Dietary Patterns, Dietary Interventions, and Mammographic Breast Density: A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search and Inclusion Criteria
2.2. Data Extraction
2.3. Quality Assessment and Risk of Bias
3. Results
3.1. Cross-Sectional Studies
3.2. Cohort Studies
3.3. Intervention Studies
Author, Year | Study Country (and Name) | Study Population | Dietary Assessment | Dietary Intervention | Summary of Results (a) |
---|---|---|---|---|---|
Masala et al., 2019 [27] | DAMA, Italy | Post-menopausal, high MBD (n = 234, mean age 58.6 y, SD 5.6) | FFQ filled at baseline and study end (24 months after the enrolment) | Diet based on plant food, low glycemic load, low in saturated- and trans-fats and alcohol, rich in antioxidants; duration 2 years. | MBD ratio 0.91 (0.86–0.97) for intervention vs. control, p-value 0.003 |
Dorgan et al., 2010 [29] | DISC (Dietary Intervention Study in Children), USA | Prepubertal girls (intervention arm: n = 118, mean age 9.2 y, SD 0.6 at randomization and 27.3 y, SD 1.0 at MBD assessment; control arm: n = 112, mean age 9.2 y, SD 0.6 at randomization and 27.2 y, SD 1.1, at MBD assessment) | Three 24 h dietary recalls. | Diet low in total and saturated fat and cholesterol intake and rich in dietary fiber (fruits, vegetables, whole grains). | MBD 19.7% (17.0–22.7) for intervention vs. 18.3% (15.9–21.0) for control, p-value 0.51 |
Martin et al., 2008 [31] | Canada | Pre-menopausal, high MBD (intervention arm: n = 93, mean age 48.7 y, SD 3.2; control arm: n = 96, mean age 48.6 y, SD 2.8), who became post-menopausal prior to 2 y post randomization. | Dietary records and dietary interviews:
| Isocaloric low-fat, high-carbohydrate diet (15% of calories from fat, 20% from protein, 65% from carbohydrates); duration 2 years. | Change in MBD: −3.8% (intervention) vs. −6.2% (control), p-value 0.06 |
Pre-menopausal, high MBD (intervention arm: n = 124, mean age 48.7 y, SD 3.2; control arm: n = 272, mean age 48.6 y, SD 2.8), who became post-menopausal at least 2 y post randomization. | Change in MBD: −11.3% (intervention) vs. −11.1% (control), p-value 0.84 | ||||
Boyd et al., 1997 [30] | Pre-menopausal, high MBD (n = 817, mean age 46.8 y, SD NA) | Dietary records and dietary interviews:
| Change in MBD: −0.21% (−0.95 to 0.52) for intervention vs. control, p-value 0.57 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Agency for Research on Cancer (IARC). Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 13 May 2022).
- McCormack, V.A.; dos Santos Silva, I. Breast density and parenchymal patterns as markers of breast cancer risk: A meta-analysis. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1159–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyd, N.F.; Guo, H.; Martin, L.J.; Sun, L.; Stone, J.; Fishell, E.; Jong, R.A.; Hislop, G.; Chiarelli, A.; Minkin, S.; et al. Mammographic density and the risk and detection of breast cancer. N. Engl. J. Med. 2007, 356, 227–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masala, G.; Ambrogetti, D.; Assedi, M.; Bendinelli, B.; Caini, S.; Palli, D. Mammographic breast density and breast cancer risk in a Mediterranean population: A nested case-control study in the EPIC Florence color”. Breast Cancer Res. Treat. 2017, 164, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Vachon, C.M.; Kuni, C.C.; Anderson, K.; Anderson, V.E.; Sellers, T.A. Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control 2000, 11, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Q.; Zhang, Y.; Xie, Q.; Tan, X. Physical Activity and Risk of Breast Cancer: A Meta-Analysis of 38 Cohort Studies in 45 Study Reports. Value Health 2019, 22, 104–128. [Google Scholar] [CrossRef] [Green Version]
- Yaghjyan, L.; Colditz, G.A.; Wolin, K. Physical activity and mammographic breast density: A systematic review. Breast Cancer Res. Treat. 2012, 135, 367–380. [Google Scholar] [CrossRef] [Green Version]
- Masala, G.; Assedi, M.; Sera, F.; Ermini, I.; Occhini, D.; Castaldo, M.; Pierpaoli, E.; Caini, S.; Bendinelli, B.; Ambrogetti, D.; et al. Can Dietary and Physical Activity Modifications Reduce Breast Density in Postmenopausal Women? The DAMA Study, a Randomized Intervention Trial in Italy. Cancer Epidemiol. Biomark. Prev. 2019, 28, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voon, N.S.; Chelliah, K.K. Is there an influence of dietary habits on breast density as seen on digital mammograms? Asian Pac. J. Cancer Prev. 2011, 12, 1969–1972. [Google Scholar]
- Masala, G.; Ambrogetti, D.; Assedi, M.; Giorgi, D.; Del Turco, M.R.; Palli, D. Dietary and lifestyle determinants of mammographic breast density. A longitudinal study in a Mediterranean population. Int. J. Cancer 2006, 118, 1782–1789. [Google Scholar] [CrossRef]
- Ziembicki, S.; Zhu, J.; Tse, E.; Martin, L.J.; Minkin, S.; Boyd, N.F. The Association between Alcohol Consumption and Breast Density: A Systematic Review and Meta-analysis. Cancer Epidemiol. Biomark. Prev. 2017, 26, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Bagnardi, V.; Rota, M.; Botteri, E.; Tramacere, I.; Islami, F.; Fedirko, V.; Scotti, L.; Jenab, M.; Turati, F.; Pasquali, E.; et al. Alcohol consumption and site-specific cancer risk: A comprehensive dose-response meta-analysis. Br. J. Cancer 2015, 112, 580–593. [Google Scholar] [CrossRef] [PubMed]
- Ekpo, E.U.; Brennan, P.C.; Mello-Thoms, C.; McEntee, M.F. Relationship between Breast Density and Selective Estrogen-Receptor Modulators, Aromatase Inhibitors, Physical Activity, and Diet: A Systematic Review. Integr. Cancer Ther. 2016, 15, 127–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef]
- National Institute for Health Research. PROSPERO: International Prospective Register of Systematic Reviews. Available online: https://www.crd.york.ac.uk/prospero/ (accessed on 5 June 2022).
- Joanna Briggs Institute (JBI). Critical Appraisal Tools. Available online: https://jbi.global/critical-appraisal-tools (accessed on 5 September 2022).
- Castelló, A.; Ascunce, N.; Salas-Trejo, D.; Vidal, C.; Sanchez-Contador, C.; Santamariña, C.; Pedraz-Pingarrón, C.; Moreno, M.P.; Pérez-Gómez, B.; Lope, V.; et al. DDM-Spain Research Group. Association between Western and Mediterranean Dietary Patterns and Mammographic Density. Obstet. Gynecol. 2016, 128, 574–581. [Google Scholar] [CrossRef]
- Castelló, A.; Prieto, L.; Ederra, M.; Salas-Trejo, D.; Vidal, C.; Sánchez-Contador, C.; Santamariña, C.; Pedraz, C.; Moreo, P.; Aragonés, N.; et al. DDM-Spain research group. Association between the Adherence to the International Guidelines for Cancer Prevention and Mammographic Density. PLoS ONE 2015, 10, e0132684. [Google Scholar] [CrossRef] [PubMed]
- Voevodina, O.; Billich, C.; Arand, B.; Nagel, G. Association of Mediterranean diet, dietary supplements and alcohol consumption with breast density among women in South Germany: A cross-sectional study. BMC Public Health 2013, 13, 203. [Google Scholar] [CrossRef] [Green Version]
- Tseng, M.; Sellers, T.A.; Vierkant, R.A.; Kushi, L.H.; Vachon, C.M. Mediterranean diet and breast density in the Minnesota Breast Cancer Family Study. Nutr. Cancer 2008, 60, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Tseng, M.; Vierkant, R.A.; Kushi, L.H.; Sellers, T.A.; Vachon, C.M. Dietary patterns and breast density in the Minnesota Breast Cancer Family Study. Cancer Causes Control 2008, 19, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Takata, Y.; Maskarinec, G.; Park, S.Y.; Murphy, S.P.; Wilkens, L.R.; Kolonel, L.N. Mammographic density and dietary patterns: The multiethnic cohort. Eur. J. Cancer Prev. 2007, 16, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Castelló, A.; Pollán, M.; Buijsse, B.; Ruiz, A.; Casas, A.M.; Baena-Cañada, J.M.; Lope, V.; Antolín, S.; Ramos, M.; Muñoz, M.; et al. GEICAM researchers. Spanish Mediterranean diet and other dietary patterns and breast cancer risk: Case-control EpiGEICAM study. Br. J. Cancer 2014, 111, 1454–1462. [Google Scholar] [CrossRef] [Green Version]
- Castelló, A.; Buijsse, B.; Martín, M.; Ruiz, A.; Casas, A.M.; Baena-Cañada, J.M.; Pastor-Barriuso, R.; Antolín, S.; Ramos, M.; Muñoz, M.; et al. GEICAM researchers. Evaluating the Applicability of Data-Driven Dietary Patterns to Independent Samples with a Focus on Measurement Tools for Pattern Similarity. J. Acad. Nutr. Diet. 2016, 116, 1914–1924.e6. [Google Scholar] [CrossRef] [PubMed]
- Garzia, N.A.; Cushing-Haugen, K.; Kensler, T.W.; Tamimi, R.M.; Harris, H.R. Adolescent and early adulthood inflammation-associated dietary patterns in relation to premenopausal mammographic density. Breast Cancer Res. 2021, 23, 71. [Google Scholar] [CrossRef] [PubMed]
- Mishra, G.D.; dos Santos Silva, I.; McNaughton, S.A.; Stephen, A.; Kuh, D. Energy intake and dietary patterns in childhood and throughout adulthood and mammographic density: Results from a British prospective cohort. Cancer Causes Control 2011, 22, 227–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masala, G.; Assedi, M.; Caini, S.; Ermini, I.; Occhini, D.; Castaldo, M.; Bendinelli, B.; Zagni, D.; Tanzini, D.; Saieva, C.; et al. The DAMA trial: A diet and physical activity intervention trial to reduce mammographic breast density in postmenopausal women in Tuscany, Italy. Study protocol and baseline characteristics. Tumori 2014, 100, 377–385. [Google Scholar] [CrossRef]
- Palli, D.; Berrino, F.; Vineis, P.; Tumino, R.; Panico, S.; Masala, G.; Saieva, C.; Salvini, S.; Ceroti, M.; Pala, V.; et al. EPIC-Italy. A molecular epidemiology project on diet and cancer: The EPIC-Italy Prospective Study. Design and baseline characteristics of participants. Tumori 2003, 89, 586–593. [Google Scholar] [CrossRef]
- Dorgan, J.F.; Liu, L.; Klifa, C.; Hylton, N.; Shepherd, J.A.; Stanczyk, F.Z.; Snetselaar, L.G.; Van Horn, L.; Stevens, V.J.; Robson, A.; et al. Adolescent diet and subsequent serum hormones, breast density, and bone mineral density in young women: Results of the Dietary Intervention Study in Children follow-up study. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1545–1556. [Google Scholar] [CrossRef] [Green Version]
- Boyd, N.F.; Greenberg, C.; Lockwood, G.; Little, L.; Martin, L.; Byng, J.; Yaffe, M.; Tritchler, D. Effects at two years of a low-fat, high-carbohydrate diet on radiologic features of the breast: Results from a randomized trial. Canadian Diet and Breast Cancer Prevention Study Group. J. Natl. Cancer Inst. 1997, 89, 488–496. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.J.; Greenberg, C.V.; Kriukov, V.; Minkin, S.; Jenkins, D.J.; Yaffe, M.; Hislop, G.; Boyd, N.F. Effect of a low-fat, high-carbohydrate dietary intervention on change in mammographic density over menopause. Breast Cancer Res. Treat. 2009, 113, 163–172. [Google Scholar] [CrossRef]
- Thomson, C.A.; Arendell, L.A.; Bruhn, R.L.; Maskarinec, G.; Lopez, A.M.; Wright, N.C.; Moll, C.E.; Aickin, M.; Chen, Z. Pilot study of dietary influences on mammographic density in pre- and postmenopausal Hispanic and non-Hispanic white women. Menopause 2007, 14, 243–250. [Google Scholar] [CrossRef]
- García-Arenzana, N.; Navarrete-Muñoz, E.M.; Lope, V.; Moreo, P.; Vidal, C.; Laso-Pablos, S.; Ascunce, N.; Casanova-Gómez, F.; Sánchez-Contador, C.; Santamariña, C.; et al. Calorie intake, olive oil consumption and mammographic density among Spanish women. Int. J. Cancer 2014, 134, 1916–1925. [Google Scholar] [CrossRef] [Green Version]
- Canitrot, E.; Diorio, C. Dairy Food Consumption and Mammographic Breast Density: The Role of Fat. Anticancer Res. 2019, 39, 6197–6208. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, K.A.; Burian, R.A.; Eliassen, A.H.; Willett, W.C.; Tamimi, R.M. Adolescent intake of animal fat and red meat in relation to premenopausal mammographic density. Breast Cancer Res. Treat. 2016, 155, 385–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, M.; Olufade, T.O.; Evers, K.A.; Byrne, C. Adolescent lifestyle factors and adult breast density in U.S. Chinese immigrant women. Nutr. Cancer 2011, 63, 342–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duchaine, C.S.; Dumas, I.; Diorio, C. Consumption of sweet foods and mammographic breast density: A cross-sectional study. BMC Public Health 2014, 14, 554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, D.R., Jr.; Gross, M.D.; Tapsell, L.C. Food synergy: An operational concept for understanding nutrition. Am. J. Clin. Nutr. 2009, 89, 1543S–1548S. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Schwedhelm, C.; Galbete, C.; Hoffmann, G. Adherence to Mediterranean Diet and Risk of Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients 2017, 9, 1063. [Google Scholar] [CrossRef]
- Turati, F.; Carioli, G.; Bravi, F.; Ferraroni, M.; Serraino, D.; Montella, M.; Giacosa, A.; Toffolutti, F.; Negri, E.; Levi, F.; et al. Mediterranean Diet and Breast Cancer Risk. Nutrients 2018, 10, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Alcohol consumption and ethyl carbamate. IARC Monogr. Eval. Carcinog. Risks Hum. 2010, 96, 3–1383. [Google Scholar]
- Chen, W.Y.; Rosner, B.; Hankinson, S.E.; Colditz, G.A.; Willett, W.C. Moderate alcohol consumption during adult life, drinking patterns, and breast cancer risk. JAMA 2011, 306, 1884–1890. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Nguyen, N.; Colditz, G.A. Links between alcohol consumption and breast cancer: A look at the evidence. Womens Health 2015, 11, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Longnecker, M.P.; Newcomb, P.A.; Mittendorf, R.; Greenberg, E.R.; Clapp, R.W.; Bogdan, G.F.; Baron, J.; MacMahon, B.; Willett, W.C. Risk of breast cancer in relation to lifetime alcohol consumption. J. Natl. Cancer Inst. 1995, 87, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Maskarinec, G.; Takata, Y.; Pagano, I.; Lurie, G.; Wilkens, L.R.; Kolonel, L.N. Alcohol consumption and mammographic density in a multiethnic population. Int. J. Cancer 2006, 118, 2579–2583. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, S.A.; Couto, E.; Hofvind, S.; Wu, A.H.; Ursin, G. Alcohol intake and mammographic density in postmenopausal Norwegian women. Breast Cancer Res. Treat. 2012, 131, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Maskarinec, G.; Verheus, M.; Steinberg, F.M.; Amato, P.; Cramer, M.K.; Lewis, R.D.; Murray, M.J.; Young, R.L.; Wong, W.W. Various doses of soy isoflavones do not modify mammographic density in postmenopausal women. J. Nutr. 2009, 139, 981–986. [Google Scholar] [CrossRef] [Green Version]
- Delmanto, A.; Nahas-Neto, J.; Traiman, P.; Uemura, G.; Pessoa, E.C.; Nahas, E.A. Effects of soy isoflavones on mammographic density and breast parenchyma in postmenopausal women: A randomized, double-blind, placebo-controlled clinical trial. Menopause 2013, 20, 1049–1054. [Google Scholar] [CrossRef] [PubMed]
- Verheus, M.; van Gils, C.H.; Kreijkamp-Kaspers, S.; Kok, L.; Peeters, P.H.; Grobbee, D.E.; van der Schouw, Y.T. Soy protein containing isoflavones and mammographic density in a randomized controlled trial in postmenopausal women. Cancer Epidemiol. Biomark. Prev. 2008, 17, 2632–2638. [Google Scholar] [CrossRef] [Green Version]
- Woolcott, C.G.; Courneya, K.S.; Boyd, N.F.; Yaffe, M.J.; Terry, T.; McTiernan, A.; Brant, R.; Ballard-Barbash, R.; Irwin, M.L.; Jones, C.A.; et al. Mammographic density change with 1 year of aerobic exercise among postmenopausal women: A randomized controlled trial. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1112–1121. [Google Scholar] [CrossRef] [Green Version]
- Samavat, H.; Ursin, G.; Emory, T.H.; Lee, E.; Wang, R.; Torkelson, C.J.; Dostal, A.M.; Swenson, K.; Le, C.T.; Yang, C.S.; et al. A Randomized Controlled Trial of Green Tea Extract Supplementation and Mammographic Density in Postmenopausal Women at Increased Risk of Breast Cancer. Cancer Prev. Res. 2017, 10, 710–718. [Google Scholar] [CrossRef] [Green Version]
- Lindgren, J.; Dorgan, J.; Savage-Williams, J.; Coffman, D.; Hartman, T. Diet across the Lifespan and the Association with Breast Density in Adulthood. Int. J. Breast Cancer 2013, 2013, 808317. [Google Scholar] [CrossRef]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
Author, Year | Study Country (and Name) | Study Population | Dietary Assessment | Dietary Pattern Type | Dietary Pattern | Summary of Results (a) |
---|---|---|---|---|---|---|
Castellò et al., 2016 [17] | DDM-Spain | Pre- and post-menopausal (n = 3548, mean age 56.2 y, SD = 5.5 y) | FFQ (filled at 45–69 y) | A priori | Western dietary pattern | OR 1.25 (1.03–1.52) for 4th vs. 1st quartiles |
OR 1.09 (1.02–1.18) for 1 -SD increment | ||||||
Mediterranean dietary pattern | OR 0.99 (0.81–1.21) for 4th vs. 1st quartiles | |||||
OR 1.02 (0.95–1.09) for 1 SD increment | ||||||
Castellò et al., 2015 [18] | DDM-Spain | Pre-menopausal (n = 816, mean age 49.8 y, SD = 2.9 y) | FFQ (filled at 45–69 y) | A priori | WCRF/AICR recommendations | OR 0.91 (0.56–1.50) for highest vs. lowest scores |
OR 0.97 (0.84–1.13) for 1-unit increment | ||||||
Post-menopausal (n = 2734, mean age 58.1 y, SD = 4.5 y) | OR 0.77 (0.59–1.01) for highest vs. lowest scores | |||||
OR 0.91 (0.84–0.99) for 1-unit increment | ||||||
Voevodina et al., 2013 [19] | Germany | Pre-menopausal (n = 150, <50 y) | FFQ (filled at 21–84 y) | A priori | Mediterranean Diet Score | OR 0.99 (0.89–1.10) for 1-unit increment |
Post-menopausal (n = 274, ≥50 y) | OR 0.94 (0.89–0.99) for 1-unit increment | |||||
Tseng et al., 2008 [20] | Minnesota Breast Cancer Family Study, USA | Pre- and post-menopausal (n = 1286, mean age 57 y, SD = 12 y) | FFQ | A priori | Mediterranean Diet Scale | β −0.54 for highest vs. lowest category, p-value 0.56 |
β −0.27 for 1-unit increment, p-value 0.17 | ||||||
Revised Mediterranean Diet Score | β −1.40 for highest vs. lowest category, p-value 0.15 | |||||
β −0.33 for 1-unit increment, p-value 0.09 | ||||||
Tseng et al., 2008 [21] | Minnesota Breast Cancer Family Study, USA | Pre-menopausal (n = 356, mean age 57 y, SD = 11.8 y) | FFQ | A posteriori | Fruit-vegetable-cereal | Mean MBD 28.3% vs. 31.2% for 5th vs. 1st quintile |
β −0.13 for 1-unit increment, p-value 0.09 | ||||||
Post-menopausal (n = 930, mean age 57 y, SD = 11.8 y) | Mean MBD 19.2 vs. 19.4 for 5th vs. 1st quintile | |||||
β 0.03 for 1-unit increment, p-value 0.37 | ||||||
Pre-menopausal (n = 356, mean age 57 y, SD = 11.8 y) | Salad-sauce-pasta/grain | Mean MBD 28.2 vs. 30.3 for 5th vs. 1st quintile | ||||
β −0.10 for 1-unit increment, p-value 0.26 | ||||||
Post-menopausal (n = 930, mean age 57 y, SD = 11.8 y) | Mean MBD 19.9 vs.18,2 for 5th vs. 1st quintile | |||||
β 0.04 for 1-unit increment, p-value 0.48 | ||||||
Pre-menopausal (n = 356, mean age 57 y, SD = 11.8 y) | Meat-starch | Mean MBD 33.2 vs. 30.0 for 5th vs. 1st quintile | ||||
β 0.07 for 1-unit increment, p-value 0.40 | ||||||
Post-menopausal (n = 930, mean age 57 y, SD = 11.8 y) | Mean MBD 20.4 vs. 19.5 for 5th vs. 1st quintile | |||||
β 0.03 for 1-unit increment, p-value 0.55 | ||||||
Takata et al., 2007 [22] | Multiethnic Cohort Study, Hawaii, USA | Pre-menopausal (n = 303, mean age 59.7 y, SD = 8.8 y) | FFQ at cohort entry | A posteriori | Vegetables | Mean MBD 42.1% vs. 39.7% 4th vs. 1st quartile, p-trend 0.27 |
Post-menopausal (n = 947, mean age 59.7 y, SD = 8.8 y) | Mean MBD 30.0% vs. 30.6% 4th vs. 1st quartile, p-trend 0.71 | |||||
Pre-menopausal (n = 303, mean age 59.7 y, SD = 8.8 y) | Fruit and milk | Mean MBD 42.5% vs. 42.1% 4th vs. 1st quartile, p-trend 0.94 | ||||
Post-menopausal (n = 947, mean age 59.7 y, SD = 8.8 y) | Mean MBD 30.7% vs. 30.4% 4th vs. 1st quartile, p-trend 0.80 | |||||
Pre-menopausal (n = 303, mean age 59.7 y, SD = 8.8 y) | Fat and meat | Mean MBD 41.9% vs. 42.3% 4th vs. 1st quartile, p-trend 0.89 | ||||
Post-menopausal (n = 947, mean age 59.7 y, SD = 8.8 y) | Mean MBD 31.7% vs. 29.3% 4th vs. 1st quartile, p-trend 0.23 |
Author, Year | Study Name and Country | Study Population | Dietary Assessment | Dietary Pattern Type | Dietary Pattern | Summary of Results (a) |
---|---|---|---|---|---|---|
Garzia et al., 2021 [25] | NHS-II, USA | Pre-menopausal (n = 1117, median age 44 y) | Adult-FFQ (diet in early adulthood, filled at 27–44 y) | A priori | Pro-inflammatory pattern | Mean MBD 40.7% (38.6–42.8) vs. 40.6% (38.6–42.7) for the 5th vs. 1st quintile, p-value for trend 0.99 |
AHEI anti-inflammatory pattern | Mean MBD 39.9% (37.9–42.0%) vs. 39.7% (37.7–41.7%) for the 5th vs. 1st quintile, p-value for trend 0.98 | |||||
Pre-menopausal (n = 709, median age 44 y) | HS-FFQ (diet during high school, filled at 33–52 y) | Pro-inflammatory pattern | Mean MBD 38.7% (35.7–41.7%) vs. 39.6% (37.3–41.9%) for the 5th vs. 1st quintile, p-value for trend 0.93 | |||
AHEI anti-inflammatory pattern | Mean MBD 41.4% (38.8–43.9%) vs. 41.0% (38.3–43.6%) for the 5th vs. 1st quintile, p-value for trend 0.89 | |||||
Mishra et al., 2011 [26] | The Medical Research Council National Survey of Health and Development, UK | Pre- and post-menopausal (n = 792, mean age 51.5, SD = 1.1 y) | Maternal 24 h recalls (about diet at 4 y) | A posteriori | breads and fats | β −0.004 (−0.08, 0.07) |
fried potatoes and fish | β −0.05 (−0.12, 0.01) | |||||
milk, fruit and biscuits | β −0.01 (−0.08, 0.05) | |||||
Pre- and post-menopausal (n = 700, mean age 51.5, SD = 1.1 y) | 5-day food diaries (about diet at 36 and 43 y) | low fat, high fiber | β 0.03 (−0.04, 0.11) | |||
alcohol and fish | β −0.02 (−0.13, 0.17) | |||||
high fat and sugar | β 0.06 (−0.01, 0.13) | |||||
meat, potatoes, and vegetables | β −0.03 (−0.10, 0.04) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastore, E.; Caini, S.; Bendinelli, B.; Palli, D.; Ermini, I.; de Bonfioli Cavalcabo’, N.; Assedi, M.; Ambrogetti, D.; Fontana, M.; Masala, G. Dietary Patterns, Dietary Interventions, and Mammographic Breast Density: A Systematic Literature Review. Nutrients 2022, 14, 5312. https://doi.org/10.3390/nu14245312
Pastore E, Caini S, Bendinelli B, Palli D, Ermini I, de Bonfioli Cavalcabo’ N, Assedi M, Ambrogetti D, Fontana M, Masala G. Dietary Patterns, Dietary Interventions, and Mammographic Breast Density: A Systematic Literature Review. Nutrients. 2022; 14(24):5312. https://doi.org/10.3390/nu14245312
Chicago/Turabian StylePastore, Elisa, Saverio Caini, Benedetta Bendinelli, Domenico Palli, Ilaria Ermini, Nora de Bonfioli Cavalcabo’, Melania Assedi, Daniela Ambrogetti, Miriam Fontana, and Giovanna Masala. 2022. "Dietary Patterns, Dietary Interventions, and Mammographic Breast Density: A Systematic Literature Review" Nutrients 14, no. 24: 5312. https://doi.org/10.3390/nu14245312
APA StylePastore, E., Caini, S., Bendinelli, B., Palli, D., Ermini, I., de Bonfioli Cavalcabo’, N., Assedi, M., Ambrogetti, D., Fontana, M., & Masala, G. (2022). Dietary Patterns, Dietary Interventions, and Mammographic Breast Density: A Systematic Literature Review. Nutrients, 14(24), 5312. https://doi.org/10.3390/nu14245312