enzyme genes and suppress melanogenesis in B16 melanoma cells. Nat. Prod. Res. 2015, 29, 2103–2106. [Google Scholar] [CrossRef]
- Hou, Y.; Zhou, J.; Liu, W.; Cheng, Y.; Wu, L.; Yang, G. Preparation and Characterization of Antioxidant Peptides from Fermented Goat Placenta. Korean J. Food Sci. Anim. Resour. 2014, 34, 769–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Li, H. Radical scavenging activity of ribonuclease inhibitor from cow placenta. Biochemistry 2006, 71, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Kudrevich, Y.V.; Kuznetsova, E.K.; Shchipacheva, O.V.; Dolgushin, I.I.; Ziganshin, O.R. Human placenta hydrolyzate affects neutrophils of systemic immunity during cosmetic procedures. Russ. J. Immunol. 2020, 23, 353–358. [Google Scholar] [CrossRef]
- Hou, Y.; Yang, S.; Huang, J.; Xu, Q.; Li, M. Nutritional profile and in vitro immunomodulatory activity of protein extract from goat placenta and fermented extraction residual. J. Food Process Eng. 2020, 44, e13576–e13585. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, W.; Cheng, Y.; Zhou, J.; Wu, L.; Yang, G. Production optimization and characterization of immunomodulatory peptides obtained from fermented goat placenta. Food Sci. Technol. 2014, 34, 723–729. [Google Scholar] [CrossRef] [Green Version]
- Hua, Z.; Fang, L.Q.; Hong, W.; Yan, H.; Cui, Y.D. Effects of goat placental immunoregulatory factor on non-specfic immunity of mice. Isr. J. Vet. Med. 2009, 64, 66–71. [Google Scholar] [CrossRef]
- Jabbarpour, Z.; Kiani, J.; Keshtkar, S.; Saidijam, M.; Ghahremani, M.H.; Ahmadbeigi, N. Effects of human placenta-derived mesenchymal stem cells with NK4 gene expression on glioblastoma multiforme cell lines. J. Cell. Biochem. 2020, 121, 1362–1373. [Google Scholar] [CrossRef]
- Li, H.; Lu, X.; Lu, M.; Liu, H. Isolation, purification and antitumor activity of lipopolysaccharide from cow placenta. Int. J. Biol. Macromol. 2008, 43, 232–237. [Google Scholar] [CrossRef]
- Albonici, L.; Giganti, M.G.; Modesti, A.; Manzari, V.; Bei, R. Multifaceted Role of the Placental Growth Factor (PlGF) in the Antitumor Immune Response and Cancer Progression. Int. J. Mol. Sci. 2019, 20, 2970. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Liu, M.; Wu, M.; Zhou, X.; Wang, S.; Hu, Y.; Wang, Y.; He, Y.; Zeng, X.; Chen, J.; et al. PLAC1-specific TCR-engineered T cells mediate antigen-specific antitumor effects in breast cancer. Oncol. Lett. 2018, 15, 5924–5932. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, K.; Lee, H.; Yang, W.M. Human placenta induces hair regrowth in chemotherapy-induced alopecia via inhibition of apoptotic factors and proliferation of hair follicles. BMC Complement. Med. Ther. 2020, 20, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiao, S.; Liu, B.; Miao, Y.; Hu, Z. Use of extracellular matrix hydrogel from human placenta to restore hair-inductive potential of dermal papilla cells. Regen. Med. 2019, 14, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Barat, T.; Abdollahimajd, F.; Dadkhahfar, S.; Moravvej, H. Evaluation of the efficacy and safety of cow placenta extract lotion versus minoxidil 2% in the treatment of female pattern androgenetic alopecia. Int. J. Womens Dermatol. 2020, 6, 318–321. [Google Scholar] [CrossRef]
- Zhang, D.; Lijuan, G.; Jingjie, L.; Zheng, L.; Wang, C.; Wang, Z.; Liu, L.; Mira, L.; Sung, C. Cow placenta extract promotes murine hair growth through enhancing the insulin-like growth factor-1. Indian J. Dermatol. 2011, 56, 14–18. [Google Scholar] [CrossRef]
- Yoshimoto, S.; Ohagi, Y.; Yoshida, M.; Yanagi, H.; Hibino, S.; Ichihashi, M.; Ando, H. Placental extracts regulate melanin synthesis in normal human melanocytes with alterations of mitochondrial respiration. Exp. Dermatol. 2019, 28 (Suppl. 1), 50–54. [Google Scholar] [CrossRef] [Green Version]
- Nagae, M.; Nishio, T.; Ohnuki, K.; Shimizu, K. Effects of oral administration of equine placental extract supplement on the facial skin of healthy adult women: A randomized, double-blind, placebo-controlled study. Health Sci. Rep. 2022, 5, e522–e528. [Google Scholar] [CrossRef]
- Sharma, K.; Bhattacharyya, D. Immunoglobulin isotype isolated from human placental extract does not interfere in complement-mediated bacterial opsonization within the wound milieu. Wiley-Blackwell Online Open. 2015, 5, 369–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goswami, S.; Sarkar, R.; Saha, P.; Maity, A.; Sarkar, T.; Das, D.; Chakraborty, P.D.; Bandyopadhyay, S.; Ghosh, C.K.; Karmakar, S.; et al. Effect of human placental extract in the management of biofilm mediated drug resistance—A focus on wound management. Microb. Pathog. 2017, 111, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.W.; Hong, S.E.; Kang, S.R.; Park, B.Y. Effect of Human Placental Extract Treatment on Random-Pattern Skin Flap Survival in Rats. J. Investig. Surg. 2019, 32, 304–313. [Google Scholar] [CrossRef]
- Thakur, G.; Thomas, S.; Bhargava, D.; Pandey, A. Does Topical Application of Placental Extract Gel on Postoperative Fibrotomy Wound Improve Mouth Opening and Wound Healing in Patients with Oral Submucous Fibrosis? J. Oral Maxillofac. Surg. 2015, 73, 1431–1439. [Google Scholar] [CrossRef]
- Nensat, C.; Songjang, W.; Tohtong, R.; Suthiphongchai, T.; Phimsen, S.; Rattanasinganchan, P.; Metheenukul, P.; Kumphune, S.; Jiraviriyakul, A. Porcine placenta extract improves high-glucose-induced angiogenesis impairment. BMC Complement. Med. Ther. 2021, 21, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Shimokobe, H.; Sumida, Y.; Tanaka, S.; Mori, K.; Kitamura, Y.; Fukumoto, K.; Kakutani, A.; Ohno, T.; Kanemasa, K.; Imai, S.; et al. Human placental extract treatment for non-alcoholic steatohepatitis non-responsive to lifestyle intervention: A pilot study. Hepatol. Res. 2015, 45, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Lee, K.; Lee, S.M.; Yoo, S.H.; Hwang, S.G.; Choi, J.Y.; Lee, S.W.; Hwang, J.S.; Kim, K.K.; Kang, H.C.; et al. Efficacy and safety of human placental extract for alcoholic and nonalcoholic steatohepatitis: An open-label, randomized, comparative study. Biol. Pharm. Bull. 2014, 37, 1853–1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, K.M.; Cho, T.H. Therapeutic effect of acupuncture point injection with placental extract in knee osteoarthritis. J. Integr. Med. 2017, 15, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; Ahn, J.H.; Kim, M.S. Infectious Achilles Tendinitis After Local Injection of Human Placental Extracts: A Case Report. J. Foot Ankle Surg. 2015, 54, 1193–1196. [Google Scholar] [CrossRef] [PubMed]
- Homare, A.; Yasuhiro, I.; Yoshimasa, M.; Hiroe, N.; Naomi, H.; Shin-Ichi, F.; Wang, P.L. Evaluation of Collagen Type-1 Production and Anti-Inflammatory Activities of Human Placental Extracts in Human Gingival Fibroblasts. J. Hard Tissue Biol. 2016, 25, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Tebakari, M.; Daigo, Y.; Ishikawa, H.; Nakamura, M.; Kawashima, J.; Takano, F. Anti-inflammatory Effect of the Water-Soluble Portion of Porcine Placental Extract in Lipopolysaccharide-Stimulated RAW264.7 Murine Macrophage Cells. Biol. Pharm. Bull. 2018, 41, 1251–1256. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Luo, S.; Yang, J.; Ren, F.; Zhao, Y.; Luo, H.; Ge, K.; Zhang, H. The Protective Effect of Sheep Placental Extract on Concanavalin A-induced Liver Injury in Mice. Molecules 2018, 24, 28. [Google Scholar] [CrossRef] [Green Version]
- Hladkykh, F.V. The effect of meloxicam and cryopreserved placenta extract on initial inflammatory response—An experimental study. CSF 2021, 70, 179–185. [Google Scholar] [CrossRef]
- Yamauchi, A.; Kamiyoshi, A.; Koyama, T.; Iinuma, N.; Yamaguchi, S.; Miyazaki, H.; Hirano, E.; Kaku, T.; Shindo, T. Placental extract ameliorates non-alcoholic steatohepatitis (NASH) by exerting protective effects on endothelial cells. Heliyon 2017, 3, e416–e433. [Google Scholar] [CrossRef]
- Bak, D.H.; Na, J.; Choi, M.J.; Lee, B.C.; Oh, C.T.; Kim, J.Y.; Han, H.J.; Kim, M.J.; Kim, T.H.; Kim, B.J. Antiapoptotic effects of human placental hydrolysate against hepatocyte toxicity in vivo and in vitro. Int. J. Mol. Med. 2018, 42, 2569–2583. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Wang, C.; Liu, Q.; Yang, T.; Zhang, Q.; Peng, J.; Gao, Y.; Sun, H.; Kaku, T.; Liu, K. Protective effect of JBP485 on concanavalin A-induced hepatocyte toxicity in primary cultured rat hepatocytes. Eur. J. Pharmacol. 2008, 589, 299–305. [Google Scholar] [CrossRef]
- Wu, J.; Yang, T.; Wang, C.; Liu, Q.; Yao, J.; Sun, H.; Kaku, T.; Liu, K.X. Laennec protects murine from concanavalin A-induced liver injury through inhibition of inflammatory reactions and hepatocyte apoptosis. Biol. Pharm. Bull. 2008, 31, 2040–2044. [Google Scholar] [CrossRef] [Green Version]
- Ando, Y.; Sato, F.; Fukunaga, H.; Iwasaki, Y.; Chiba, Y.; Tebakari, M.; Daigo, Y.; Kawashima, J.; Kamei, J. Placental extract suppresses differentiation of 3T3-L1 preadipocytes to mature adipocytes via accelerated activation of p38 MAPK during the early phase of adipogenesis. Nutr Metab. 2019, 16, 32–34. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, A.; Tone, T.; Sugimoto, K.; Seok, L.H.; Kaku, T.; Tohda, C.; Shindo, T.; Tamada, K.; Mizukami, Y.; Hirano, E. Porcine placental extract facilitates memory and learning in aged mice. Food Sci. Nutr. 2019, 7, 2995–3005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotor, G.; Pop, A.; Ghita, M. The effect of ovine placenta extract on mammogenesis, lactogenesis, and galactopoiesis in sheep. Turk. J. Vet. Anim. Sci. 2011, 35, 137–142. [Google Scholar] [CrossRef]
- He, Z.; Yang, D.; Fan, X.; Zhang, M.; Li, Y.; Gu, X.; Yang, M. The Roles and Mechanisms of lncRNAs in Liver Fibrosis. Int. J. Mol. Sci. 2020, 21, 1482. [Google Scholar] [CrossRef] [Green Version]
- Dhar, D.; Baglieri, J.; Kisseleva, T.; Brenner, D.A. Mechanisms of liver fibrosis and its role in liver cancer. Exp. Biol. Med. 2020, 245, 96–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Lin, C.Y.; Cheng, K. siRNA- and miRNA-based therapeutics for liver fibrosis. Transl. Res. 2019, 214, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, P.; Hellerbrand, C. Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Pract. Res. Clin. Gastroenterol. 2014, 28, 637–653. [Google Scholar] [CrossRef] [PubMed]
- Neuschwander-Tetri, B.A. Non-alcoholic fatty liver disease. BMC Med. 2017, 15, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghoneum, M.; El-Gerbed, M. Human placental extract ameliorates methotrexate-induced hepatotoxicity in rats via regulating antioxidative and anti-inflammatory responses. Cancer Chemother. Pharmacol. 2021, 88, 961–971. [Google Scholar] [CrossRef]
- Shen, B.; Deng, L.; Liu, Y.; Li, R.; Shen, C.; Liu, X.; Li, Y.; Yuan, H. Effects of novel Fufang Biejia Ruangan Tablets with sheep placenta as substitute for Hominis Placenta on CCl 4-induced liver fibrosis. Chin. Herb. Med. 2022, 14, 104–110. [Google Scholar] [CrossRef]
- Nakayama, S.; Kodama, K.; Oguchi, K. A comparative study of human placenta hydrolysate (Laennec) by intravenous or subcutaneous injection on liver regeneration after partial hepatectomy in normal and CCl4-induced cirrhosis rats. Folia Pharmacol. Jpn. 1989, 94, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, A.; Tone, T.; Toledo, A.D.; Igarashi, K.; Shindo, T. Placental extract ameliorates liver fibrosis in a methionine- and choline-deficient diet-induced mouse model of non-alcoholic steatohepatitis. Biomed. Res. 2020, 41, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, S.; Yamauchi, M.; Oguchi, K. A comparative study of Laennec by intravenous or subcutaneous injection on CCl4-induced acute or chronic liver injury in rats. Folia Pharmacol. Jpn. 1989, 94, 137–144. [Google Scholar] [CrossRef]
- Lee, M.-J.; Jung, J.; Na, K.-H.; Moon, J.S.; Lee, H.-J.; Kim, J.-H.; Kim, G.I.; Kwon, S.-W.; Hwang, S.-G.; Kim, G.J. Anti-fibrotic effect of chorionic plate-derived mesenchymal stem cells isolated from human placenta in a rat model of CCl4-injured liver: Potential application to the treatment of hepatic diseases. J. Cell. Biochem. 2010, 111, 1453–1463. [Google Scholar] [CrossRef]
- Jung, J.; Lee, H.J.; Lee, J.M.; Na, K.H.; Hwang, S.G.; Kim, G.J. Placenta extract promote liver regeneration in CCl4-injured liver rat model. Int. Immunopharmacol. 2011, 11, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, L.T.; de Graaf, W.; Nibourg, G.A.; Heger, M.; Bennink, R.J.; Stieger, B.; van Gulik, T.M. Physiological and biochemical basis of clinical liver function tests: A review. Ann. Surg. 2013, 257, 27–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boland, B.S.; Dong, M.H.; Bettencourt, R.; Barrett-Connor, E.; Loomba, R. Association of serum bilirubin with aging and mortality. J. Clin. Exp. Hepatol. 2014, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bennink, R.J.; Tulchinsky, M.; de Graaf, W.; Kadry, Z.; van Gulik, T.M. Liver function testing with nuclear medicine techniques is coming of age. Semin. Nucl. Med. 2012, 42, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Azman, K.F.; Safdar, A.; Zakaria, R. D-galactose-induced liver aging model: Its underlying mechanisms and potential therapeutic interventions. Exp. Gerontol. 2021, 150, 111372–111393. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, S.; Seo, J.S.; Bae, G.W.; Kim, K.N.; Kang, J.S. Effect of Single-Dose, Oral Enzymatic Porcine Placental Extract on Pharmacokinetics of Alcohol and Liver Function in Rats. Alcohol. Clin. Exp. Res. 2020, 44, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Moon, P.D.; Kim, K.Y.; Rew, K.H.; Kim, H.M.; Jeong, H.J. Anti-fatigue effects of porcine placenta and its amino acids in a behavioral test on mice. Can. J. Physiol. Pharmacol. 2014, 92, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.X.; Kato, Y.; Kaku, T.; Sugiyama, Y. Human placental extract stimulates liver regeneration in rats. Biol. Pharm. Bull. 1998, 21, 44–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.Y.; Kim, D.S.; Kang, S.A.; Park, S.M. Hepatoprotective Effects of Pig Placental Hydrolysates on Liver Damage-induced Rats by Injecting Carbon Tetrachloride. J. Appl. Biol. Chem. 2012, 55, 2040–2044. [Google Scholar] [CrossRef] [Green Version]
- Maksimov, V.A.; Buntin, E.S.; Buntina, B.G.; Mysenkova, E.E.; Samartsev, K.N.; Vostokovf, G.V.; Burdenko, N.N. The influence of placental drug laennec on motor function of the biliary tract in patients with fatty degeneration of liver. Exp. Clin. Gastroenterol. 2016, 11, 100–103. [Google Scholar]
- Yamauchi, A.; Kamiyoshi, A.; Sakurai, T.; Miyazaki, H.; Hirano, E.; Lim, H.S.; Kaku, T.; Shindo, T. Development of a mouse iron overload-induced liver injury model and evaluation of the beneficial effects of placenta extract on iron metabolism. Heliyon 2019, 5, e1637–e1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, K.S.; Lee, H.J.; Jung, J.; Cha, D.H.; Kim, G.J. Culture and in vitro hepatogenic differentiation of placenta-derived stem cells, using placental extract as an alternative to serum. Cell Prolif. 2010, 43, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Tonooka, M.; Abe, K.; Usami, K.; Kasahara, T. Comparative studies on rat primary cultured and isolated hepatocytes in the evaluation of a therapeutic agents for liver disease. Jpn. J. Pharmacol. 1986, 41, 424–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Togashi, S.I.; Takahashi, N.; Watanabe, S.; Ishiguro, A.; Fukui, T. Suppressive Effects of Uracil, Tyrosine, and Phenylalanine Contained in Human-Placenta Extract on Acute Ethanol-Induced Liver Injury in Mice. J. Health Sci. 2008, 46, 126–131. [Google Scholar] [CrossRef]
- Liu, K.X.; Kato, Y.; Kaku, T.I.; Santa, T.; Imai, K.; Yagi, A.; Ishizu, T.; Sugiyama, Y. Hydroxyprolylserine derivatives JBP923 and JBP485 exhibit the antihepatitis activities after gastrointestinal absorption in rats. J. Pharmacol. Exp. Ther. 2000, 294, 510–515. [Google Scholar]
- Muller, F.L.; Song, W.; Liu, Y.; Chaudhuri, A.; Pieke-Dahl, S.; Strong, R.; Huang, T.T.; Epstein, C.J.; Roberts, L.N.; Csete, M.; et al. Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radic. Biol. Med. 2006, 40, 1993–2004. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Kaplowitz, N. Glutathione in liver diseases and hepatotoxicity. Mol. Asp. Med. 2009, 30, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, C.; Öz, H.H.; Murray, T.S.; Bruscia, E.M. Targeting the Heme Oxygenase 1/Carbon Monoxide Pathway to Resolve Lung Hyper-Inflammation and Restore a Regulated Immune Response in Cystic Fibrosis. Front. Pharmacol. 2020, 11, 1059–1076. [Google Scholar] [CrossRef] [PubMed]
- Ross, D.; Siegel, D. Functions of NQO1 in Cellular Protection and CoQ10 Metabolism and its Potential Role as a Redox Sensitive Molecular Switch. Front. Physiol. 2017, 8, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Leo, F.; Suvorava, T.; Heuser, S.K.; Li, J.; LoBue, A.; Barbarino, F.; Piragine, E.; Schneckmann, R.; Hutzler, B.; Good, M.E.; et al. Red Blood Cell and Endothelial eNOS Independently Regulate Circulating Nitric Oxide Metabolites and Blood Pressure. Circulation 2021, 144, 870–889. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Phark, S.; Lee, M.; Lim, J.Y.; Sul, D. Anti-oxidative and anti-inflammatory activities of placental extracts in benzo [a] pyrene-exposed rats. Placenta 2010, 31, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.M.; Wiesolek, H.L.; Sumagin, R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J. Leukoc. Biol. 2020, 108, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Bailo, M.; Soncini, M.; Vertua, E.; Signoroni, P.B.; Sanzone, S.; Lombardi, G.; Arienti, D.; Calamani, F.; Zatti, D.; Paul, P.; et al. Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation 2004, 78, 1439–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- D'Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019, 43, 582–592. [Google Scholar] [CrossRef]
- Maiuri, M.C.; Zalckvar, E.; Kimchi, A.; Kroemer, G. Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 2007, 8, 741–752. [Google Scholar] [CrossRef]
- Tzima, E.; Walker, J.H. Platelet annexin V: The ins and outs. Platelets 2000, 11, 245–251. [Google Scholar] [CrossRef]
- Atale, N.; Gupta, S.; Yadav, U.C.; Rani, V. Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques. J. Microsc. 2014, 255, 7–19. [Google Scholar] [CrossRef]
- Galluzzi, L.; Green, D.R. Autophagy-Independent Functions of the Autophagy Machinery. Cell 2019, 177, 1682–1699. [Google Scholar] [CrossRef] [PubMed]
- Elpek, G.O. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update. World J. Gastroenterol. 2014, 20, 7260–7276. [Google Scholar] [CrossRef] [PubMed]
- Affo, S.; Yu, L.X.; Schwabe, R.F. The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. Annu. Rev. Pathol. 2017, 12, 153–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermansyah, D.; Putra, A.; Muhar, A.M.; Retnaningsih; Wirastuti, K.; Dirja, B.T. Mesenchymal Stem Cells Suppress TGF-beta Release to Decrease alpha-SMA Expression in Ameliorating CCl4-Induced Liver Fibrosis. Med. Arch. 2021, 75, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; He, J.; He, L.; Xu, B.; Wang, Q. Expression and function of Smad7 in autoimmune and inflammatory diseases. J. Mol. Med. 2021, 99, 1209–1220. [Google Scholar] [CrossRef] [PubMed]
- Gadaleta, R.M.; van Erpecum, K.J.; Oldenburg, B.; Willemsen, E.C.; Renooij, W.; Murzilli, S.; Klomp, L.W.; Siersema, P.D.; Schipper, M.E.; Danese, S.; et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 2011, 60, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Kaimori, A.; Potter, J.; Kaimori, J.Y.; Wang, C.; Mezey, E.; Koteish, A. Transforming Growth Factor-beta1 Induces an Epithelial-to-Mesenchymal Transition State in Mouse Hepatocytes In Vitro. J. Biol. Chem. 2007, 282, 22089–22101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Wu, G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids 2018, 50, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Sakuragawa, N.; Enosawa, S.; Ishii, T.; Thangavel, R.; Tashiro, T.; Okuyama, T.; Suzuki, S. Human amniotic epithelial cells are promising transgene carriers for allogeneic cell transplantation into liver. J. Hum. Genet. 2000, 45, 171–176. [Google Scholar] [CrossRef]
- Schmidt-Arras, D.; Rose-John, S. IL-6 pathway in the liver: From physiopathology to therapy. J. Hepatol. 2016, 64, 1403–1415. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, P.C.; Behrmann, I.; Haan, S.; Hermanns, H.M.; Muller-Newen, G.; Schaper, F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 2003, 374, 1–20. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Pu, W.; Liu, X.; Zhang, Z.; Han, M.; Li, Y.; Huang, X.; Han, X.; Li, Y.; Liu, K.; et al. Proliferation tracing reveals regional hepatocyte generation in liver homeostasis and repair. Science 2021, 371, eabc4346–eabc4358. [Google Scholar] [CrossRef]
- Wang, Q.; Liang, N.; Yang, T.; Li, Y.; Li, J.; Huang, Q.; Wu, C.; Sun, L.; Zhou, X.; Cheng, X.; et al. DNMT1-mediated methylation of BEX1 regulates stemness and tumorigenicity in liver cancer. J. Hepatol. 2021, 75, 1142–1153. [Google Scholar] [CrossRef]
- Jung, J.; Moon, J.W.; Choi, J.H.; Lee, Y.W.; Park, S.H.; Kim, G.J. Epigenetic Alterations of IL-6/STAT3 Signaling by Placental Stem Cells Promote Hepatic Regeneration in a Rat Model with CCl4-induced Liver Injury. Int. J. Stem Cells 2015, 8, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Wolf, H.K.; Zarnegar, R.; Oliver, L.; Michalopoulos, G.K. Hepatocyte growth factor in human placenta and trophoblastic disease. Am. J. Pathol. 1991, 138, 1035–1043. [Google Scholar] [PubMed]
- Tao, Y.; Wang, N.; Qiu, T.; Sun, X. The Role of Autophagy and NLRP3 Inflammasome in Liver Fibrosis. Biomed. Res. Int. 2020, 2020, 7269150–7269157. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Liu, C.; Zhou, D.; Zhang, L. TGF-beta/SMAD Pathway and Its Regulation in Hepatic Fibrosis. J. Histochem. Cytochem. 2016, 64, 157–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewidar, B.; Meyer, C.; Dooley, S.; Meindl-Beinker, A.N. TGF-beta in Hepatic Stellate Cell Activation and Liver Fibrogenesis-Updated 2019. Cells 2019, 8, 1419. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, L.-H.; Fan, L.; Zhang, Y.; Zhu, Y.-K.; Zong, X.-L.; Peng, G.-N.; Cao, S.-Z. Protective Effect and Mechanism of Placenta Extract on Liver. Nutrients 2022, 14, 5071. https://doi.org/10.3390/nu14235071
Shen L-H, Fan L, Zhang Y, Zhu Y-K, Zong X-L, Peng G-N, Cao S-Z. Protective Effect and Mechanism of Placenta Extract on Liver. Nutrients. 2022; 14(23):5071. https://doi.org/10.3390/nu14235071
Chicago/Turabian StyleShen, Liu-Hong, Lei Fan, Yue Zhang, Ying-Kun Zhu, Xiao-Lan Zong, Guang-Neng Peng, and Sui-Zhong Cao. 2022. "Protective Effect and Mechanism of Placenta Extract on Liver" Nutrients 14, no. 23: 5071. https://doi.org/10.3390/nu14235071
APA StyleShen, L. -H., Fan, L., Zhang, Y., Zhu, Y. -K., Zong, X. -L., Peng, G. -N., & Cao, S. -Z. (2022). Protective Effect and Mechanism of Placenta Extract on Liver. Nutrients, 14(23), 5071. https://doi.org/10.3390/nu14235071