Behind the Scenes of Anthocyanins—From the Health Benefits to Potential Applications in Food, Pharmaceutical and Cosmetic Fields
Abstract
:1. Anthocyanins Classification, Chemical Properties and Biosynthesis
1.1. Classification and Chemical Properties
1.2. Biosynthesis
1.3. Dietary Sources
1.3.1. Flowers
1.3.2. Foods—Vegetables and Fruits
2. Significance of ACNs, from Plants to Human Health Benefits
2.1. Cardiovascular Diseases
2.2. Neurodegenerative Diseases
2.3. Anticancer Effect
Source/ACNs | Type of Study (Cell Line, Cancer Type/Mouse/Subjects) | Reported Effect | Ref. |
---|---|---|---|
Cancer type | |||
Vaccinium myrtillus berry extract | LNCaP (PC) | ↑ apoptotic rate | [136] |
Lycium ruthenicum Murray (ACN monomer, Pt3G) | DU145 (PC) | ↓ cell proliferation, ↑ apoptosis, and cell cycle arrest in S phase | [137] |
Sweet Cherry | PNT1A, LNCaP, PC3 (PC) | ↓ cell viability | [138] |
Red cabbage juice | LNCaP and DU145 (PC) | ↓ cell viability | [139] |
Ixora coccinea fruits | LNCaP, FGC (PC) | anticancer activity | [140] |
Brazilian berry extract | Male FVB mice (PC) | dose-dependent control of inflammation and oxidative-stress in aging and high-fat diet-fed aging mice | [141] |
Aronia melanocarpa containing Cy3glu and Cy3xyl | Wistar rats (PC) | Attenuated the development of testosterone-induced prostatic hyperplasia | [142] |
ACNs-rich fraction from purple rice | Male heterozygous TRAP rats (PC) | Retarded carcinogenesis and castration-resistant PC growth (suppression of androgen receptor-mediated cell proliferation and metabolism) | [143] |
Chokeberry extracts (ACNs) | Caco-2 cells (CC) | ↓ cell growth; G1/G0 and G2/M phases arrest; ↑ p21WAF1 and p27KIP1 expression; ↓ cyclin A and cyclin B expression | [146] |
Chokeberry extracts (ACNs and phenolics) | HT-29 (CC) | ↓ cell proliferation | [147] |
Coloured fruits and vegetables | HT-29, Caco-2, and HCT-116 cells (CC) | ↓ anti-apoptotic proteins (survivin, cIAP-2, XIAP), ↑ apoptosis and G1 arrest, tyrosine kinase inhibition) | [148] |
Cy3glu | HCT116, Caco2, and SW480 cells (CC) | Regulated the interaction of talin with β1A-integrin; promoted the attachment between CC cells and fibronectin; inhibited 3D spheroid growth | [149] |
Dp | HCT-116 cell (CC) | ↓ cell viability; promoted apoptosis; arrested G2/M phase; activated NFκB signalling | [150] |
Dp | DLD-1, SW480, SW620 (CC) | inhibits human CC metastasis (↓ integrin and FAK signalling pathways, ↑ miR-204-3p upregulation) | [151] |
Cy3glu and Dp3glu | HCT-29, HCT-116 (CC) | ↓ PD-1, PD-L1 | [152] |
Lyophilized açai pulp | DMH and TNBS male Wistar rats (CC) | colitis-associated colon carcinogenesis attenuation; ↓ CC cells motility | [153] |
Apple | azoxymethane CC rat model | Inhibited ACF, regulated apoptosis-related genes Aurka, p53 and COX-2, and cell migration-related genes MMP-2 and MMP-9 | [169] |
black soybean ACNs | Male Sprague- Dawley rats (CC) | Anti-inflammatory and antimicrobial effects, synergistic effect with ciprofloxacin in chronic bacterial prostatitis | [154] |
Polymerized grape skin ACNs | Male Sprague- Dawley rats (CC) | Several protective effects against benign prostatic hyperplasia | [170] |
Bilberry ACNs extract | AOM/DSS mouse (CC) | Prevents CC formation and growth | [171] |
Lyophilized blackberries and strawberries | ACNs-rich sausages/AOM/DSS rat (CC) | ↓ tumour number; ↓ pro-inflammatory gut bacterial | [155] |
Strawberry and black raspberry extracts | AOM/DSS mouse (CC) | ↓ tumour multiplicity; modulated the composition of gut commensal microbiota | [172] |
Prunus spinosa drupes | HCT 116 cells, xenograft mouse (CC) | Inhibited growth and colony formation; promoted apoptosis in cells; ↓ tumour growth in xenograft mice | [173] |
Table grapes with entacapone (Cy3glu, Dp3glu) | Caco-2, HT-29 (CC); MDA-MB-231 (BC) | ↓ cell proliferation, ↑ extracellular ROS levels | [156] |
Dietary ACNs | ~10.000 participants (LC) | Positive correlation between dietary ACNs consumption and LC risk in Americans | [157] |
Vitis coignetiae Pulliat ACNs | A549 (LC) | inhibit TNF-augmented LC proliferation, migration and invasion | [158] |
Cy3glu | H1299 and A549 cells (LC) | suppresses LC progression by downregulating TP53I3 and inhibiting PI3K/AKT/mTOR pathway | [159] |
Dp | A549 (LC) | inhibits angiogenesis through the suppression of HIF-1α and VEGF expression | [160] |
Cy3glu | H661 (LC) xenografted into BALB/c nude mice | ↓ large-cell LC growth & tumorigenesis | [174] |
Blueberry fruits ACNs extracts | B16-F10 (melanoma cells) | dose-dependent inhibition of B16-F10 viability & proliferation, G0/G1 arrest, and induced early apoptosis | [161] |
Aqueous elderberries extract rich in ACNs | 250 µg/mL (melanoma cells) | ↑ LDH; detachment, rounding up, shrinkage, and blebbing of membrane & apoptotic bodies; | [162] |
Cy3glu | mice & human melanoma cells | ↑ apoptosis, ↓ tumour growth & volume | [163] |
Strawberry (Pg3glu) | N202/1A, N202/1E (murine BC cells) | ↓ cell viability, ROS induction & mitochondrial damage | [175] |
Dp | Female Sprague-Dawley (100 mg/kg rat/day (BC) | ↑ tumour suppressor miR-34a in tumour tissues | [165] |
1522 BC cases, 1547 control subjects (China) | Free choice meals (BC) | Inverse association between dietary ACNs ingestion and & BC risk | [168] |
193 BC patients | water-soluble ACNs (125 mg) (BC) | ACNs supplementation did not prevent radiotherapy-induced local skin toxicity | [167] |
2.4. Diabetes Mellitus
2.5. Visual Health
3. Potential Applications
3.1. Food Colorants
3.2. Dye-Sensitized Solar Cells
3.3. Nutraceuticals
3.4. Cosmetics
3.5. Photodynamic Therapeutics
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Roy, S.; Rhim, J.-W. Anthocyanin food colorant and its application in pH-responsive color change indicator films. Crit. Rev. Food Sci. Nutr. 2021, 61, 2297–2325. [Google Scholar] [CrossRef]
- Francis, F.J.; Markakis, P.C. Food colorants: Anthocyanins. Crit. Rev. Food Sci. Nutr. 1989, 28, 273–314. [Google Scholar] [CrossRef]
- Kurek, M.; Hlupić, L.; Ščetar, M.; Bosiljkov, T.; Galić, K. Comparison of Two pH Responsive Color Changing Bio-Based Films Containing Wasted Fruit Pomace as a Source of Colorants. J. Food Sci. 2019, 84, 2490–2498. [Google Scholar] [CrossRef]
- Harborne, J.B.; Williams, C.A. Anthocyanins and other flavonoids. Nat. Prod. Rep. 2001, 18, 310–333. [Google Scholar] [CrossRef] [PubMed]
- Carle, R.; Schweiggert, R. Handbook on Natural Pigments in Food and Beverages: Industrial Applications for Improving Food Color; Woodhead Publishing: Sawston, UK, 2016. [Google Scholar]
- Varelis, P.; Melton, L.; Shahidi, F. Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Mannino, G.; Gentile, C.; Ertani, A.; Serio, G.; Bertea, C.M. Anthocyanins: Biosynthesis, Distribution, Ecological Role, and Use of Biostimulants to Increase Their Content in Plant Foods-A Review. Agriculture 2021, 11, 212. [Google Scholar] [CrossRef]
- Gould, K.S.; Lister, C. Flavonoid functions in plants. In Flavonoids: Chemistry, Biochemistry and Applications; CRC Press LLC: Boca Raton, FL, USA, 2006; pp. 397–441. [Google Scholar]
- Chalker-Scott, L. Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 1999, 70, 1–9. [Google Scholar] [CrossRef]
- Steyn, W.J.; Wand, S.J.E.; Holcroft, D.M.; Jacobs, G. Anthocyanins in vegetative tissues: A proposed unified function in photoprotection. New Phytol. 2002, 155, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Flamini, R.; Mattivi, F.; De Rosso, M.; Arapitsas, P.; Bavaresco, L. Advanced knowledge of three important classes of grape phenolics: Anthocyanins, stilbenes and flavonols. Int. J. Mol. Sci. 2013, 14, 19651–19669. [Google Scholar] [CrossRef]
- Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [Green Version]
- Aza-Gonzalez, C.; Herrera-Isidron, L.; Nunez-Palenius, H.G.; De la Vega, O.M.; Ochoa-Alejo, N. Anthocyanin accumulation and expression analysis of biosynthesis-related genes during chili pepper fruit development. Biol. Plant. 2013, 57, 49–55. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Wang, Q.H.; Xia, L.H.; Hui, J.T.; Li, J.X.; Feng, Y.B.; Chen, Y.L. Preliminarily exploring of the association between sugars and anthocyanin accumulation in apricot fruit during ripening. Sci. Hortic. 2019, 248, 112–117. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- He, J.; Giusti, M.M. Anthocyanins: Natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Durst, R.W.; Lee, J. Tracking color and pigment changes in anthocyanin products. Trends Food Sci. Technol. 2005, 16, 423–428. [Google Scholar] [CrossRef]
- Yoshida, K.; Mori, M.; Kondo, T. Blue flower color development by anthocyanins: From chemical structure to cell physiology. Nat. Prod. Rep. 2009, 26, 884–915. [Google Scholar] [CrossRef]
- Cruz, L.; Basilio, N.; Mateus, N.; de Freitas, V.; Pina, F. Natural and Synthetic Flavylium-Based Dyes: The Chemistry Behind the Color. Chem. Rev. 2022, 122, 1416–1481. [Google Scholar] [CrossRef]
- Horbowicz, M.; Kosson, R.; Grzesiuk, A.; Debski, H. Anthocyanins of fruits and vegetables-their occurrence, analysis and role in human nutrition. Veg. Crops Res. Bull. 2008, 68, 5. [Google Scholar] [CrossRef]
- He, K.; Li, X.; Chen, X.; Ye, X.; Huang, J.; Jin, Y.; Li, P.; Deng, Y.; Jin, Q.; Shi, Q.; et al. Evaluation of antidiabetic potential of selected traditional Chinese medicines in STZ-induced diabetic mice. J. Ethnopharmacol. 2011, 137, 1135–1142. [Google Scholar] [CrossRef]
- Sims, C.A.; Morris, J.R. A Comparison of the Color Components and Color Stability of Red Wine from Noble and Cabernet Sauvignon at Various Ph Levels. Am. J. Enol. Vitic. 1985, 36, 181–184. [Google Scholar]
- Trouillas, P.; Sancho-Garcia, J.C.; De Freitas, V.; Gierschner, J.; Otyepka, M.; Dangles, O. Stabilizing and Modulating Color by Copigmentation: Insights from Theory and Experiment. Chem. Rev. 2016, 116, 4937–4982. [Google Scholar] [CrossRef] [PubMed]
- Rein, M.J.; Heinonen, M. Stability and enhancement of berry juice color. J. Agric. Food. Chem. 2004, 52, 3106–3114. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Mao, Y.; Sui, L.S.; Yang, N.; Li, S.Y.; Zhu, Z.Z.; Wang, C.T.; Yin, S.; He, J.R.; He, Y. Degradation of anthocyanins and polymeric color formation during heat treatment of purple sweet potato extract at different pH. Food Chem. 2019, 274, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Pratyusha, D.S.; Sarada, D.V.L. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. Plant Cell Rep. 2022, 41, 2245–2260. [Google Scholar] [CrossRef]
- Jaakola, L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 2013, 18, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Baxter, I.R.; Young, J.C.; Armstrong, G.; Foster, N.; Bogenschutz, N.; Cordova, T.; Peer, W.A.; Hazen, S.P.; Murphy, A.S.; Harper, J.F. A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2005, 102, 2649–2654. [Google Scholar] [CrossRef] [Green Version]
- Marinova, K.; Pourcel, L.; Weder, B.; Schwarz, M.; Barron, D.; Routaboul, J.M.; Debeaujon, I.; Klein, M. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 2007, 19, 2023–2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debeaujon, I.; Peeters, A.J.; Leon-Kloosterziel, K.M.; Koornneef, M. The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 2001, 13, 853–871. [Google Scholar] [CrossRef] [Green Version]
- Behrens, C.E.; Smith, K.E.; Iancu, C.V.; Choe, J.Y.; Dean, J.V. Transport of Anthocyanins and other Flavonoids by the Arabidopsis ATP-Binding Cassette Transporter AtABCC2. Sci. Rep. 2019, 9, 437. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Butelli, E.; Martin, C. Engineering anthocyanin biosynthesis in plants. Curr. Opin. Plant Biol. 2014, 19, 81–90. [Google Scholar] [CrossRef]
- Liu, Y.; Tikunov, Y.; Schouten, R.E.; Marcelis, L.F.M.; Visser, R.G.F.; Bovy, A. Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review. Front Chem. 2018, 6, 52. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Li, M.; Yin, R. Phytochemical Content, Health Benefits, and Toxicology of Common Edible Flowers: A Review (2000–2015). Crit. Rev. Food Sci. Nutr. 2016, 56 (Suppl. 1), S130–S148. [Google Scholar] [CrossRef] [PubMed]
- Julia, M.; Eugenia Marta, K.; María José, N.; Agustín, G.A. Antioxidant Capacity of Anthocyanin Pigments. In Flavonoids; Goncalo, C.J., Ed.; IntechOpen: Rijeka, Croatia, 2017; Chapter 11. [Google Scholar] [CrossRef]
- Zhao, L.; Fan, H.; Zhang, M.; Chitrakar, B.; Bhandari, B.; Wang, B. Edible flowers: Review of flower processing and extraction of bioactive compounds by novel technologies. Food Res. Int. 2019, 126, 108660. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Meenu, M.; Xu, B. A systematic investigation on free phenolic acids and flavonoids profiles of commonly consumed edible flowers in China. J. Pharm. Biomed. Anal. 2019, 172, 268–277. [Google Scholar] [CrossRef]
- Nakayama, M.; Okada, M.; Taya-Kizu, M.; Urashima, O.; Kan, Y.; Fukui, Y.; Koshioka, M. Coloration and anthocyanin profile in tulip flowers. Jarq-Jpn. Agric. Res. Q. 2004, 38, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Tang, W.; Hao, Z.; Tao, J. Identification of flavonoids and expression of flavonoid biosynthetic genes in two coloured tree peony flowers. Biochem. Biophys. Res. Commun. 2015, 459, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Tatsuzawa, F. 7-O-methylpelargonidin glycosides from the pale red flowers of Catharanthus roseus. Nat. Prod. Commun. 2013, 8, 1095–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwashina, T. Contribution to flower colors of flavonoids including anthocyanins: A review. Nat. Prod. Commun. 2015, 10, 529–544. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, M.; Suzuki, T.; Iwashina, T. New acylated anthocyanins and other flavonoids from the red flowers of Clematis cultivars. Nat. Prod. Commun. 2011, 6, 1631–1636. [Google Scholar] [CrossRef] [Green Version]
- Neveu, V.; Perez-Jimenez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J. Agric. Food. Chem. 2006, 54, 4069–4075. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Espinosa, M.; Espada-Bellido, E.; González de Peredo, A.V.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Barroso, C.G.; Barbero, G.F. Optimization of Microwave-Assisted Extraction for the Recovery of Bioactive Compounds from the Chilean Superfruit (Aristotelia chilensis (Mol.) Stuntz). Agronomy 2018, 8, 240. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Espinosa, M.; González de Peredo, A.V.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Barbero, G.F.; Espada-Bellido, E. Assessment of Ultrasound Assisted Extraction as an Alternative Method for the Extraction of Anthocyanins and Total Phenolic Compounds from Maqui Berries (Aristotelia chilensis (Mol.) Stuntz). Agronomy 2019, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- González de Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Ferreiro-González, M.; Amores-Arrocha, A.; Palma, M.; Barbero, G.F.; Jiménez-Cantizano, A. Alternative Ultrasound-Assisted Method for the Extraction of the Bioactive Compounds Present in Myrtle (Myrtus communis L.). Molecules 2019, 24, 882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González de Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Jiménez-Cantizano, A.; Ferreiro-González, M.; Amores-Arrocha, A.; Palma, M.; Barroso, C.G.; Barbero, G.F. Development of New Analytical Microwave-Assisted Extraction Methods for Bioactive Compounds from Myrtle (Myrtus communis L.). Molecules 2018, 23, 2992. [Google Scholar] [CrossRef] [Green Version]
- Aliaño-González, M.J.; Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Ayuso, J.; Álvarez, J.Á.; Barbero, G.F. Extraction of Anthocyanins and Total Phenolic Compounds from Açai (Euterpe oleracea Mart.) Using an Experimental Design Methodology. Part 2: Ultrasound-Assisted Extraction. Agronomy 2020, 10, 326. [Google Scholar] [CrossRef] [Green Version]
- Aliaño-González, M.J.; Ferreiro-González, M.; Espada-Bellido, E.; Carrera, C.; Palma, M.; Álvarez, J.A.; Ayuso, J.; Barbero, G.F. Extraction of Anthocyanins and Total Phenolic Compounds from Açai (Euterpe oleracea Mart.) Using an Experimental Design Methodology. Part 1: Pressurized Liquid Extraction. Agronomy 2020, 10, 183. [Google Scholar] [CrossRef] [Green Version]
- Aliaño-González, M.J.; Ferreiro-González, M.; Espada-Bellido, E.; Carrera, C.; Palma, M.; Ayuso, J.; Barbero, G.F.; Álvarez, J.Á. Extraction of Anthocyanins and Total Phenolic Compounds from Açai (Euterpe oleracea Mart.) Using an Experimental Design Methodology. Part 3: Microwave-Assisted Extraction. Agronomy 2020, 10, 179. [Google Scholar] [CrossRef] [Green Version]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- Zamora-Ros, R.; Knaze, V.; Lujan-Barroso, L.; Slimani, N.; Romieu, I.; Touillaud, M.; Kaaks, R.; Teucher, B.; Mattiello, A.; Grioni, S.; et al. Estimation of the intake of anthocyanidins and their food sources in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br. J. Nutr. 2011, 106, 1090–1099. [Google Scholar] [CrossRef]
- Cassidy, A. Berry anthocyanin intake and cardiovascular health. Mol. Aspects Med. 2018, 61, 76–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinonen, M. Antioxidant activity and antimicrobial effect of berry phenolics—A Finnish perspective. Mol. Nutr. Food Res. 2007, 51, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.C.; Giusti, M.M. Anthocyanins. Adv. Nutr. 2015, 6, 620–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igwe, E.O.; Charlton, K.E.; Probst, Y.C. Usual dietary anthocyanin intake, sources and their association with blood pressure in a representative sample of Australian adults. J. Hum. Nutr. Diet. 2019, 32, 578–590. [Google Scholar] [CrossRef] [Green Version]
- Tosti, V.; Bertozzi, B.; Fontana, L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Vance, T.M.; Chun, O.K. Estimated intake and major food sources of flavonoids among US adults: Changes between 1999–2002 and 2007–2010 in NHANES. Eur. J. Nutr. 2016, 55, 833–843. [Google Scholar] [CrossRef]
- Frond, A.D.; Iuhas, C.I.; Stirbu, I.; Leopold, L.; Socaci, S.; Andreea, S.; Ayvaz, H.; Andreea, S.; Mihai, S.; Diaconeasa, Z.; et al. Phytochemical Characterization of Five Edible Purple-Reddish Vegetables: Anthocyanins, Flavonoids, and Phenolic Acid Derivatives. Molecules 2019, 24, 1536. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Prior, R.L. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: Fruits and berries. J. Agric. Food. Chem. 2005, 53, 2589–2599. [Google Scholar] [CrossRef]
- Horincar, G.; Enachi, E.; Bolea, C.; Rapeanu, G.; Aprodu, I. Value-Added Lager Beer Enriched with Eggplant (Solanum melongena L.) Peel Extract. Molecules 2020, 25, 731. [Google Scholar] [CrossRef] [Green Version]
- Kharadze, M.; Japaridze, I.; Kalandia, A.; Vanidze, M. Anthocyanins and antioxidant activity of red wines made from endemic grape varieties. Ann. Agrar. Sci. 2018, 16, 181–184. [Google Scholar] [CrossRef]
- Zambrano-Moreno, E.L.; Chavez-Jauregui, R.N.; Plaza, M.D.; Wessel-Beaver, L. Phenolic content and antioxidant capacity in organically and conventionally grown eggplant (Solanum melongena) fruits following thermal processing. Food Sci. Technol. 2015, 35, 414–420. [Google Scholar] [CrossRef] [Green Version]
- Vera de Rosso, V.; Hillebrand, S.; Cuevas Montilla, E.; Bobbio, F.O.; Winterhalter, P.; Mercadante, A.Z. Determination of anthocyanins from acerola (Malpighia emarginata DC.) and açai (Euterpe oleracea Mart.) by HPLC–PDA–MS/MS. J. Food Compos. Anal. 2008, 21, 291–299. [Google Scholar] [CrossRef]
- Polat, M.; Okatan, V.; Güçlü, S.F.; Çolak, A.M. Determination of Some Chemical Characteristics and Total Antioxidant Capacity in Apple Varieties Grown in Posof/Ardahan Region. Int. J. Agric. Environ. Food Sci. 2018, 2, 131–134. [Google Scholar] [CrossRef]
- Zhang, S.L.; Deng, P.; Xu, Y.C.; Lu, S.W.; Wang, J.J. Quantification and analysis of anthocyanin and flavonoids compositions, and antioxidant activities in onions with three different colors. J. Integr. Agric. 2016, 15, 2175–2181. [Google Scholar] [CrossRef] [Green Version]
- Jakobek, L.; Seruga, M.; Novak, I.; Medvidovic-Kosanovic, M. Flavonols, phenolic acids and antioxidant activity of some red fruits. Deutsche Lebensmittel-Rundschau 2007, 103, 369–378. [Google Scholar]
- Zielinska, A.; Siudem, P.; Paradowska, K.; Gralec, M.; Kazmierski, S.; Wawer, I. Aronia melanocarpa Fruits as a Rich Dietary Source of Chlorogenic Acids and Anthocyanins: (1)H-NMR, HPLC-DAD, and Chemometric Studies. Molecules 2020, 25, 3234. [Google Scholar] [CrossRef] [PubMed]
- Cesoniene, L.; Jasutiene, I.; Sarkinas, A. Phenolics and anthocyanins in berries of European cranberry and their antimicrobial activity. Medicina 2009, 45, 992–999. [Google Scholar] [CrossRef] [Green Version]
- Duymus, H.G.; Goger, F.; Baser, K.H. In vitro antioxidant properties and anthocyanin compositions of elderberry extracts. Food Chem. 2014, 155, 112–119. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Capanoglu, E. Polyphenol Content in Figs (Ficus carica L.): Effect of Sun-Drying. Int. J. Food Prop. 2015, 18, 521–535. [Google Scholar] [CrossRef]
- Solomon, A.; Golubowicz, S.; Yablowicz, Z.; Grossman, S.; Bergman, M.; Gottlieb, H.E.; Altman, A.; Kerem, Z.; Flaishman, M.A. Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). J. Agric. Food. Chem. 2006, 54, 7717–7723. [Google Scholar] [CrossRef]
- Kallithraka, S.; Aliaj, L.; Makris, D.P.; Kefalas, P. Anthocyanin profiles of major red grape (Vitis vinifera L.) varieties cultivated in Greece and their relationship with in vitro antioxidant characteristics. Int. J. Food Sci. Technol. 2009, 44, 2385–2393. [Google Scholar] [CrossRef]
- Silva, L.R.; Queiroz, M. Bioactive compounds of red grapes from Dao region (Portugal): Evaluation of phenolic and organic profile. Asian Pac. J. Trop. Biomed. 2016, 6, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Usenik, V.; Stampar, F.; Veberic, R. Anthocyanins and fruit colour in plums (Prunus domestica L.) during ripening. Food Chem. 2009, 114, 529–534. [Google Scholar] [CrossRef]
- Passafiume, R.; Perrone, A.; Sortino, G.; Gianguzzi, G.; Saletta, F.; Gentile, C.; Farina, V. Chemical–physical characteristics, polyphenolic content and total antioxidant activity of three Italian-grown pomegranate cultivars. NFS J. 2019, 16, 9–14. [Google Scholar] [CrossRef]
- Zhu, F.; Yuan, Z.H.; Zhao, X.Q.; Yin, Y.L.; Feng, L.J. Composition and Contents of Anthocyanins in Different Pomegranate Cultivars. Acta Hortic. 2015, 1089, 35–41. [Google Scholar]
- Bento, C.; Goncalves, A.C.; Silva, B.; Silva, L.S.R. Assessing the phenolic profile, antioxidant, antidiabetic and protective effects against oxidative damage in human erythrocytes of peaches from Fundão. J. Funct. Foods 2018, 43, 224–233. [Google Scholar] [CrossRef]
- Mihaylova, D.; Popova, A.; Desseva, I.; Petkova, N.; Stoyanova, M.; Vrancheva, R.; Slavov, A.; Slavchev, A.; Lante, A. Comparative Study of Early- and Mid-Ripening Peach (Prunus persica L.) Varieties: Biological Activity, Macro-, and Micro- Nutrient Profile. Foods 2021, 10, 164. [Google Scholar] [CrossRef]
- Ahmadiani, N.; Robbins, R.J.; Collins, T.M.; Giusti, M.M. Anthocyanins contents, profiles, and color characteristics of red cabbage extracts from different cultivars and maturity stages. J. Agric. Food. Chem. 2014, 62, 7524–7531. [Google Scholar] [CrossRef]
- Wiczkowski, W.; Szawara-Nowak, D.; Topolska, J. Red cabbage anthocyanins: Profile, isolation, identification, and antioxidant activity. Food Res. Int. 2013, 51, 303–309. [Google Scholar] [CrossRef]
- Wang, S.Y.; Lin, H.S. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agric. Food. Chem. 2000, 48, 140–146. [Google Scholar] [CrossRef]
- Goncalves, A.C.; Bento, C.; Silva, B.M.; Silva, L.R. Sweet cherries from Fundao possess antidiabetic potential and protect human erythrocytes against oxidative damage. Food Res. Int. 2017, 95, 91–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, J.; Jiang, Q.; Lin, J.; Li, X.; Sun, C.; Chen, K. Physicochemical characterisation of four cherry species (Prunus spp.) grown in China. Food Chem. 2015, 173, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Borghesi, E.; Gonzalez-Miret, M.L.; Escudero-Gilete, M.L.; Malorgio, F.; Heredia, F.J.; Melendez-Martinez, A.J. Effects of salinity stress on carotenoids, anthocyanins, and color of diverse tomato genotypes. J. Agric. Food. Chem. 2011, 59, 11676–11682. [Google Scholar] [CrossRef] [PubMed]
- Kammerer, D.; Carle, R.; Schieber, A. Quantification of anthocyanins in black carrot extracts (Daucus carota ssp. sativus var. atrorubens Alef.) and evaluation of their color properties. Eur. Food Res. Technol. 2004, 219, 479–486. [Google Scholar] [CrossRef]
- Wang, Z.; Pang, W.; He, C.; Li, Y.; Jiang, Y.; Guo, C. Blueberry Anthocyanin-Enriched Extracts Attenuate Fine Particulate Matter (PM2.5)-Induced Cardiovascular Dysfunction. J. Agric. Food. Chem. 2017, 65, 87–94. [Google Scholar] [CrossRef]
- Krga, I.; Milenkovic, D. Anthocyanins: From Sources and Bioavailability to Cardiovascular-Health Benefits and Molecular Mechanisms of Action. J. Agric. Food. Chem. 2019, 67, 1771–1783. [Google Scholar] [CrossRef]
- Zhou, D.D.; Luo, M.; Shang, A.; Mao, Q.Q.; Li, B.Y.; Gan, R.Y.; Li, H.B. Antioxidant Food Components for the Prevention and Treatment of Cardiovascular Diseases: Effects, Mechanisms, and Clinical Studies. Oxid. Med. Cell Longev. 2021, 2021, 6627355. [Google Scholar] [CrossRef]
- Rahman, S.; Mathew, S.; Nair, P.; Ramadan, W.S.; Vazhappilly, C.G. Health benefits of cyanidin-3-glucoside as a potent modulator of Nrf2-mediated oxidative stress. Inflammopharmacology 2021, 29, 907–923. [Google Scholar] [CrossRef]
- Larsson, S.C.; Drca, N.; Bjorck, M.; Back, M.; Wolk, A. Nut consumption and incidence of seven cardiovascular diseases. Heart 2018, 104, 1615–1620. [Google Scholar] [CrossRef]
- Bell, L.; Williams, C.M. A pilot dose-response study of the acute effects of haskap berry extract (Lonicera caerulea L.) on cognition, mood, and blood pressure in older adults. Eur. J. Nutr. 2019, 58, 3325–3334. [Google Scholar] [CrossRef] [Green Version]
- Askari, M.; Daneshzad, E.; Jafari, A.; Bellissimo, N.; Azadbakht, L. Association of nut and legume consumption with Framingham 10 year risk of general cardiovascular disease in older adult men: A cross-sectional study. Clin. Nutr. ESPEN 2021, 42, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Igwe, E.O.; Charlton, K.E.; Roodenrys, S.; Kent, K.; Fanning, K.; Netzel, M.E. Anthocyanin-rich plum juice reduces ambulatory blood pressure but not acute cognitive function in younger and older adults: A pilot crossover dose-timing study. Nutr. Res. 2017, 47, 28–43. [Google Scholar] [CrossRef] [PubMed]
- Del Bo, C.; Marino, M.; Riso, P.; Moller, P.; Porrini, M. Anthocyanins and metabolites resolve TNF-alpha-mediated production of E-selectin and adhesion of monocytes to endothelial cells. Chem. Biol. Interact. 2019, 300, 49–55. [Google Scholar] [CrossRef]
- Lagoa, R.; Samhan-Arias, A.K.; Gutierrez-Merino, C. Correlation between the potency of flavonoids for cytochrome c reduction and inhibition of cardiolipin-induced peroxidase activity. BioFactors 2017, 43, 451–468. [Google Scholar] [CrossRef]
- Li, F.; Lang, F.; Wang, Y.; Zhai, C.; Zhang, C.; Zhang, L.; Hao, E. Cyanidin ameliorates endotoxin-induced myocardial toxicity by modulating inflammation and oxidative stress through mitochondria and other factors. Food Chem. Toxicol. 2018, 120, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Horie, K.; Nanashima, N.; Maeda, H. Phytoestrogenic Effects of Blackcurrant Anthocyanins Increased Endothelial Nitric Oxide Synthase (eNOS) Expression in Human Endothelial Cells and Ovariectomized Rats. Molecules 2019, 24, 1259. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xu, Z.; Zhao, H.; Wang, X.; Pang, J.; Li, Q.; Yang, Y.; Ling, W. Anthocyanin supplementation improves anti-oxidative and anti-inflammatory capacity in a dose-response manner in subjects with dyslipidemia. Redox Biol. 2020, 32, 101474. [Google Scholar] [CrossRef]
- Aboonabi, A.; Meyer, R.R.; Gaiz, A.; Singh, I. Anthocyanins in berries exhibited anti-atherogenicity and antiplatelet activities in a metabolic syndrome population. Nutr. Res. 2020, 76, 82–93. [Google Scholar] [CrossRef]
- Barnes, M.J.; Perry, B.G.; Hurst, R.D.; Lomiwes, D. Anthocyanin-Rich New Zealand Blackcurrant Extract Supports the Maintenance of Forearm Blood-Flow During Prolonged Sedentary Sitting. Front. Nutr. 2020, 7, 74. [Google Scholar] [CrossRef]
- Cook, M.D.; Sandu, B.H.A.K.; Joyce Ph, D.J. Effect of New Zealand Blackcurrant on Blood Pressure, Cognitive Function and Functional Performance in Older Adults. J. Nutr. Gerontol. Geriatr. 2020, 39, 99–113. [Google Scholar] [CrossRef]
- Lim, T.; Ryu, J.; Lee, K.; Park, S.Y.; Hwang, K.T. Protective Effects of Black Raspberry (Rubus occidentalis) Extract against Hypercholesterolemia and Hepatic Inflammation in Rats Fed High-Fat and High-Choline Diets. Nutrients 2020, 12, 2448. [Google Scholar] [CrossRef] [PubMed]
- Turck, P.; Fraga, S.; Salvador, I.; Campos-Carraro, C.; Lacerda, D.; Bahr, A.; Ortiz, V.; Hickmann, A.; Koetz, M.; Bello-Klein, A.; et al. Blueberry extract decreases oxidative stress and improves functional parameters in lungs from rats with pulmonary arterial hypertension. Nutrition 2020, 70, 110579. [Google Scholar] [CrossRef] [PubMed]
- Curtis, P.J.; van der Velpen, V.; Berends, L.; Jennings, A.; Feelisch, M.; Umpleby, A.M.; Evans, M.; Fernandez, B.O.; Meiss, M.S.; Minnion, M.; et al. Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome-results from a 6-month, double-blind, randomized controlled trial. Am. J. Clin. Nutr. 2019, 109, 1535–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danielewski, M.; Kucharska, A.Z.; Matuszewska, A.; Rapak, A.; Gomulkiewicz, A.; Dzimira, S.; Dziegiel, P.; Nowak, B.; Trocha, M.; Magdalan, J.; et al. Cornelian Cherry (Cornus mas L.) Iridoid and Anthocyanin Extract Enhances PPAR-alpha, PPAR-gamma Expression and Reduces I/M Ratio in Aorta, Increases LXR-alpha Expression and Alters Adipokines and Triglycerides Levels in Cholesterol-Rich Diet Rabbit Model. Nutrients 2021, 13, 3621. [Google Scholar] [CrossRef] [PubMed]
- Nurfaradilla, S.A.; Saputri, F.C.; Harahap, Y. Effects of Hibiscus Sabdariffa Calyces Aqueous Extract on the Antihypertensive Potency of Captopril in the Two-Kidney-One-Clip Rat Hypertension Model. Evid. Based Complement. Alternat. Med. 2019, 2019, 9694212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guissou, I.P.; Ouédraogo, S.; Kini, F.B.; Ouédraogo, S.; Ouédraogo, J.C.W.; Belemnaba, L.; Koala, M.; Nitiéma, M. Endothelium-Independent Vasorelaxant Effects of Anthocyanins-Enriched Extract from Odontonema strictum (Nees) Kuntze (Acanthaceae) Flowers: Ca2+ Channels Involvement. Eur. J. Med. Plants 2019, 29, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mehdi, A.; Lamiae, B.; Samira, B.; Ramchoun, M.; Abdelouahed, K.; Tamas, F.; Hicham, B. Pomegranate (Punica granatum L.) Attenuates Neuroinflammation Involved in Neurodegenerative Diseases. Foods 2022, 11, 2570. [Google Scholar] [CrossRef]
- Hein, S.; Whyte, A.R.; Wood, E.; Rodriguez-Mateos, A.; Williams, C.M. Systematic Review of the Effects of Blueberry on Cognitive Performance as We Age. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 984–995. [Google Scholar] [CrossRef] [Green Version]
- Milenkovic, D.; Krga, I.; Dinel, A.L.; Morand, C.; Laye, S.; Castanon, N. Nutrigenomic modification induced by anthocyanin-rich bilberry extract in the hippocampus of ApoE-/- mice. J. Funct. Foods 2021, 85, 104609. [Google Scholar] [CrossRef]
- Rodriguez-Mateos, A.; Istas, G.; Boschek, L.; Feliciano, R.P.; Mills, C.E.; Boby, C.; Gomez-Alonso, S.; Milenkovic, D.; Heiss, C. Circulating Anthocyanin Metabolites Mediate Vascular Benefits of Blueberries: Insights From Randomized Controlled Trials, Metabolomics, and Nutrigenomics. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 967–976. [Google Scholar] [CrossRef]
- Vauzour, D.; Rendeiro, C.; D’Amato, A.; Waffo-Teguo, P.; Richard, T.; Merillon, J.M.; Pontifex, M.G.; Connell, E.; Muller, M.; Butler, L.T.; et al. Anthocyanins Promote Learning through Modulation of Synaptic Plasticity Related Proteins in an Animal Model of Ageing. Antioxidants 2021, 10, 1235. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Tian, H.; Liu, C.; Zhang, X.; Peng, Y.; Yang, X.; Chen, F.; Li, J. Metformin and cyanidin 3-O-galactoside from Aronia melanocarpa synergistically alleviate cognitive impairment in SAMP8 mice. Food Funct. 2021, 12, 10994–11008. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Johnson, S.L.; Liu, W.; DaSilva, N.A.; Meschwitz, S.; Dain, J.A.; Seeram, N.P. Evaluation of Polyphenol Anthocyanin-Enriched Extracts of Blackberry, Black Raspberry, Blueberry, Cranberry, Red Raspberry, and Strawberry for Free Radical Scavenging, Reactive Carbonyl Species Trapping, Anti-Glycation, Anti-beta-Amyloid Aggregation, and Microglial Neuroprotective Effects. Int. J. Mol. Sci. 2018, 19, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, T.; Kim, T.; Rehman, S.U.; Khan, M.S.; Amin, F.U.; Khan, M.; Ikram, M.; Kim, M.O. Natural Dietary Supplementation of Anthocyanins via PI3K/Akt/Nrf2/HO-1 Pathways Mitigate Oxidative Stress, Neurodegeneration, and Memory Impairment in a Mouse Model of Alzheimer’s Disease. Mol. Neurobiol. 2018, 55, 6076–6093. [Google Scholar] [CrossRef] [PubMed]
- Zaim, M.; Kara, I.; Muduroglu, A. Black carrot anthocyanins exhibit neuroprotective effects against MPP+ induced cell death and cytotoxicity via inhibition of oxidative stress mediated apoptosis. Cytotechnology 2021, 73, 827–840. [Google Scholar] [CrossRef]
- Serra, D.; Henriques, J.F.; Serra, T.; Bento Silva, A.; Bronze, M.R.; Dinis, T.C.P.; Almeida, L.M. An Anthocyanin-Rich Extract Obtained from Portuguese Blueberries Maintains Its Efficacy in Reducing Microglia-Driven Neuroinflammation after Simulated Digestion. Nutrients 2020, 12, 3670. [Google Scholar] [CrossRef]
- Yama, K.; Hasebe, Y.; Inomata, A.; Miura, J.; Konda, A. Induction of Sirtuin1 Activity in SH-SY5Y Cells by Cyanidin-3-O-Glucocide Induced. Pharmacol. Pharm. 2022, 13, 35–48. [Google Scholar] [CrossRef]
- Sanjay; Shin, J.H.; Park, M.; Lee, H.J. Cyanidin-3-O-Glucoside Regulates the M1/M2 Polarization of Microglia via PPARgamma and Abeta42 Phagocytosis Through TREM2 in an Alzheimer’s Disease Model. Mol. Neurobiol. 2022, 59, 5135–5148. [Google Scholar] [CrossRef]
- Kaewmool, C.; Udomruk, S.; Phitak, T.; Pothacharoen, P.; Kongtawelert, P. Cyanidin-3-O-Glucoside Protects PC12 Cells Against Neuronal Apoptosis Mediated by LPS-Stimulated BV2 Microglial Activation. Neurotox. Res. 2020, 37, 111–125. [Google Scholar] [CrossRef]
- Noi, K.; Ikenaka, K.; Mochizuki, H.; Goto, Y.; Ogi, H. Disaggregation Behavior of Amyloid beta Fibrils by Anthocyanins Studied by Total-Internal-Reflection-Fluorescence Microscopy Coupled with a Wireless Quartz-Crystal Microbalance Biosensor. Anal. Chem. 2021, 93, 11176–11183. [Google Scholar] [CrossRef]
- Chen, S.S.; Hu, N.; Wang, H.L.; Li, G.L. The major anthocyanin of Lycium ruthenicum Murr. relieves cognitive deficits, oxidative stress, neuroinflammation, and hippocampal metabolome alterations in aging rats. J. Funct. Foods 2022, 94, 105104. [Google Scholar] [CrossRef]
- El-Shiekh, R.A.; Ashour, R.M.; Abd El-Haleim, E.A.; Ahmed, K.A.; Abdel-Sattar, E. Hibiscus sabdariffa L.: A potent natural neuroprotective agent for the prevention of streptozotocin-induced Alzheimer’s disease in mice. Biomed. Pharmacother. 2020, 128, 110303. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.X.; Chen, J.H.; Li, J.W.; Cheng, F.R.; Yuan, K. Protection of Anthocyanin from Myrica rubra against Cerebral Ischemia-Reperfusion Injury via Modulation of the TLR4/NF-kappaB and NLRP3 Pathways. Molecules 2018, 23, 1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Mao, G.H.; Zhang, Z.H.R.; Zhao, T.; Feng, W.W.; Yang, L.Q.; Wu, X.Y. The protective effect of C3G against Pb-induced learning and memory impairments through cAMP-PKA-CREB signaling pathway in rat hippocampus. Process Biochem. 2022, 118, 381–393. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, H.; Zhang, G.; Dong, Q.; Wang, Z.; Wang, H.; Hu, N. Characterization, antioxidant, and neuroprotective effects of anthocyanins from Nitraria tangutorum Bobr. fruit. Food Chem. 2021, 353, 129435. [Google Scholar] [CrossRef]
- Mohamed, D.; El-Shamarka, M.; Abdelgayed, S.; Mohamed, R. Protective effect of dietary supplements against streptozotocin-induced Alzheimer’s disease in mice. J. Herbmed Pharmacol. 2021, 10, 426–435. [Google Scholar] [CrossRef]
- Winter, A.N.; Ross, E.K.; Wilkins, H.M.; Stankiewicz, T.R.; Wallace, T.; Miller, K.; Linseman, D.A. An anthocyanin-enriched extract from strawberries delays disease onset and extends survival in the hSOD1 (G93A) mouse model of amyotrophic lateral sclerosis. Nutr. Neurosci. 2018, 21, 414–426. [Google Scholar] [CrossRef]
- Filaferro, M.; Codeluppi, A.; Brighenti, V.; Cimurri, F.; Gonzalez-Paramas, A.M.; Santos-Buelga, C.; Bertelli, D.; Pellati, F.; Vitale, G. Disclosing the Antioxidant and Neuroprotective Activity of an Anthocyanin-Rich Extract from Sweet Cherry (Prunus avium L.) Using In Vitro and In Vivo Models. Antioxidants 2022, 11, 211. [Google Scholar] [CrossRef]
- Tikhonova, M.A.; Shoeva, O.Y.; Tenditnik, M.V.; Ovsyukova, M.V.; Akopyan, A.A.; Dubrovina, N.I.; Amstislavskaya, T.G.; Khlestkina, E.K. Evaluating the Effects of Grain of Isogenic Wheat Lines Differing in the Content of Anthocyanins in Mouse Models of Neurodegenerative Disorders. Nutrients 2020, 12, 3877. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, H.; Song, L.; Yang, Z.; Qiu, M.; Wang, J.; Shi, S. Anthocyanins: Promising Natural Products with Diverse Pharmacological Activities. Molecules 2021, 26, 3807. [Google Scholar] [CrossRef]
- Diaconeasa, Z.; Știrbu, I.; Xiao, J.; Leopold, N.; Ayvaz, Z.; Danciu, C.; Ayvaz, H.; Stǎnilǎ, A.; Nistor, M.; Socaciu, C. Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention. Biomedicines 2020, 8, 336. [Google Scholar] [CrossRef] [PubMed]
- Del Bubba, M.; Di Serio, C.; Renai, L.; Scordo, C.V.A.; Checchini, L.; Ungar, A.; Tarantini, F.; Bartoletti, R. Vaccinium myrtillus L. extract and its native polyphenol-recombined mixture have anti-proliferative and pro-apoptotic effects on human prostate cancer cell lines. Phytother. Res. 2021, 35, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.L.; Mi, J.; Lu, L.; Luo, Q.; Liu, X.; Yan, Y.M.; Jin, B.; Cao, Y.L.; Zeng, X.X.; Ran, L.W. The main anthocyanin monomer of Lycium ruthenicum Murray induces apoptosis through the ROS/PTEN/PI3K/Akt/caspase 3 signaling pathway in prostate cancer DU-145 cells. Food Funct. 2021, 12, 1818–1828. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.R.; Vaz, C.V.; Catalao, B.; Ferreira, S.; Cardoso, H.J.; Duarte, A.P.; Socorro, S. Sweet Cherry Extract Targets the Hallmarks of Cancer in Prostate Cells: Diminished Viability, Increased Apoptosis and Suppressed Glycolytic Metabolism. Nutr. Cancer 2020, 72, 917–931. [Google Scholar] [CrossRef]
- Drozdowska, M.; Leszczynska, T.; Koronowicz, A.; Piasna-Slupecka, E.; Dziadek, K. Comparative study of young shoots and the mature red headed cabbage as antioxidant food resources with antiproliferative effect on prostate cancer cells. RSC Adv. 2020, 10, 43021–43034. [Google Scholar] [CrossRef]
- Shreelakshmi, S.V.; Chaitrashree, N.; Kumar, S.S.; Shetty, N.P.; Giridhar, P. Fruits of Ixora coccinea are a rich source of hytoconstituents, bioactives, exhibit antioxidant activity and cytotoxicity against human prostate carcinoma cells and development of RTS beverage. J. Food Process. Preserv. 2021, 45, e15656. [Google Scholar] [CrossRef]
- Lamas, C.A.; Kido, L.A.; Hermes, T.A.; Nogueira-Lima, E.; Minatel, E.; Collares-Buzato, C.B.; Marostica, M.R., Jr.; Cagnon, V.H.A. Brazilian berry extract (Myrciaria jaboticaba): A promising therapy to minimize prostatic inflammation and oxidative stress. Prostate 2020, 80, 859–871. [Google Scholar] [CrossRef]
- Kim, N.H.; Jegal, J.; Kim, Y.N.; Heo, J.D.; Rho, J.R.; Yang, M.H.; Jeong, E.J. The Effects of Aronia melanocarpa Extract on Testosterone-Induced Benign Prostatic Hyperplasia in Rats, and Quantitative Analysis of Major Constituents Depending on Extract Conditions. Nutrients 2020, 12, 1575. [Google Scholar] [CrossRef]
- Yeewa, R.; Naiki-Ito, A.; Naiki, T.; Kato, H.; Suzuki, S.; Chewonarin, T.; Takahashi, S. Hexane Insoluble Fraction from Purple Rice Extract Retards Carcinogenesis and Castration-Resistant Cancer Growth of Prostate Through Suppression of Androgen Receptor Mediated Cell Proliferation and Metabolism. Nutrients 2020, 12, 558. [Google Scholar] [CrossRef] [Green Version]
- Birt, D.F.; Phillips, G.J. Diet, genes, and microbes: Complexities of colon cancer prevention. Toxicol. Pathol. 2014, 42, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Shi, N.; Chen, X.; Chen, T. Anthocyanins in Colorectal Cancer Prevention Review. Antioxidants 2021, 10, 1600. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Yu, W.; Hao, R.; Fan, J.; Gao, J. Anthocyanins from Aronia melanocarpa Induce Apoptosis in Caco-2 Cells through Wnt/beta-Catenin Signaling Pathway. Chem. Biodivers. 2020, 17, e2000654. [Google Scholar] [CrossRef]
- Gill, N.K.; Rios, D.; Osorio-Camacena, E.; Mojica, B.E.; Kaur, B.; Soderstrom, M.A.; Gonzalez, M.; Plaat, B.; Poblete, C.; Kaur, N.; et al. Anticancer Effects of Extracts from Three Different Chokeberry Species. Nutr. Cancer 2021, 73, 1168–1174. [Google Scholar] [CrossRef] [PubMed]
- Mazewski, C.; Liang, K.; Gonzalez de Mejia, E. Comparison of the effect of chemical composition of anthocyanin-rich plant extracts on colon cancer cell proliferation and their potential mechanism of action using in vitro, in silico, and biochemical assays. Food Chem. 2018, 242, 378–388. [Google Scholar] [CrossRef]
- Baster, Z.; Li, L.; Kukkurainen, S.; Chen, J.; Pentikainen, O.; Gyorffy, B.; Hytonen, V.P.; Zhu, H.; Rajfur, Z.; Huang, C. Cyanidin-3-glucoside binds to talin and modulates colon cancer cell adhesions and 3D growth. FASEB J. 2020, 34, 2227–2237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Pan, Y.; Zhao, Y.; Ren, M.; Li, Y.; Lu, G.; Wu, K.; He, S. Delphinidin modulates JAK/STAT3 and MAPKinase signaling to induce apoptosis in HCT116 cells. Environ. Toxicol. 2021, 36, 1557–1566. [Google Scholar] [CrossRef]
- Huang, C.C.; Hung, C.H.; Hung, T.W.; Lin, Y.C.; Wang, C.J.; Kao, S.H. Dietary delphinidin inhibits human colorectal cancer metastasis associating with upregulation of miR-204-3p and suppression of the integrin/FAK axis. Sci. Rep. 2019, 9, 18954. [Google Scholar] [CrossRef] [Green Version]
- Mazewski, C.; Kim, M.S.; Gonzalez de Mejia, E. Anthocyanins, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, inhibit immune checkpoints in human colorectal cancer cells in vitro and in silico. Sci. Rep. 2019, 9, 11560. [Google Scholar] [CrossRef] [Green Version]
- Fragoso, M.F.; Romualdo, G.R.; Vanderveer, L.A.; Franco-Barraza, J.; Cukierman, E.; Clapper, M.L.; Carvalho, R.F.; Barbisan, L.F. Lyophilized acai pulp (Euterpe oleracea Mart) attenuates colitis-associated colon carcinogenesis while its main anthocyanin has the potential to affect the motility of colon cancer cells. Food Chem. Toxicol. 2018, 121, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Yoon, B.I.; Bae, W.J.; Choi, Y.S.; Kim, S.J.; Ha, U.S.; Hong, S.H.; Sohn, D.W.; Kim, S.W. Anti-inflammatory and Antimicrobial Effects of Anthocyanin Extracted from Black Soybean on Chronic Bacterial Prostatitis Rat Model. Chin. J. Integr. Med. 2018, 24, 621–626. [Google Scholar] [CrossRef]
- Fernandez, J.; Garcia, L.; Monte, J.; Villar, C.J.; Lombo, F. Functional Anthocyanin-Rich Sausages Diminish Colorectal Cancer in an Animal Model and Reduce Pro-Inflammatory Bacteria in the Intestinal Microbiota. Genes 2018, 9, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimes, K.L.; Stuart, C.M.; McCarthy, J.J.; Kaur, B.; Cantu, E.J.; Forester, S.C. Enhancing the Cancer Cell Growth Inhibitory Effects of Table Grape Anthocyanins. J. Food Sci. 2018, 83, 2369–2374. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, M.; Wan, H.; Chen, L.; Luo, F. Association between Dietary Anthocyanidins and Risk of Lung Cancer. Nutrients 2022, 14, 2643. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.N.; Panchanathan, R.; Lee, W.S.; Kim, H.J.; Kim, D.H.; Choi, Y.H.; Kim, G.S.; Shin, S.C.; Hong, S.C. Anthocyanins from the Fruit of Vitis Coignetiae Pulliat Inhibit TNF-Augmented Cancer Proliferation, Migration, and Invasion in A549 Cells. Asian Pac. J. Cancer Prev. 2017, 18, 2919–2923. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, W.; Xu, X. Cyanidin-3-glucoside suppresses the progression of lung adenocarcinoma by downregulating TP53I3 and inhibiting PI3K/AKT/mTOR pathway. World J. Surg. Oncol. 2021, 19, 232. [Google Scholar] [CrossRef]
- Kim, M.H.; Jeong, Y.J.; Cho, H.J.; Hoe, H.S.; Park, K.K.; Park, Y.Y.; Choi, Y.H.; Kim, C.H.; Chang, H.W.; Park, Y.J.; et al. Delphinidin inhibits angiogenesis through the suppression of HIF-1alpha and VEGF expression in A549 lung cancer cells. Oncol. Rep. 2017, 37, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.; Liu, Y.; Xu, C.; Liu, J. Antiproliferative and proapoptotic activities of anthocyanin and anthocyanidin extracts from blueberry fruits on B16-F10 melanoma cells. Food Nutr. Res. 2017, 61, 1325308. [Google Scholar] [CrossRef] [Green Version]
- Rugina, D.; Hanganu, D.; Diaconeasa, Z.; Tabaran, F.; Coman, C.; Leopold, L.; Bunea, A.; Pintea, A. Antiproliferative and Apoptotic Potential of Cyanidin-Based Anthocyanins on Melanoma Cells. Int. J. Mol. Sci. 2017, 18, 949. [Google Scholar] [CrossRef]
- Liu, M.; Du, Y.; Li, H.; Wang, L.; Ponikwicka-Tyszko, D.; Lebiedzinska, W.; Pilaszewicz-Puza, A.; Liu, H.; Zhou, L.; Fan, H.; et al. Cyanidin-3-o-Glucoside Pharmacologically Inhibits Tumorigenesis via Estrogen Receptor beta in Melanoma Mice. Front. Oncol. 2019, 9, 1110. [Google Scholar] [CrossRef] [Green Version]
- Bars-Cortina, D.; Sakhawat, A.; Pinol-Felis, C.; Motilva, M.J. Chemopreventive effects of anthocyanins on colorectal and breast cancer: A review. Semin. Cancer Biol. 2022, 81, 241–258. [Google Scholar] [CrossRef]
- Han, B.; Peng, X.; Cheng, D.; Zhu, Y.; Du, J.; Li, J.; Yu, X. Delphinidin suppresses breast carcinogenesis through the HOTAIR/microRNA-34a axis. Cancer Sci. 2019, 110, 3089–3097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerletti, C.; De Curtis, A.; Bracone, F.; Digesu, C.; Morganti, A.G.; Iacoviello, L.; de Gaetano, G.; Donati, M.B. Dietary anthocyanins and health: Data from FLORA and ATHENA EU projects. Br. J. Clin. Pharmacol. 2017, 83, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Bracone, F.; De Curtis, A.; Di Castelnuovo, A.; Pilu, R.; Boccardi, M.; Cilla, S.; Macchia, G.; Deodato, F.; Costanzo, S.; Iacoviello, L.; et al. Skin toxicity following radiotherapy in patients with breast carcinoma: Is anthocyanin supplementation beneficial? Clin. Nutr. 2021, 40, 2068–2077. [Google Scholar] [CrossRef]
- Feng, X.-L.; Ho, S.C.; Mo, X.-F.; Lin, F.-Y.; Zhang, N.-Q.; Luo, H.; Zhang, X.; Zhang, C.-X. Association between flavonoids, flavonoid subclasses intake and breast cancer risk: A case-control study in China. Eur. J. Cancer Prev. 2020, 29, 493–500. [Google Scholar] [CrossRef]
- Bars-Cortina, D.; Martinez-Bardaji, A.; Macia, A.; Motilva, M.J.; Pinol-Felis, C. Consumption evaluation of one apple flesh a day in the initial phases prior to adenoma/adenocarcinoma in an azoxymethane rat colon carcinogenesis model. J. Nutr. Biochem. 2020, 83, 108418. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Fan, M.; Tang, Y.; Yang, H.P.; Hwang, J.Y.; Kim, E.K. In Vivo Effects of Polymerized Anthocyanin from Grape Skin on Benign Prostatic Hyperplasia. Nutrients 2019, 11, 2444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lippert, E.; Ruemmele, P.; Obermeier, F.; Goelder, S.; Kunst, C.; Rogler, G.; Dunger, N.; Messmann, H.; Hartmann, A.; Endlicher, E. Anthocyanins Prevent Colorectal Cancer Development in a Mouse Model. Digestion 2017, 95, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Jiang, B.; Zhong, C.; Guo, J.; Zhang, L.; Mu, T.; Zhang, Q.; Bi, X. Chemoprevention of colorectal cancer by black raspberry anthocyanins involved the modulation of gut microbiota and SFRP2 demethylation. Carcinogenesis 2018, 39, 471–481. [Google Scholar] [CrossRef] [Green Version]
- Condello, M.; Pellegrini, E.; Spugnini, E.P.; Baldi, A.; Amadio, B.; Vincenzi, B.; Occhionero, G.; Delfine, S.; Mastrodonato, F.; Meschini, S. Anticancer activity of “Trigno M”, extract of Prunus spinosa drupes, against in vitro 3D and in vivo colon cancer models. Biomed. Pharmacother. 2019, 118, 109281. [Google Scholar] [CrossRef]
- Wu, C.F.; Wu, C.Y.; Lin, C.F.; Liu, Y.W.; Lin, T.C.; Liao, H.J.; Chang, G.R. The anticancer effects of cyanidin 3-O-glucoside combined with 5-fluorouracil on lung large-cell carcinoma in nude mice. Biomed. Pharmacother. 2022, 151, 113128. [Google Scholar] [CrossRef]
- Mazzoni, L.; Giampieri, F.; Alvarez Suarez, J.M.; Gasparrini, M.; Mezzetti, B.; Forbes Hernandez, T.Y.; Battino, M.A. Isolation of strawberry anthocyanin-rich fractions and their mechanisms of action against murine breast cancer cell lines. Food Funct. 2019, 10, 7103–7120. [Google Scholar] [CrossRef]
- Shah, M.A.; Haris, M.; Faheem, H.I.; Hamid, A.; Yousaf, R.; Rasul, A.; Shah, G.M.; Khalil, A.A.K.; Wahab, A.; Khan, H.; et al. Cross-Talk between Obesity and Diabetes: Introducing Polyphenols as an Effective Phytomedicine to Combat the Dual Sword Diabesity. Curr. Pharm. Des. 2022, 28, 1523–1542. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Ramirez, B.A.; Catalan, U.; Llaurado, E.; Valls, R.M.; Salamanca, P.; Rubio, L.; Yuste, S.; Sola, R. The health benefits of anthocyanins: An umbrella review of systematic reviews and meta-analyses of observational studies and controlled clinical trials. Nutr. Rev. 2022, 80, 1515–1530. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yang, B.; Tan, J.; Jiang, J.; Li, D. Associations of dietary intakes of anthocyanins and berry fruits with risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective cohort studies. Eur. J. Clin. Nutr. 2016, 70, 1360–1367. [Google Scholar] [CrossRef] [PubMed]
- Aboonabi, A.; Singh, I.; Rose’ Meyer, R. Cytoprotective effects of berry anthocyanins against induced oxidative stress and inflammation in primary human diabetic aortic endothelial cells. Chem. Biol. Interact. 2020, 317, 108940. [Google Scholar] [CrossRef] [PubMed]
- Luna-Vital, D.; Weiss, M.; Gonzalez de Mejia, E. Anthocyanins from Purple Corn Ameliorated Tumor Necrosis Factor-alpha-Induced Inflammation and Insulin Resistance in 3T3-L1 Adipocytes via Activation of Insulin Signaling and Enhanced GLUT4 Translocation. Mol. Nutr. Food Res. 2017, 61, 1700362. [Google Scholar] [CrossRef] [PubMed]
- Alzaid, F.; Cheung, H.M.; Preedy, V.R.; Sharp, P.A. Regulation of glucose transporter expression in human intestinal Caco-2 cells following exposure to an anthocyanin-rich berry extract. PLoS ONE 2013, 8, e78932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Ling, W.; Du, Z.; Chen, Y.; Li, D.; Deng, S.; Liu, Z.; Yang, L. Effects of Anthocyanins on Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2017, 8, 684–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daneshzad, E.; Shab-Bidar, S.; Mohammadpour, Z.; Djafarian, K. Effect of anthocyanin supplementation on cardio-metabolic biomarkers: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2019, 38, 1153–1165. [Google Scholar] [CrossRef]
- Tani, T.; Nishikawa, S.; Kato, M.; Tsuda, T. Delphinidin 3-rutinoside-rich blackcurrant extract ameliorates glucose tolerance by increasing the release of glucagon-like peptide-1 secretion. Food Sci. Nutr. 2017, 5, 929–933. [Google Scholar] [CrossRef]
- Wu, T.; Yang, L.; Guo, X.; Zhang, M.; Liu, R.; Sui, W. Raspberry anthocyanin consumption prevents diet-induced obesity by alleviating oxidative stress and modulating hepatic lipid metabolism. Food Funct. 2018, 9, 2112–2120. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Guo, X.; Zhang, M.; Yang, L.; Liu, R.; Yin, J. Anthocyanins in black rice, soybean and purple corn increase fecal butyric acid and prevent liver inflammation in high fat diet-induced obese mice. Food Funct. 2017, 8, 3178–3186. [Google Scholar] [CrossRef] [PubMed]
- Azzini, E.; Venneria, E.; Ciarapica, D.; Foddai, M.S.; Intorre, F.; Zaccaria, M.; Maiani, F.; Palomba, L.; Barnaba, L.; Tubili, C.; et al. Effect of Red Orange Juice Consumption on Body Composition and Nutritional Status in Overweight/Obese Female: A Pilot Study. Oxid. Med. Cell Longev. 2017, 2017, 1672567. [Google Scholar] [CrossRef] [Green Version]
- Kajimoto, O.; Sasaki, K.; Takahashi, T. Recovery effect of VMA intake on visual acuity of pseudomyopia in primary school students. J. New Rem. Clin. 2000, 49, 72–79. [Google Scholar]
- Oliveira, H.; Correia, P.; Pereira, A.R.; Araujo, P.; Mateus, N.; de Freitas, V.; Oliveira, J.; Fernandes, I. Exploring the Applications of the Photoprotective Properties of Anthocyanins in Biological Systems. Int. J. Mol. Sci. 2020, 21, 7464. [Google Scholar] [CrossRef] [PubMed]
- Sim, R.H.; Sirasanagandla, S.R.; Das, S.; Teoh, S.L. Treatment of Glaucoma with Natural Products and Their Mechanism of Action: An Update. Nutrients 2022, 14, 534. [Google Scholar] [CrossRef]
- Aires, I.D.; Boia, R.; Rodrigues-Neves, A.C.; Madeira, M.H.; Marques, C.; Ambrosio, A.F.; Santiago, A.R. Blockade of microglial adenosine A2A receptor suppresses elevated pressure-induced inflammation, oxidative stress, and cell death in retinal cells. Glia 2019, 67, 896–914. [Google Scholar] [CrossRef] [Green Version]
- Santiago, A.R.; Boia, R.; Aires, I.D.; Ambrosio, A.F.; Fernandes, R. Sweet Stress: Coping With Vascular Dysfunction in Diabetic Retinopathy. Front Physiol. 2018, 9, 820. [Google Scholar] [CrossRef]
- Nomi, Y.; Iwasaki-Kurashige, K.; Matsumoto, H. Therapeutic Effects of Anthocyanins for Vision and Eye Health. Molecules 2019, 24, 3311. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Liang, S.; Zhao, Y.; Yang, S.; Ni, H.; Li, H. Protection of Aronia melanocarpa Fruit Extract from Sodium-Iodate-Induced Damages in Rat Retina. Nutrients 2021, 13, 4411. [Google Scholar] [CrossRef]
- Matsumoto, H.; Nakamura, Y.; Iida, H.; Ito, K.; Ohguro, H. Comparative assessment of distribution of blackcurrant anthocyanins in rabbit and rat ocular tissues. Exp. Eye Res. 2006, 83, 348–356. [Google Scholar] [CrossRef]
- Oliveira, H.; Roma-Rodrigues, C.; Santos, A.; Veigas, B.; Bras, N.; Faria, A.; Calhau, C.; de Freitas, V.; Baptista, P.V.; Mateus, N.; et al. GLUT1 and GLUT3 involvement in anthocyanin gastric transport- Nanobased targeted approach. Sci. Rep. 2019, 9, 789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, W.; Wu, Y.; Peng, Z.; Qi, W.; Liu, T.; Yang, B.; He, D.; Liu, Y.; Wang, Y. Cyanidin-3-glucoside improves the barrier function of retinal pigment epithelium cells by attenuating endoplasmic reticulum stress-induced apoptosis. Food Res. Int. 2022, 157, 111313. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huo, Y.; Zhao, L.; Lu, F.; Wang, O.; Yang, X.; Ji, B.; Zhou, F. Cyanidin-3-glucoside and its phenolic acid metabolites attenuate visible light-induced retinal degeneration in vivo via activation of Nrf2/HO-1 pathway and NF-kappaB suppression. Mol. Nutr. Food Res. 2016, 60, 1564–1577. [Google Scholar] [CrossRef]
- Song, X.L.; Li, M.J.; Liu, Q.; Hu, Z.X.; Xu, Z.Y.; Li, J.H.; Zheng, W.L.; Huang, X.M.; Xiao, F.; Cui, Y.H.; et al. Cyanidin-3-O-glucoside Protects Lens Epithelial Cells against High Glucose-Induced Apoptosis and Prevents Cataract Formation via Suppressing NF-kappaB Activation and Cox-2 Expression. J. Agric. Food. Chem. 2020, 68, 8286–8294. [Google Scholar] [CrossRef]
- Huang, W.; Yan, Z.; Li, D.; Ma, Y.; Zhou, J.; Sui, Z. Antioxidant and Anti-Inflammatory Effects of Blueberry Anthocyanins on High Glucose-Induced Human Retinal Capillary Endothelial Cells. Oxid. Med. Cell Longev. 2018, 2018, 1862462. [Google Scholar] [CrossRef]
- Oliveira, H.; Basilio, N.; Pina, F.; Fernandes, I.; de Freitas, V.; Mateus, N. Purple-fleshed sweet potato acylated anthocyanins: Equilibrium network and photophysical properties. Food Chem. 2019, 288, 386–394. [Google Scholar] [CrossRef]
- Machado, M.H.; Almeida, A.D.; Maciela, M.V.D.B.; Vitorino, V.B.; Bazzo, G.C.; da Rosa, C.G.; Sganzerla, W.G.; Mendes, C.; Barreto, P.L.M. Microencapsulation by spray drying of red cabbage anthocyanin-rich extract for the production of a natural food colorant. Biocatal. Agric. Biotechnol. 2022, 39, 102287. [Google Scholar] [CrossRef]
- Fernandes, A.; BrandAo, E.; Raposo, F.; Maricato, E.; Oliveira, J.; Mateus, N.; Coimbra, M.A.; de Freitas, V. Impact of grape pectic polysaccharides on anthocyanins thermostability. Carbohydr. Polym. 2020, 239, 116240. [Google Scholar] [CrossRef]
- Sakulnarmrat, K.; Konczak, I. Encapsulation of Melodorum fruticosum Lour. anthocyanin-rich extract and its incorporation into model food. LWT 2022, 153, 112546. [Google Scholar] [CrossRef]
- Ghareaghajlou, N.; Hallaj-Nezhadi, S.; Ghasempour, Z. Nano-liposomal system based on lyophilization of monophase solution technique for encapsulating anthocyanin-rich extract from red cabbage. Dyes Pigments 2022, 202, 110263. [Google Scholar] [CrossRef]
- Gençdağ, E.; Özdemir, E.E.; Demirci, K.; Görgüç, A.; Yılmaz, F.M. Copigmentation and stabilization of anthocyanins using organic molecules and encapsulation techniques. Curr. Plant Biol. 2022, 29, 100238. [Google Scholar] [CrossRef]
- Fernandes, A.; Bras, N.F.; Oliveira, J.; Mateus, N.; de Freitas, V. Impact of a pectic polysaccharide on oenin copigmentation mechanism. Food Chem. 2016, 209, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Bingol, A.; Turkyilmaz, M.; Ozkan, M. Increase in thermal stability of strawberry anthocyanins with amino acid copigmentation. Food Chem. 2022, 384, 132518. [Google Scholar] [CrossRef]
- Cao, Y.; Xia, Q.; Aniya; Chen, J.; Jin, Z. Copigmentation effect of flavonols on anthocyanins in black mulberry juice and their interaction mechanism investigation. Food Chem. 2023, 399, 133927. [Google Scholar] [CrossRef]
- Lv, X.; Li, L.; Lu, X.; Wang, W.; Sun, J.; Liu, Y.; Mu, J.; Ma, Q.; Wang, J. Effects of organic acids on color intensification, thermodynamics, and copigmentation interactions with anthocyanins. Food Chem. 2022, 396, 133691. [Google Scholar] [CrossRef]
- Lv, X.; Mu, J.; Wang, W.; Liu, Y.; Lu, X.; Sun, J.; Wang, J.; Ma, Q. Effects and mechanism of natural phenolic acids/fatty acids on copigmentation of purple sweet potato anthocyanins. Curr. Res. Food Sci. 2022, 5, 1243–1250. [Google Scholar] [CrossRef]
- Jiang, T.; Ye, S.; Liao, W.; Wu, M.; He, J.; Mateus, N.; Oliveira, H. The botanical profile, phytochemistry, biological activities and protected-delivery systems for purple sweet potato (Ipomoea batatas (L.) Lam.): An up-to-date review. Food Res. Int. 2022, 161, 111811. [Google Scholar] [CrossRef]
- Fenger, J.A.; Roux, H.; Robbins, R.J.; Collins, T.M.; Dangles, O. The influence of phenolic acyl groups on the color of purple sweet potato anthocyanins and their metal complexes. Dyes Pigments 2021, 185, 108792. [Google Scholar] [CrossRef]
- Fenger, J.A.; Robbins, R.J.; Collins, T.M.; Dangles, O. The fate of acylated anthocyanins in mildly heated neutral solution. Dyes Pigments 2020, 178, 108326. [Google Scholar] [CrossRef]
- Escher, G.B.; Wen, M.; Zhang, L.; Rosso, N.D.; Granato, D. Phenolic composition by UHPLC-Q-TOF-MS/MS and stability of anthocyanins from Clitoria ternatea L. (butterfly pea) blue petals. Food Chem. 2020, 331, 127341. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.A.; Ivanou, D.; Mendes, A. The renaissance of monolithic dye-sensitized solar cells. Mater. Today Commun. 2022, 32, 104030. [Google Scholar] [CrossRef]
- Khir, H.; Pandey, A.K.; Saidur, R.; Shakeel Ahmad, M.; Abd Rahim, N.; Dewika, M.; Samykano, M. Recent advancements and challenges in flexible low temperature dye sensitised solar cells. Sustain. Energy Technol. Assess. 2022, 53, 102745. [Google Scholar] [CrossRef]
- Akhtaruzzaman, M.; Shahiduzzaman, M.; Selvanathan, V.; Sopian, K.; Hossain, M.I.; Amin, N.; Hasan, A.K.M. Enhancing spectral response towards high-performance dye-sensitised solar cells by multiple dye approach: A comprehensive review. Appl. Mater. Today 2021, 25, 101204. [Google Scholar] [CrossRef]
- Mejica, G.F.C.; Unpaprom, Y.; Balakrishnan, D.; Dussadee, N.; Buochareon, S.; Ramaraj, R. Anthocyanin pigment-based dye-sensitized solar cells with improved pH-dependent photovoltaic properties. Sustain. Energy Technol. Assess. 2022, 51, 101971. [Google Scholar] [CrossRef]
- Okello, A.; Owuor, B.O.; Namukobe, J.; Okello, D.; Mwabora, J. Influence of the pH of anthocyanins on the efficiency of dye sensitized solar cells. Heliyon 2022, 8, e09921. [Google Scholar] [CrossRef]
- Golshan, M.; Osfouri, S.; Azin, R.; Jalali, T.; Moheimani, N.R. Co-sensitization of natural and low-cost dyes for efficient panchromatic light-harvesting using dye-sensitized solar cells. J. Photochem. Photobiol. A-Chem. 2021, 417, 113345. [Google Scholar] [CrossRef]
- Tadesse, S.; Abebe, A.; Chebude, Y.; Villar Garcia, I.; Yohannes, T. Natural dye-sensitized solar cells using pigments extracted from Syzygium guineense. J. Photon. Energy 2012, 2, 027001. [Google Scholar] [CrossRef]
- Chien, C.-Y.; Hsu, B.-D. Optimization of the dye-sensitized solar cell with anthocyanin as photosensitizer. Solar Energy 2013, 98, 203–211. [Google Scholar] [CrossRef]
- Okello, A.; Owuor, B.O.; Namukobe, J.; Okello, D.; Mwabora, J. Influence of concentration of anthocyanins on electron transport in dye sensitized solar cells. Heliyon 2021, 7, e06571. [Google Scholar] [CrossRef]
- Urenyang, I.N. Comparative performances of nature-based dyes extracted from Baobab and Shea leaves photo-sensitizers for dye-sensitized solar cells (DSSCs). Curr. Res. Green Sustain. Chem. 2021, 4, 100105–102021. [Google Scholar] [CrossRef]
- Rivera-Calderón, S.; Sepulveda-Villegas, M.; Ceballos-Sanchez, O.; Perfecto-Avalos, Y.; Tiwari, N.; Garcia-Varela, R.; Sánchez-López, A.L.; Eloyr Navarro-López, D.; López-Mena, E.R.; Sanchez-Martinez, A. Erbium-doped ZnO nanoparticles for anode materials: A comparative study using anthocyanin and curcumin dyes in DSSC. Mater. Lett. 2022, 315, 131988. [Google Scholar] [CrossRef]
- Erande, K.B.; Hawaldar, P.Y.; Suryawanshi, S.R.; Babar, B.M.; Mohite, A.A.; Shelke, H.D.; Nipane, S.V.; Pawar, U.T. Extraction of natural dye (specifically anthocyanin) from pomegranate fruit source and their subsequent use in DSSC. Mater. Today-Proc. 2021, 43, 2716–2720. [Google Scholar] [CrossRef]
- Tian, Z.; Li, K.; Fan, D.; Zhao, Y.; Gao, X.; Ma, X.; Xu, L.; Shi, Y.; Ya, F.; Zou, J.; et al. Dose-dependent effects of anthocyanin supplementation on platelet function in subjects with dyslipidemia: A randomized clinical trial. eBioMedicine 2021, 70, 103533. [Google Scholar] [CrossRef] [PubMed]
- Aboonabi, A.; Aboonabi, A. Anthocyanins reduce inflammation and improve glucose and lipid metabolism associated with inhibiting nuclear factor-kappaB activation and increasing PPAR-gamma gene expression in metabolic syndrome subjects. Free Radic. Biol. Med. 2020, 150, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Cao, G.; Martin, A.; Sofic, E.; McEwen, J.; O’Brien, C.; Lischner, N.; Ehlenfeldt, M.; Kalt, W.; Krewer, G.; et al. Antioxidant Capacity As Influenced by Total Phenolic and Anthocyanin Content, Maturity, and Variety of Vaccinium Species. J. Agric. Food. Chem. 1998, 46, 2686–2693. [Google Scholar] [CrossRef]
- Mazzolani, F.; Togni, S.; Franceschi, F.; Eggenhoffner, R.; Giacomelli, L. The effect of oral supplementation with standardized bilberry extract (Mirtoselect®) on retino-cortical bioelectrical activity in severe diabetic retinopathy. Minerva Oftalmol. 2017, 59, 38–41. [Google Scholar] [CrossRef]
- Riva, A.; Togni, S.; Franceschi, F.; Kawada, S.; Inaba, Y.; Eggenhoffner, R.; Giacomelli, L. The effect of a natural, standardized bilberry extract (Mirtoselect®) in dry eye: A randomized, double blinded, placebo-controlled trial. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 2518–2525. [Google Scholar] [PubMed]
- Krikorian, R.; Shidler, M.D.; Nash, T.A.; Kalt, W.; Vinqvist-Tymchuk, M.R.; Shukitt-Hale, B.; Joseph, J.A. Blueberry supplementation improves memory in older adults. J. Agric. Food. Chem. 2010, 58, 3996–4000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steigerwalt, R.D.; Gianni, B.; Paolo, M.; Bombardelli, E.; Burki, C.; Schönlau, F. Effects of Mirtogenol on ocular blood flow and intraocular hypertension in asymptomatic subjects. Mol. Vis. 2008, 14, 1288–1292. [Google Scholar]
- Roberfroid, M.B. Concepts and strategy of functional food science: The European perspective. Am. J. Clin. Nutr. 2000, 71, 1660s–1664s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francavilla, A.; Joye, I.J. Anthocyanins in Whole Grain Cereals and Their Potential Effect on Health. Nutrients 2020, 12, 2922. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.-F.; Xu, X.-R.; Zhang, Y.; Li, D.; Gan, R.-Y.; Li, H.-B. Phenolic Compounds and Bioactivities of Pigmented Rice. Crit. Rev. Food Sci. Nutr. 2013, 53, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Ficco, D.B.M.; Borrelli, G.M.; Giovanniello, V.; Platani, C.; De Vita, P. Production of anthocyanin-enriched flours of durum and soft pigmented wheats by air-classification, as a potential ingredient for functional bread. J. Cereal Sci. 2018, 79, 118–126. [Google Scholar] [CrossRef]
- Hosseinian, F.S.; Li, W.; Beta, T. Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chem. 2008, 109, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Khare, P.; Kumar, A.; Chunduri, V.; Kumar, A.; Kapoor, P.; Mangal, P.; Kondepudi, K.K.; Bishnoi, M.; Garg, M. Anthocyanin-Biofortified Colored Wheat Prevents High Fat Diet-Induced Alterations in Mice: Nutrigenomics Studies. Mol. Nutr. Food Res. 2020, 64, e1900999. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Chunduri, V.; Kumar, A.; Kumar, R.; Khare, P.; Kondepudi, K.K.; Bishnoi, M.; Garg, M. Anthocyanin bio-fortified colored wheat: Nutritional and functional characterization. PLoS ONE 2018, 13, e0194367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, N.; Kumari, A.; Chunduri, V.; Kaur, S.; Banda, J.; Goyal, A.; Garg, M. Anthocyanin biofortified black, blue and purple wheat exhibited lower amino acid cooking losses than white wheat. LWT 2022, 154, 112802. [Google Scholar] [CrossRef]
- Rose, P.M.; Cantrill, V.; Benohoud, M.; Tidder, A.; Rayner, C.M.; Blackburn, R.S. Application of Anthocyanins from Blackcurrant (Ribes nigrum L.) Fruit Waste as Renewable Hair Dyes. J. Agric. Food. Chem. 2018, 66, 6790–6798. [Google Scholar] [CrossRef]
- Silva, G.; da Silva, K.; Silva, C.; Gonçalves, J.; Quina, F. Hybrid Pigments from Anthocyanin Analogues and Synthetic Clay Minerals. ACS Omega 2020, 5, 3354. [Google Scholar] [CrossRef] [PubMed]
- Shoaib Khan, H.M.; Ali Khan, B.; Adnan Jamil, Q.; Ullah Khan, F.; Akhtar, N. Silicone based water-in-oil emulsion fortified with anthocyanin: In-vitro, in-vivo study. Pak. J. Pharm Sci. 2021, 34, 981–986. [Google Scholar]
- Chan, C.-F.; Lien, C.-Y.; Lai, Y.-C.; Huang, C.-L.; Liao, W.C. Influence of purple sweet potato extracts on the UV absorption properties of a cosmetic cream. J. Cosmet. Sci. 2010, 61, 333–341. [Google Scholar] [PubMed]
- Correia, P.; Araújo, P.; Ribeiro, C.; Oliveira, H.; Pereira, A.R.; Mateus, N.; de Freitas, V.; Brás, N.F.; Gameiro, P.; Coelho, P.; et al. Anthocyanin-Related Pigments: Natural Allies for Skin Health Maintenance and Protection. Antioxidants 2021, 10, 1038. [Google Scholar] [CrossRef]
- Correia, P.; Oliveira, H.; Araújo, P.; Brás, N.F.; Pereira, A.R.; Moreira, J.; de Freitas, V.; Mateus, N.; Oliveira, J.; Fernandes, I. The Role of Anthocyanins, Deoxyanthocyanins and Pyranoanthocyanins on the Modulation of Tyrosinase Activity: An In Vitro and In Silico Approach. Int. J. Mol. Sci. 2021, 22, 6192. [Google Scholar] [CrossRef] [PubMed]
- Diaconeasa, Z.; Ayvaz, H.; Ruginǎ, D.; Leopold, L.; Stǎnilǎ, A.; Socaciu, C.; Tăbăran, F.; Luput, L.; Mada, D.C.; Pintea, A.; et al. Melanoma Inhibition by Anthocyanins Is Associated with the Reduction of Oxidative Stress Biomarkers and Changes in Mitochondrial Membrane Potential. Plant Foods Hum. Nutr. 2017, 72, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Evora, A.; de Freitas, V.; Mateus, N.; Fernandes, I. The effect of anthocyanins from red wine and blackberry on the integrity of a keratinocyte model using ECIS. Food Funct. 2017, 8, 3989–3998. [Google Scholar] [CrossRef] [PubMed]
- Robertson, C.A.; Evans, D.H.; Abrahamse, H. Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B Biol. 2009, 96, 1–8. [Google Scholar] [CrossRef]
- Li, X.; Lee, S.; Yoon, J. Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem. Soc. Rev. 2018, 47, 1174–1188. [Google Scholar] [CrossRef]
- Oliveira, H.; Fernandes, I.; Bras, N.F.; Faria, A.; De Freitas, V.; Calhau, C.; Mateus, N. Experimental and Theoretical Data on the Mechanism by Which Red Wine Anthocyanins Are Transported through a Human MKN-28 Gastric Cell Model. J. Agric. Food. Chem. 2015, 63, 7685–7692. [Google Scholar] [CrossRef] [PubMed]
- Teerakapong, A.; Damrongrungruang, T.; Sattayut, S.; Morales, N.; Tantananugool, S. Efficacy of erythrosine and cyanidin-3-glucoside mediated photodynamic therapy on Porphyromonas gingivalis biofilms using green light laser. Photodiag. Photodyn. Therapy 2017, 20, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Monge-Fuentes, V.; Muehlmann, L.A.; Longo, J.P.; Silva, J.R.; Fascineli, M.L.; de Souza, P.; Faria, F.; Degterev, I.A.; Rodriguez, A.; Carneiro, F.P.; et al. Photodynamic therapy mediated by acai oil (Euterpe oleracea Martius) in nanoemulsion: A potential treatment for melanoma. J. Photochem. Photobiol. B 2017, 166, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Petruk, G.; Illiano, A.; Del Giudice, R.; Raiola, A.; Amoresano, A.; Rigano, M.M.; Piccoli, R.; Monti, D.M. Malvidin and cyanidin derivatives from acai fruit (Euterpe oleracea Mart.) counteract UV-A-induced oxidative stress in immortalized fibroblasts. J. Photochem. Photobiol. B 2017, 172, 42–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Uribe, C.; Rodriguez-Serrano, A.; López, M.; Schott, E.; Muñoz, A.; Zarate, X. Singlet oxygen photogeneration by ethanolic extract of Syzygium cumini fruits: Theoretical elucidation through excited states computations. Chem. Phys. Lett. 2019, 715, 51–55. [Google Scholar] [CrossRef]
- Kim, M.; Yoon, S.H.; Jung, M.; Choe, E. Stability of meoru (Vitis coignetiea) anthocyanins under photochemically produced singlet oxygen by riboflavin. New Biotechnol. 2010, 27, 435–439. [Google Scholar] [CrossRef] [PubMed]
Source | Max ACN Amount (mg Cy3glu/100 g) | Main ACNs | Ref. |
---|---|---|---|
Fruits | |||
Açaí | 295 | Cy 3,5-hexose pentose; Cy3glu; Cy3rut; Pg3glu; Pn3glu; Pn3rut; Cy 3-(acetyl)hexose | [66] |
Apple | 71 | Cy3gal; Cy3glu; Cy3arab; Pn3gal; Cy7arab; Cy3xyl | [62,67] |
Blackberries | 200 | Cy3glu; Cy3rut; Cy3xyl; Cy 3-malonylglucoside; Cy 3-dioxalylglucoside; | [61] |
Black currants | 219 | Dp3glu; Dp3rut; Cy3glu; Cy3rut | [61] |
Blueberries | 407 | Dp3gal; Dp3glu; Cy3gal; Dp3arab; Cy3glu; Pt3gal; Cy3arab; Pt3glu; Pn3arab; Mv3gal; Mv3glu | [68] |
Chokeberries | 356 | Cy3gal; Cy3arab; Cy3glu; Cy3xyl | [69,70] |
Cranberries | 207 | Cy3gal; Cy3glu; Cy3arab; Pn3gal; Pn3glu; Pn3arab | [71] |
Elderberries | 317 | Cy3glu; Cy 3-O-sambubioside | [69,72] |
Fig | 11 | Cy3glu; Cy3rut; Cy 3-sambubioside-5glu; Cy 3,5diglu | [73,74] |
Grapes | 186 | Cy; Dp; Mv; Pn; Pt3glu; Mv; Pn; Pt 3-O-coumarylglu | [75,76] |
Plums | 37 | Cy3xyl; Cy3glu; Cy3rut; Pn3rut; Pn3glu; Cy3gal; Cy 3-(6”-acetoyl)glu | [62,77] |
Pomegranate | 2000 | Dp 3,5diglu; Cy3glu; Cy 3,5diglu; Pg3glu; Pg 3,5diglu | [78,79] |
Peaches | 2.5 | Cy3rut and Cy3glu | [80,81] |
Red cabbages | 185 | Cy 3diglu-5glu; Cy 3sindiglu-5glu; Cy 3-(p-coumaroyl)-diglu-5glu | [82,83] |
Red raspberries | 68 | Cy 3-O-sophoroside; Cy 3-O-(2″-O-glu)rut; Cy3glu, Cy3rut; Cy 3-O-(2″-O-xyl)rut; Pg 3-O-sophoroside; Pg3glu; Cy 3,5-O-diglu | [69,84] |
Strawberries | 60 | Pg3glu; Cy3glu; Cy3rut; Pg3rut; Pg 3-(malonoyl)glu; Pg 3-(6″-acetoyl)glu; Cy 3-sophoroside | [62] |
Sweet cherries | 463 | Cy; Dp; Pg; Pn 3-O-rutinosides and glucosides; Cy 3-coumaroyl-diglu; Cy 3-O-sambubioside; Cy 3-5diglu; Cy 3-sophoroside; Cy3arab; Mv 3-O-glu-acetaldehyde | [85] |
Tart cherries | 82 | Cy; Cy 3-O-sophoroside; Cy 3-glurut; Cy3glu; Cy3rut; Pn3rut | [69,86] |
Tomato | 7 | Dp glu; Dp rut; Dp p-coumaroyl-rut; Dp p-coumaroyl-rut-glu; Mv 3-glu; Mv rut; Mv p-coumaroyl-rut-glu; Pt rut; Pt p-coumaroyl-rut; Pt p-coumaroyl-rut-glu | [87] |
Vegetables | |||
Black carrot | 23 | Cy 3-(p-coumaroyl)-diglu-5glu; Cy xylglcgal; Cy cafxylglcgal; Cy xylgal; Cy phbxylglcgal; Cy sinxylglcgal; Cy ferxylglcgal; | [88] |
Eggplant | 6 | Dp 3-(p-coumaroylrut)-5glu; Dp3glu; Dp 3glu-rhamnoside; Pt3rut; Cy3rut | [63,65] |
Purple sweet potato | 42 | Pn 3-O-sophoroside-5-O-glu; Pn3glu; Cy 3-phb-sophoroside-5glu; Pn 3-phb-sophoroside-5glu; Cy 3caf-sophoroside-5glu; Pn 3caf-sophoroside-5glu; Cy 3caf-phb-sophoroside-5glu; Pn 3-dicaf-sophoroside-5glu; Pn 3caf-phb-sophoroside-5glu; Pn 3caf-fer--sophoroside-5glu; | [61] |
Red Chicory | 39 | Cy3glu; Cy 3-O-(6″-malonyl-glu) | [61] |
Red onion | 30 | Cy3glu; Cy 3-O-laminaribioside; Cy 3-(6″-malonyl-glu); Cy 3-(6″-malonyl- laminaribioside); Cy 3-xyl-glu--gal; Dp 3,5diglu | [68] |
Source/ACNs | Study Type | Effects and Potential Mechanism | Ref. |
---|---|---|---|
Berries/ACNs supplement | In vivo, ACNs 40 mg/day, 80 mg/day, or 320 mg/day for 12 weeks | A positive correlation was observed between the changes in the urine 8-iso prostaglandin F-2α, 8-hydroxy-2′-deoxyguanosine levels and serum interleukin-6 levels in subjects from ACNs groups after 12 weeks of treatment | [101] |
Berries/ACNs supplement | In vivo, 80 mg of ACNs on 2 different occasions for 28 days | Significantly decrease the cardiometabolic and adenosine diphosphate-induced platelet activation | [102] |
Blackcurrant/ACNs-rich extract and isolated ACNs | In vitro, cells were treated with 0.5 or 1.0 µL of blackcurrant extract and 10 µM of ACNs for 3 months | The endothelial NO synthase mRNA expression and NO synthesis in human endothelial cells significantly increase | [100] |
Blackcurrant/ACNs-rich extract | In vivo, the participants were fed 1.87 mg of ACNs/kg bodyweight for 1 week | Acute ingestion of a single dose of blackcurrant extract-maintained forearm blood flow, as well as forearm vascular resistance during an extended period of sitting | [103] |
Blackcurrant/ACNs-rich extract | In vivo, the participant ingested 600 mg of blackcurrant extract/per day for 1 week | Decrease in systolic and diastolic blood pressure | [104] |
Black Raspberry/ACNs-rich extract | In vivo, the rats were fed with 0.6% of black raspberry extract for 8 weeks | Intake of black raspberry extract alleviates hypercholesterolemia and hepatic inflammation induced by excessive choline with a high-fat diet | [105] |
Blueberry/ACNs-rich extract | In vivo, 0.5, 1.0 and 2.0 g/kg dose of extract to rats exposed to 10 mg/Kg fine particulate matter (PM2.5) | Improved electrocardiogram and decreased cytokine levels in PM2.5—exposed rats | [89] |
Blueberry/ACNs-rich extract and isolated ACNs | In vitro, 200 μL of single ACN and their corresponding metabolites were added to THP-1 cells at different concentrations (from 0.01 to 10 μg/ mL) and incubated for 24 h. | Mv3glu reduced THP-1 adhesion at all the concentrations with the maximum effect at 10 μg/mL. Cy3glu decreased the adhesion by about 41.8% at 10 μg/mL | [97] |
Blueberry/ACNs-rich extract | In vivo, 50, 100 and 200 mg/kg via oral gavage for 5 weeks | Increased the early/late ratio of blood flow across the tricuspid valve and tricuspid annular phase systolic excursion | [106] |
Blueberry/ACNs-rich extract | In vivo, the participants were fed with 2 dietary blueberry oral intakes equivalent to ½ and 1 cup/day (75/150 g) for 6 months | Improved endothelial function, systemic arterial stiffness, and attenuated cyclic guanosine monophosphate concentrations | [107] |
Cornelian Cherry/ACNs-rich extract | In vivo, the rabbits were fed with 10 and 50 mg/kg bodyweight of cornelian cherry extract | The expression of PPAR-α and PPAR-γ in the aorta was enhanced and was also observed a decrease in triglycerides levels | [108] |
Cy supplement | In vivo, 5 mg/kg of body weight orally (gavage) for 5 days and 1-h post-challenge of lipopolysaccharides (LPS) | Cy ameliorated cardiac injury, and cell death, and improved cardiac function | [99] |
Cy and Mv | In vitro, 100 µm of ACNs were mixed with lipid vesicles | Cy showed to be a more potent reductant of cytochrome C than ascorbate at the same concentration | [98] |
Hibiscus sabdariffa aqueous extract | In vivo, the rats were fed with 15, 30 or 60 mg/200 g of bodyweight for 2 weeks | Serum angiotensin-converting enzyme activity and plasma angiotensin II levels were significantly reduced | [109] |
Haskap berry/ACNs-rich extract | In vivo, the subjects were fed 100, 200 and 400 mg ACNs for 1 week | Lower diastolic blood pressure and heart rate | [94] |
Nuts | In vivo, the participants could choose from eight predefined frequency categories of nut consumption | Nut consumption was inversely associated with the risk of myocardial infarction, heart failure, atrial fibrillation, and abdominal aortic aneurysm in the age-adjusted and sex-adjusted analysis | [93] |
Nuts and vegetables | In vivo, the diet was measured using a validated and reliable food frequency questionnaire | Higher intake of nuts and vegetables was inversely associated with serum levels of LDL-C and directly associated with HDL-C levels. | [95] |
Odontonema strictum/ACNs-rich extract | In vitro, the enriched ACN extract of Odontonema strictum induced vasorelaxant effects in a concentration-dependent manner (10–1000 μg/mL) on mice aortic rings | The contraction of the aortic ring can be blocked since 400 µg/mL of ACNs extract of Odontonema strictum inhibited the effects of CaCl2 and thromboxane A2 analogue agonist (U46618) in physiological salt solution | [110] |
Plum juice/ACNs-rich extract | In vivo, 1 × 300 mL or 3 × 100 mL of plum juice over 3 h on 2 different occasions with a 2-week washout period | A significant reduction in blood pressure and cardiovascular responses were observed | [96] |
Source/ACNs | Study Type | Effects and Potential Mechanism | Ref. |
---|---|---|---|
Aronia melanocarpa/Cy3gal | In vivo, the SAMR1 mice were fed with 25 mg/kg of Cy3gal and with the combination of 100 mg/kg of metformin plus 25 mg/kg Cy3gal | The SAMP8 mice treated with metformin and Cy3gal showed improved spatial learning and memory compared with the SAMP8 model group | [116] |
Berry/ACNs-rich extract | In vitro, the BV-2 cells were treated with different concentrations of extract (20, 40, and 80 µg/mL) for 24 h | The berries, including blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry, showed free radical scavenging, methylglyoxal-trapping, and anti-glycation effects | [117] |
Bilberry/ACNs-rich extract | In vivo, the rats were fed for 12 weeks with ACNs-rich bilberry extract supplementation (0.02%) | Bilberry extract changed the global gene expression profile in the hippocampus of ApoE−/− mice. Altered genes are involved in inflammation, neuronal function, synaptic plasticity | [113] |
Black beans/ACNs-rich extract | In vivo (APP/PS1 mice) and in vitro (mouse hippocampal HT22 cells) were tested with 100 µg/mL of black bean extract | Regulate the PI3K/Akt/GSK3 pathway and consequently activate the downstream endogenous antioxidant Nrf2/HO-1 pathway and its target genes, reducing the AβO-induced elevation of ROS-mediated oxidative stress and preventing neurodegeneration via a PI3K/Akt/Nrf2-dependent pathway | [118] |
Black carrot/ACNs-rich extract | In vitro, SH-SY5Y cells were co-incubated with black carrot extract (2.5, 5, 10, 25, 50, 100 µg/mL) and 0.5 mM 1-methyl-4-phenylpyridinium (MPP+) | Black carrot extract exhibited antioxidant activity via scavenging MPP+-induced ROS and protecting dopaminergic neurons from ROS-mediated apoptosis | [119] |
Blueberries/ACNs extract | In vivo, the extracts were incorporated (2% w/w) into the standard AIN-76A purified diet for rodents for 6 weeks | The extract improves learning capabilities in aged rats, counteracting spatial memory loss in aged brains, through the modulation of several cell signalling events implicated predominantly in synaptic plasticity, apoptosis, and cytoskeleton remodelling | [115] |
Blueberries/ACNs-rich extract | In vitro, N9 cells were pre-treated with the extract for 3 h before the exposure to the stimulus, 1 µg/mL LPS and 0.6 ng/mL IFN-γ | Suppression of NFkB activation, and to a signal transducer and activator of transcription 1-independent Mechanism | [120] |
Cy3glu | In vitro, SH-SY5Y cells were co-incubated with Cy3glu (10–100 mM) | Cy3glu increased the expression of nuclear factor erythroid 2-related factor 2, a vital transcription factor for regulating the expression of antioxidant genes, as well as antioxidant enzymes such as superoxide dismutase and catalase | [121] |
Cy3glu | In vitro, HMC3 cells were treated with 1 μM of Aβ42 and co-treated with 1 μM of Aβ42 and 50 μM of Cy3glu for 24 h. In vivo, the mice were orally administered 30 mg/kg/day Cy3glu for 38 weeks | Cy3glu was found to upregulate PPARγ expression levels both in vitro and in vivo, whereas a PPARγ antagonist (GW9662) was found to block Cy3glu-mediated effects in vitro | [122] |
Cy3glu | In vitro, BV2 cells pretreated with Cy3glu at final concentrations of 2.5, 5, and 10 μM, for 4 h and then stimulated with 1 μg/mL LPS for 24 h | Cy3glu significantly suppresses microglial activation and the production of neurotoxic mediators including nitric oxide, prostaglandin E2, and pro-inflammatory cytokines such as interleukin-1β and interleukin-6 in LPS-activated BV2 cells | [123] |
Dp3-gal, Cy3gal, and Mv3gal | In vitro, the disassembly capability of 100 µM of ACNs was evaluated using the macroscopic (conventional) total-internal-reflection-fluorescence microscopy | The disassembly activity to the amyloid β fibrils depends on the number of hydroxyl (OH) groups in six-membered ring B of ACNs, and only Dp3gal, possessing three OH groups there, shows high disassembly activity | [124] |
Lycium ruthenicum Murr. fruit/Pn3,5-diglu | In vivo, the rats were treated with 100 mg/kg of Pn3,5-diglu by oral gavage after D-galactose administration, once daily for 7 weeks | Pn3,5-diglu alleviate cognitive dysfunction, oxidative stress, neuroinflammation, and shift the abnormal hippocampal metabolites in aging rats induced by D-galactose | [125] |
Hibiscus sabdariffa L./ACNs-rich extract | In vivo, the mice were tested with a dose of 200 mg/kg of Hibiscus extracts compared with celecoxib (30 mg/kg) | Hibiscus was able to reverse the streptozotocin-induced upregulation in the amyloidogenic pathway as well as targeting COX-2/mPGES-1 in PGE2 production and modulating cytokine levels | [126] |
Myrica rubra/ACNs-rich extract | In vivo, the mice were treated with 100, 150, and 300 mg/kg of Myrica rubra extract every day | The cerebral infarction volume, disease damage, and contents of nitric oxide and malondialdehyde were reduced, while the level of superoxide dismutase was increased in ischemia-reperfusion mice | [127] |
Mulberry fruits/Cy3glu | In vivo, the rats were intragastric administrated with 150 mg/kg Cy3glu once daily | Cy3glu may exhibit its neuroprotection via upregulating neurotransmitters levels, protecting the N-methyl-D-aspartic acid receptor function, promoting Ca2+ influx and modifying the Ca2+ dependent processes like protein kinases, signalling molecules, transcription factors and immediate early genes | [128] |
Nitraria tangutorum Bobr. fruit/ACNs-rich extract | In vivo, the rats were treated with 50 mg/kg of Nitraria tangutorum Bobr. fruit extract after receiving 100 mg/kg of D-galactose | The extract exhibited neuroprotective effects probably through suppressing oxidative stress, reducing amyloid-beta42 (Aβ42) accumulation, and inhibiting gliosis in the hippocampus of rats | [129] |
Purple carrot and flaxseed oil/Mixture of ACNs-rich extract | In vivo, the mice were fed with 100 mg/kg of purple carrot and flaxseed oil mixture of ACNs-rich extract | Significant improvement in acetylcholinesterase, antioxidant enzymes, tumour necrosis factor-α and malondialdehyde in brain tissue and butyrylcholinesterase in plasma | [130] |
Strawberries/ACNs-rich extract | In vivo, mice received 2 mg/kg/day of the extract’s primary ACNs constituent for 105 days of the age | The extract significantly reduced astrogliosis in spinal cord and preserved neuromuscular junctions in gastrocnemius muscle. | [131] |
Sweet cherry/ACNs-rich extract | In vitro, BV2 microglia and SH-SY5Y neuroblastoma; In vivo, Drosophila melanogaster rotenone (ROT)-induced model | 25 µg/mL of sweet cherry extract produced a significant increase in the survival rate of nematodes submitted to thermal stress (35 °C, 6–8 h), at the 2nd and 9th day of adulthood | [132] |
Wheat grain/ACNs | In vivo, the mice were fed with wheat grain of near isogenic lines differing in ACNs content for 5–6 months | Reduce the alpha-synuclein accumulation and modulated microglial response in the brain of the transgenic mice | [133] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Câmara, J.S.; Locatelli, M.; Pereira, J.A.M.; Oliveira, H.; Arlorio, M.; Fernandes, I.; Perestrelo, R.; Freitas, V.; Bordiga, M. Behind the Scenes of Anthocyanins—From the Health Benefits to Potential Applications in Food, Pharmaceutical and Cosmetic Fields. Nutrients 2022, 14, 5133. https://doi.org/10.3390/nu14235133
Câmara JS, Locatelli M, Pereira JAM, Oliveira H, Arlorio M, Fernandes I, Perestrelo R, Freitas V, Bordiga M. Behind the Scenes of Anthocyanins—From the Health Benefits to Potential Applications in Food, Pharmaceutical and Cosmetic Fields. Nutrients. 2022; 14(23):5133. https://doi.org/10.3390/nu14235133
Chicago/Turabian StyleCâmara, José S., Monica Locatelli, Jorge A. M. Pereira, Hélder Oliveira, Marco Arlorio, Iva Fernandes, Rosa Perestrelo, Victor Freitas, and Matteo Bordiga. 2022. "Behind the Scenes of Anthocyanins—From the Health Benefits to Potential Applications in Food, Pharmaceutical and Cosmetic Fields" Nutrients 14, no. 23: 5133. https://doi.org/10.3390/nu14235133
APA StyleCâmara, J. S., Locatelli, M., Pereira, J. A. M., Oliveira, H., Arlorio, M., Fernandes, I., Perestrelo, R., Freitas, V., & Bordiga, M. (2022). Behind the Scenes of Anthocyanins—From the Health Benefits to Potential Applications in Food, Pharmaceutical and Cosmetic Fields. Nutrients, 14(23), 5133. https://doi.org/10.3390/nu14235133