Pretreatment Nutritional Status in Combination with Inflammation Affects Chemotherapy Interruption in Women with Ovarian, Fallopian Tube, and Peritoneal Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Ethics
2.3. Study Design
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Wen, F.; Li, Q. Treatment dilemmas of cetuximab combined with chemotherapy for metastatic colorectal cancer. World. J. Gastroenterol. 2016, 22, 5332–5341. [Google Scholar] [CrossRef] [PubMed]
- Kopetz, S.; Chang, G.J.; Overman, M.J.; Eng, C.; Sargent, D.J.; Larson, D.W.; Grothey, A.; Vauthey, J.N.; Nagorney, D.M.; McWilliams, R.R. Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J. Clin. Oncol. 2009, 27, 3677–3683. [Google Scholar] [CrossRef]
- Holsinger, F.C.; Birkeland, A.C.; Topf, M.C. Precision head and neck surgery: Robotics and surgical vision technology. Curr. Opin. Otolaryngol. Head Neck Surg. 2021, 29, 161–167. [Google Scholar] [CrossRef]
- Emmen, A.M.L.H.; Görgec, B.; Zwart, M.J.W.; Daams, F.; Erdmann, J.; Festen, S.; Gouma, D.J.; van Gulik, T.M.; van Hilst, J.; Kazemier, G.; et al. Impact of shifting from laparoscopic to robotic surgery during 600 minimally invasive pancreatic and liver resections. Surg. Endosc. 2022. [Google Scholar] [CrossRef]
- Coughlin, G.D.; Yaxley, J.W.; Chambers, S.K.; Occhipinti, S.; Samaratunga, H.; Zajdlewicz, L.; Teloken, P.; Dunglison, N.; Williams, S.; Lavin, M.F.; et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: 24-month outcomes from a randomised controlled study. Lancet Oncol. 2018, 19, 1051–1060. [Google Scholar] [CrossRef]
- Hou, J.; He, Z.; Liu, T.; Chen, D.; Wang, B.; Wen, Q.; Zheng, X. Evolution of Molecular Targeted Cancer Therapy: Mechanisms of Drug Resistance and Novel Opportunities Identified by CRISPR-Cas9 Screening. Front. Oncol. 2022, 12, 755053. [Google Scholar] [CrossRef]
- Tsimberidou, A.M.; Fountzilas, E.; Nikanjam, M.; Kurzrock, R. Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treat. Rev. 2020, 86, 102019. [Google Scholar] [CrossRef]
- Valle, J.W.; Palmer, D.; Jackson, R.; Cox, T.; Neoptolemos, J.P.; Ghaneh, P.; Rawcliffe, C.L.; Bassi, C.; Stocken, D.D.; Cunningham, D.; et al. Optimal duration and timing of adjuvant chemotherapy after definitive surgery for ductal adenocarcinoma of the pancreas: Ongoing lessons from the ESPAC-3 study. J. Clin. Oncol. 2014, 32, 504–512. [Google Scholar] [CrossRef]
- Basch, E.; Becker, C.; Rogak, L.J.; Schrag, D.; Reeve, B.B.; Spears, P.; Smith, M.L.; Gounder, M.M.; Mahoney, M.R.; Schwartz, G.K.; et al. Composite grading algorithm for the National Cancer Institute’s Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE). Clin. Trials 2021, 18, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Khozin, S.; Blumenthal, G.M.; Zhang, L.; Tang, S.; Brower, M.; Fox, E.; Helms, W.; Leong, R.; Song, P.; Pan, Y.; et al. FDA approval: Ceritinib for the treatment of metastatic anaplastic lymphoma kinase-positive non-small cell lung cancer. Clin. Cancer Res. 2015, 21, 2436–2439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koide, H.; Noda, S.; Okunuki, Y.; Owaki, S.; Shimizu, T.; Terada, T.; Morita, S.Y. Analysis of Risk Factors for High-dose Cisplatin-induced Renal Impairment in Head and Neck Cancer Patients. In Vivo 2022, 36, 2465–2472. [Google Scholar] [CrossRef] [PubMed]
- Aletti, G.D.; Nordquist, D.; Hartmann, L.; Gallenberg, M.; Long, H.J.; Cliby, W.A. From randomized trial to practice: Single institution experience using the GOG 172 i.p. chemotherapy regimen for ovarian cancer. Ann. Oncol. 2010, 21, 1772–1778. [Google Scholar] [CrossRef] [PubMed]
- Brule, S.Y.; Al-Baimani, K.; Jonker, H.; Zhang, T.; Nicholas, G.; Goss, G.; Laurie, S.A.; Wheatley-Price, P. Palliative systemic therapy for advanced non-small cell lung cancer: Investigating disparities between patients who are treated versus those who are not. Lung Cancer 2016, 97, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.I.; Chow, S.; Chen, L.M.; Kapp, D.S.; Mann, A.; Chan, J.K. Trends in the incidence of serous fallopian tube, ovarian, and peritoneal cancer in the US. Gynecol. Oncol. 2018, 149, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Pavlidis, N.; Rassy, E.; Vermorken, J.B.; Assi, T.; Kattan, J.; Boussios, S.; Smith-Gagen, J. The outcome of patients with serous papillary peritoneal cancer, fallopian tube cancer, and epithelial ovarian cancer by treatment eras: 27 years data from the SEER registry. Cancer Epidemiol. 2021, 75, 102045. [Google Scholar] [CrossRef]
- Jordan, S.J.; Green, A.C.; Whiteman, D.C.; Moore, S.P.; Bain, C.J.; Gertig, D.M.; Webb, P.M.; Australian Cancer Study Group (ovarian cancer); the Australian Ovarian Cancer Study Group. Serous ovarian, fallopian tube and primary peritoneal cancers: A comparative epidemiological analysis. Int. J. Cancer 2008, 122, 1598–1603. [Google Scholar] [CrossRef]
- Mutch, D.G.; Prat, J. 2014 FIGO staging for ovarian, fallopian tube and peritoneal cancer. Gynecol. Oncol. 2014, 133, 401–404. [Google Scholar] [CrossRef]
- Omura, G.; Blessing, J.A.; Ehrlich, C.E.; Miller, A.; Yordan, E.; Creasman, W.T.; Homesley, H.D. A randomized trial of cyclophosphamide and doxorubicin with or without cisplatin in advanced ovarian carcinoma. A Gynecologic Oncology Group Study. Cancer 1986, 57, 1725–1730. [Google Scholar] [CrossRef] [PubMed]
- du Bois, A.; Lück, H.J.; Meier, W.; Adams, H.P.; Möbus, V.; Costa, S.; Bauknecht, T.; Richter, B.; Warm, M.; Schröder, W.; et al. A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J. Natl. Cancer Inst. 2003, 95, 1320–1329. [Google Scholar] [CrossRef] [PubMed]
- Ozols, R.F.; Bundy, B.N.; Greer, B.E.; Fowler, J.M.; Clarke-Pearson, D.; Burger, R.A.; Mannel, R.S.; DeGeest, K.; Hartenbach, E.M.; Baergen, R.; et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: A Gynecologic Oncology Group study. J. Clin. Oncol. 2003, 21, 3194–3200. [Google Scholar] [CrossRef] [PubMed]
- Bookman, M.A.; Brady, M.F.; McGuire, W.P.; Harper, P.G.; Alberts, D.S.; Friedlander, M.; Colombo, N.; Fowler, J.M.; Argenta, P.A.; De Geest, K.; et al. Evaluation of new platinum-based treatment regimens in advanced-stage ovarian cancer: A Phase III Trial of the Gynecologic Cancer Intergroup. J. Clin. Oncol. 2009, 27, 1419–1425. [Google Scholar] [CrossRef]
- Clamp, A.R.; James, E.C.; McNeish, I.A.; Dean, A.; Kim, J.W.; O’Donnell, D.M.; Hook, J.; Coyle, C.; Blagden, S.; Brenton, J.D.; et al. Weekly dose-dense chemotherapy in first-line epithelial ovarian, fallopian tube, or primary peritoneal carcinoma treatment (ICON8): Primary progression free survival analysis results from a GCIG phase 3 randomised controlled trial. Lancet 2019, 394, 2084–2095. [Google Scholar] [CrossRef] [Green Version]
- Jodkiewicz, M.; Jagiełło-Gruszfeld, A.; Surwiłło-Snarska, A.; Kotowicz, B.; Fuksiewicz, M.; Kowalska, M.M. The Impact of Dietary Counselling on Achieving or Maintaining Normal Nutritional Status in Patients with Early and Locally Advanced Breast Cancer Undergoing Perioperative Chemotherapy. Nutrients 2022, 14, 2541. [Google Scholar] [CrossRef]
- Hertlein, L.; Kirschenhofer, A.; Fürst, S.; Beer, D.; Göß, C.; Lenhard, M.; Friese, K.; Burges, A.; Rittler, P. Malnutrition and clinical outcome in gynecologic patients. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 174, 137–140. [Google Scholar] [CrossRef]
- Goins, E.C.; Weber, J.M.; Truong, T.; Moss, H.A.; Previs, R.A.; Davidson, B.A.; Havrilesky, L.J. Malnutrition as a risk factor for post-operative morbidity in gynecologic cancer: Analysis using a national surgical outcomes database. Gynecol. Oncol. 2022, 165, 309–316. [Google Scholar] [CrossRef]
- Cousin, S.; Hollebecque, A.; Koscielny, S.; Mir, O.; Varga, A.; Baracos, V.E.; Soria, J.C.; Antoun, S. Low skeletal muscle is associated with toxicity in patients included in phase I trials. Invest. New Drugs 2014, 32, 382–387. [Google Scholar] [CrossRef]
- Bougnoux, P.; Hajjaji, N.; Ferrasson, M.N.; Giraudeau, B.; Couet, C.; Le Floch, O. Improving outcome of chemotherapy of metastatic breast cancer by docosahexaenoic acid: A phase II trial. Br. J. Cancer 2009, 101, 1978–1985. [Google Scholar] [CrossRef]
- Casanova, N.; Beaulieu, K.; Oustric, P.; O’Connor, D.; Gibbons, C.; Blundell, J.; Finlayson, G.; Hopkins, M. Increases in physical activity are associated with a faster rate of weight loss during dietary energy restriction in women with overweight and obesity. Br. J. Nutr. 2022, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Heymsfield, S.B.; Baumgartner, R.N.; Ross, R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J. Appl. Physiol. 2000, 89, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Kondrup, J.; Rasmussen, H.H.; Hamberg, O.; Stanga, Z.; Group, A.H.E.W. Nutritional risk screening (NRS 2002): A new method based on an analysis of controlled clinical trials. Clin. Nutr. 2003, 22, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Tojek, K.; Banaś, W.; Czerniak, B.; Kowalczyk, G.; Szukay, B.; Korzycka-Wilińska, W.; Banaszkiewicz, Z.; Budzyński, J. Total blood lymphocyte count as a prognostic factor among unselected inpatients. Adv. Med. Sci. 2020, 65, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, G.L.; Bistrian, B.R.; Maini, B.S.; Schlamm, H.T.; Smith, M.F. Nutritional and metabolic assessment of the hospitalized patient. J. Parenter Enter. Nutr. 1977, 1, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Onodera, T.; Goseki, N.; Kosaki, G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 1984, 85, 1001–1005. [Google Scholar] [PubMed]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Fan, Z.; Fan, K.; Gong, Y.; Huang, Q.; Yang, C.; Cheng, H.; Jin, K.; Ni, Q.; Yu, X.; Luo, G.; et al. The CRP/Albumin Ratio Predicts Survival And Monitors Chemotherapeutic Effectiveness In Patients With Advanced Pancreatic Cancer. Cancer Manag. Res. 2019, 11, 8781–8788. [Google Scholar] [CrossRef] [Green Version]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.J.S.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. J. Cachexia Sarcopenia Muscle 2019, 10, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Akahori, T.; Sho, M.; Tanaka, T.; Kinoshita, S.; Nagai, M.; Nishiwada, S.; Nishiofuku, H.; Ohbayashi, C.; Kichikawa, K.; Nakajima, Y. Factors associated with failure to complete adjuvant chemotherapy in pancreatic cancer. Am. J. Surg. 2016, 211, 787–792. [Google Scholar] [CrossRef]
- Kiuchi, K.; Hasegawa, K.; Watanabe, M.; Motegi, E.; Kosaka, N.; Fukasawa, I. Clinical indicators useful in decision-making about palliative chemotherapy for end-of-life ovarian cancer patients. Arch. Gynecol. Obstet. 2022, 305, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Aaldriks, A.A.; Maartense, E.; le Cessie, S.; Giltay, E.J.; Verlaan, H.A.; van der Geest, L.G.; Kloosterman-Boele, W.M.; Peters-Dijkshoorn, M.T.; Blansjaar, B.A.; van Schaick, H.W.; et al. Predictive value of geriatric assessment for patients older than 70 years, treated with chemotherapy. Crit. Rev. Oncol. Hematol. 2011, 79, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.; Birdsell, L.; Macdonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Fanetti, G.; Polesel, J.; Fratta, E.; Muraro, E.; Lupato, V.; Alfieri, S.; Gobitti, C.; Minatel, E.; Matrone, F.; Caroli, A.; et al. Prognostic Nutritional Index Predicts Toxicity in Head and Neck Cancer Patients Treated with Definitive Radiotherapy in Association with Chemotherapy. Nutrients 2021, 13, 1277. [Google Scholar] [CrossRef]
- Fairclough, E.; Cairns, E.; Hamilton, J.; Kelly, C. Evaluation of a modified early warning system for acute medical admissions and comparison with C-reactive protein/albumin ratio as a predictor of patient outcome. Clin. Med. 2009, 9, 30–33. [Google Scholar] [CrossRef]
- Cui, X.; Jia, Z.; Chen, D.; Xu, C.; Yang, P. The prognostic value of the C-reactive protein to albumin ratio in cancer: An updated meta-analysis. Medicine 2020, 99, e19165. [Google Scholar] [CrossRef]
- Cabrerizo, S.; Cuadras, D.; Gomez-Busto, F.; Artaza-Artabe, I.; Marín-Ciancas, F.; Malafarina, V. Serum albumin and health in older people: Review and meta analysis. Maturitas 2015, 81, 17–27. [Google Scholar] [CrossRef]
- Zhang, Z.; Pereira, S.L.; Luo, M.; Matheson, E.M. Evaluation of Blood Biomarkers Associated with Risk of Malnutrition in Older Adults: A Systematic Review and Meta-Analysis. Nutrients 2017, 9, 829. [Google Scholar] [CrossRef] [PubMed]
- Malafarina, V.; Reginster, J.Y.; Cabrerizo, S.; Bruyère, O.; Kanis, J.A.; Martinez, J.A.; Zulet, M.A. Nutritional Status and Nutritional Treatment Are Related to Outcomes and Mortality in Older Adults with Hip Fracture. Nutrients 2018, 10, 555. [Google Scholar] [CrossRef] [Green Version]
- Phippen, N.T.; Lowery, W.J.; Barnett, J.C.; Hall, L.A.; Landt, C.; Leath, C.A. Evaluation of the Patient-Generated Subjective Global Assessment (PG-SGA) as a predictor of febrile neutropenia in gynecologic cancer patients receiving combination chemotherapy: A pilot study. Gynecol. Oncol. 2011, 123, 360–364. [Google Scholar] [CrossRef]
- Rutten, I.J.; van Dijk, D.P.; Kruitwagen, R.F.; Beets-Tan, R.G.; Olde Damink, S.W.; van Gorp, T. Loss of skeletal muscle during neoadjuvant chemotherapy is related to decreased survival in ovarian cancer patients. J. Cachexia Sarcopenia Muscle 2016, 7, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Rogers, P.C. Nutritional status as a prognostic indicator for pediatric malignancies. J. Clin. Oncol. 2014, 32, 1293–1294. [Google Scholar] [CrossRef] [PubMed]
- Murry, D.J.; Riva, L.; Poplack, D.G. Impact of nutrition on pharmacokinetics of anti-neoplastic agents. Int. J. Cancer Suppl. 1998, 11, 48–51. [Google Scholar] [CrossRef]
- Fearon, K.C.; Falconer, J.S.; Slater, C.; McMillan, D.C.; Ross, J.A.; Preston, T. Albumin synthesis rates are not decreased in hypoalbuminemic cachectic cancer patients with an ongoing acute-phase protein response. Ann. Surg. 1998, 227, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.D.; Nedjai, B.; Hurst, T.; Pennington, D.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta 2014, 1843, 2563–2582. [Google Scholar] [CrossRef] [Green Version]
- Don, B.R.; Kaysen, G. Serum albumin: Relationship to inflammation and nutrition. Semin. Dial. 2004, 17, 432–437. [Google Scholar] [CrossRef]
- Moshage, H.J.; Janssen, J.A.; Franssen, J.H.; Hafkenscheid, J.C.; Yap, S.H. Study of the molecular mechanism of decreased liver synthesis of albumin in inflammation. J. Clin. Invest. 1987, 79, 1635–1641. [Google Scholar] [CrossRef]
- Penson, R.T.; Kronish, K.; Duan, Z.; Feller, A.J.; Stark, P.; Cook, S.E.; Duska, L.R.; Fuller, A.F.; Goodman, A.K.; Nikrui, N.; et al. Cytokines IL-1beta, IL-2, IL-6, IL-8, MCP-1, GM-CSF and TNFalpha in patients with epithelial ovarian cancer and their relationship to treatment with paclitaxel. Int. J. Gynecol. Cancer 2000, 10, 33–41. [Google Scholar] [CrossRef]
- Gupta, P.; Makkar, T.K.; Goel, L.; Pahuja, M. Role of inflammation and oxidative stress in chemotherapy-induced neurotoxicity. Immunol. Res. 2022, 70, 725–741. [Google Scholar] [CrossRef]
- Domingo, I.K.; Latif, A.; Bhavsar, A.P. Pro-Inflammatory Signalling PRRopels Cisplatin-Induced Toxicity. Int. J. Mol. Sci. 2022, 23, 7227. [Google Scholar] [CrossRef]
- Gilmore, N.; Kadambi, S.; Lei, L.; Loh, K.P.; Mohamed, M.; Magnuson, A.; Cole, S.; Esparaz, B.T.; Giguere, J.K.; Mohile, S.; et al. Associations of inflammation with frailty in patients with breast cancer aged 50 and over receiving chemotherapy. J. Geriatr. Oncol. 2020, 11, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Appels, A.; Bär, F.W.; Bär, J.; Bruggeman, C.; de Baets, M. Inflammation, depressive symptomtology, and coronary artery disease. Psychosom. Med. 2000, 62, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Mueller, C.; Compher, C.; Ellen, D.M.; American Society for Parenteral and Enteral Nutrition (ASPEN) Board of Directors. ASPEN clinical guidelines: Nutrition screening, assessment, and intervention in adults. J. Parenter Enter. Nutr. 2011, 35, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Telli, M.L.; Witteles, R.M.; Fisher, G.A.; Srinivas, S. Cardiotoxicity associated with the cancer therapeutic agent sunitinib malate. Ann. Oncol. 2008, 19, 1613–1618. [Google Scholar] [CrossRef]
- Runyon, B.A.; Hoefs, J.C.; Morgan, T.R. Ascitic fluid analysis in malignancy-related ascites. Hepatology 1988, 8, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Laky, B.; Janda, M.; Cleghorn, G.; Obermair, A. Comparison of different nutritional assessments and body-composition measurements in detecting malnutrition among gynecologic cancer patients. Am. J. Clin. Nutr. 2008, 87, 1678–1685. [Google Scholar] [CrossRef] [Green Version]
- de Aguiar Pastore Silva, J.; Emilia de Souza Fabre, M.; Waitzberg, D.L. Omega-3 supplements for patients in chemotherapy and/or radiotherapy: A systematic review. Clin. Nutr. 2015, 34, 359–366. [Google Scholar] [CrossRef]
- Chagas, T.R.; Borges, D.S.; de Oliveira, P.F.; Mocellin, M.C.; Barbosa, A.M.; Camargo, C.Q.; Del Moral, J.G.; Poli, A.; Calder, P.C.; Trindade, E.B.S.M.; et al. Oral fish oil positively influences nutritional-inflammatory risk in patients with haematological malignancies during chemotherapy with an impact on long-term survival: A randomised clinical trial. J. Hum. Nutr. Diet 2017, 30, 681–692. [Google Scholar] [CrossRef] [Green Version]
- Qin, N.; Jiang, G.; Zhang, X.; Sun, D.; Liu, M. The Effect of Nutrition Intervention With Oral Nutritional Supplements on Ovarian Cancer Patients Undergoing Chemotherapy. Front. Nutr. 2021, 8, 685967. [Google Scholar] [CrossRef]
Characteristic | All Patients (n = 146) | Complete Treatment Group (n = 83) | Incomplete Treatment Group (n = 63) | p-Value |
---|---|---|---|---|
Median (IQR) | Median (IQR) | Median (IQR) | ||
Age (years) | 59.5 (49.8–69.0) | 55.0 (46.0–63.0) | 67.0 (54.0–71.0) | <0.01 |
Height (cm) | 155.3 (151.3–159.2) | 156.0 (151.3–159.0) | 155.0 (151.3–159.8) | 0.86 |
Body weight (kg) | 51.7 (45.6–57.0) | 50.0 (44.0–56.1) | 52.6 (48.0–59.5) | 0.02 |
AST (mg/dL) | 19 (15–26) | 18 (15–23) | 20 (15–29) | 0.04 |
ALT (mg/dL) | 15.5 (11.0–24.3) | 17 (11–25) | 13 (10–23) | 0.30 |
CRE (mg/dL) | 0.54 (0.46–0.61) | 0.53 (0.45–0.62) | 0.54 (0.48–0.60) | 0.86 |
WBC (/μL) | 5.6 (4.8–7.0) | 5.5 (4.6–6.6) | 5.8 (4.8–7.7) | 0.17 |
HGB (mg/dL) | 10.7 (9.9–11.6) | 10.8 (10.1–11.6) | 10.5 (9.8–11.5) | 0.42 |
CRP (mg/dL) | 0.7 (0.1–3.0) | 0.2 (0.1–1.0) | 2.9 (0.9–7.0) | <0.01 |
Tumor stage I–II/III–IV | I–II 18/III–IV128 | I–II 15/III–IV 68 | I–II 3/III–IV 60 | 0.02 |
Treatment with bevacizumab, n (%) | 55 (37.7) | 36 (43.4) | 19 (30.2) | 0.10 |
Nutritional and Inflammation Indicators | Complete Treatment Group (n = 83) | Incomplete Treatment Group (n = 63) | p-Value |
---|---|---|---|
Median (IQR) | Median (IQR) | ||
BMI (kg/m2) | 20.8 (18.7–23.9) | 22.2 (19.4–25.1) | 0.02 |
Albumin (g/dL) | 3.3 (2.9–3.9) | 2.8 (2.6–3.2) | <0.01 |
Weight change rate (%) | −4.5 (−8.6–0) | −2.1 (−5.6–+0.7) | 0.05 |
TLC (/μL) | 1050 (829–1475) | 913 (686–1274) | 0.01 |
PNI | 54.2 (48.1–65.3) | 47.1 (42.9–51.6) | <0.01 |
CAR | 0.06 (0.02–0.31) | 1.02 (0.34–2.42) | <0.01 |
Nutritional and Inflammation Indicators | AUC | p-Value | Cut-Off-Value | Sensitivity | Specificity |
---|---|---|---|---|---|
Weight change rate (%) | 0.594 | 0.05 | <2.35/≥2.35 | 0.69 | 0.53 |
BMI (kg/m2) | 0.616 | 0.01 | ≥21.97/<21.97 | 0.65 | 0.56 |
TLC (/μL) | 0.624 | 0.01 | ≥783.3/<783.3 | 0.82 | 0.44 |
Albumin (g/dL) | 0.722 | <0.01 | ≥3.1/<3.1 | 0.60 | 0.75 |
PNI | 0.727 | <0.01 | ≥49.95/<49.95 | 0.66 | 0.73 |
CAR | 0.828 | <0.01 | <0.24/≥0.24 | 0.79 | 0.74 |
Variables | Crude Model | Adjusted Model | ||
---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p-Value | |
CAR (greater than) | 2.06(1.48–2.87) | <0.01 | 1.84(1.26–2.69) | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nomoto, N.; Tate, S.; Arai, M.; Iizaka, S.; Mori, C.; Sakurai, K. Pretreatment Nutritional Status in Combination with Inflammation Affects Chemotherapy Interruption in Women with Ovarian, Fallopian Tube, and Peritoneal Cancer. Nutrients 2022, 14, 5183. https://doi.org/10.3390/nu14235183
Nomoto N, Tate S, Arai M, Iizaka S, Mori C, Sakurai K. Pretreatment Nutritional Status in Combination with Inflammation Affects Chemotherapy Interruption in Women with Ovarian, Fallopian Tube, and Peritoneal Cancer. Nutrients. 2022; 14(23):5183. https://doi.org/10.3390/nu14235183
Chicago/Turabian StyleNomoto, Naoko, Shinichi Tate, Makoto Arai, Shinji Iizaka, Chisato Mori, and Kenichi Sakurai. 2022. "Pretreatment Nutritional Status in Combination with Inflammation Affects Chemotherapy Interruption in Women with Ovarian, Fallopian Tube, and Peritoneal Cancer" Nutrients 14, no. 23: 5183. https://doi.org/10.3390/nu14235183
APA StyleNomoto, N., Tate, S., Arai, M., Iizaka, S., Mori, C., & Sakurai, K. (2022). Pretreatment Nutritional Status in Combination with Inflammation Affects Chemotherapy Interruption in Women with Ovarian, Fallopian Tube, and Peritoneal Cancer. Nutrients, 14(23), 5183. https://doi.org/10.3390/nu14235183