Association between Serum Zinc and Toll-like-Receptor- Related Innate Immunity and Infectious Diseases in Well-Nourished Children with a Low Prevalence of Zinc Deficiency: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Blood Collection and Zinc Measurement
2.3. Toll-like Receptor Ligands Stimulation
2.4. Measurement of TLR-Stimulated Cytokines
2.5. Outcome Assessment
2.6. Statistical Methods
3. Results
3.1. Study Population Characteristics
3.2. Serum Zinc Status throughout Early Childhood
3.3. Effect of Serum Zinc Status on TLR-Triggered Cytokine Production throughout Early Childhood
3.4. Association between Serum ZINC Status and Childhood Infections
3.5. Comparing Serum Zinc Status in Children with and without Infectious Diseases
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COVID-19 | coronavirus disease |
IL-6 | interleukin-6 |
IL-10 | interleukin-10 |
LPS | lipopolysaccharide |
TLR | toll-like receptor |
TNF | tumor necrosis factor alpha |
UTI | urinary tract |
References
- Prasad, A.S. Discovery of Human Zinc Deficiency: Its Impact on Human Health and Disease. Adv. Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, C.F.; Ezzati, M.; Black, R.E. Global and regional child mortality and burden of disease attributable to zinc deficiency. Eur. J. Clin. Nutr. 2009, 63, 591–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haase, H.; Ober-Blöbaum, J.; Engelhardt, G.; Hebel, S.; Heit, A.; Heine, H.; Rink, L. Zinc signals are essential for lipopolysaccharide-induced signal transduction in monocytes. J. Immunol. 2008, 181, 6491–6502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Y.; Petris, M.; Peck, S. Separation of zinc-dependent and zinc-independent events during early LPS-stimulated TLR4 signaling in macrophage cells. FEBS Lett. 2014, 588, 2928–2935. [Google Scholar] [CrossRef] [Green Version]
- Foster, M.; Samman, S. Zinc and Regulation of Inflammatory Cytokines: Implications for Cardiometabolic Disease. Nutrients 2012, 4, 676–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, A.S. Impact of the discovery of human zinc deficiency on health. J. Trace Elem. Med. Biol. 2014, 28, 357–363. [Google Scholar] [CrossRef]
- Maares, M.; Haase, H. Zinc and immunity: An essential interrelation. Arch. Biochem. Biophys. 2016, 611, 58–65. [Google Scholar] [CrossRef]
- Butters, D.; Whitehouse, M. COVID-19 and nutriceutical therapies, especially using zinc to supplement antimicrobials. Inflammopharmacology 2021, 29, 101–105. [Google Scholar] [CrossRef]
- Alexander, J.; Tinkov, A.; Strand, T.A.; Alehagen, U.; Skalny, A.; Aaseth, J. Early Nutritional Interventions with Zinc, Selenium and Vitamin D for Raising Anti-Viral Resistance Against Progressive COVID-19. Nutrients 2020, 12, 2358. [Google Scholar] [CrossRef]
- Scuderi, P. Differential effects of copper and zinc on human peripheral blood monocyte cytokine secretion. Cell. Immunol. 1990, 126, 391–405. [Google Scholar] [CrossRef]
- Liao, S.L.; Yeh, K.W.; Lai, S.H.; Lee, W.I.; Huang, J.L. Maturation of Toll-like receptor 1–4 responsiveness during early life. Early Hum. Dev. 2013, 89, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Hotz, C.; Peerson, J.; Brown, K. Suggested lower cutoffs of serum zinc concentrations for assessing zinc status: Reanalysis of the second National Health and Nutrition Examination Survey data (1976–1980). Am. J. Clin. Nutr. 2003, 78, 756–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Multicentre Growth Reference Study Group. Assessment of differences in linear growth among populations in the WHO Multicentre Growth Reference Study. Acta Paediatr. 2007, 95, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.; Rudan, I.; Liu, L.; Nair, H.; Theodoratou, E.; Bhutta, Z.; O’Brien, K.; Campbell, H.; Black, R.E. Global burden of childhood pneumonia and diarrhoea. Lancet 2013, 381, 1405–1416. [Google Scholar] [CrossRef] [PubMed]
- Sandstead, H.H.; Prasad, A.S.; Penland, J.; Beck, F.; Kaplan, J.; Egger, N.; Alcock, N.; Carroll, R.M.; Ramanujam, V.M.S.; Dayal, H.; et al. Zinc deficiency in Mexican American children: Influence of zinc and other micronutrients on T cells, cytokines, and anti-inflammatory plasma proteins. Am. J. Clin. Nutr. 2008, 88, 1067–1073. [Google Scholar] [CrossRef] [Green Version]
- Black, R.E.; Victora, C.G.; Walker, S.; Bhutta, Z.; Christian, P.; Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Kim, B.; Lee, W.W. Regulatory Role of Zinc in Immune Cell Signaling. Mol. Cells 2021, 44, 335–341. [Google Scholar] [CrossRef]
- Haase, H.; Rink, L. Signal transduction in monocytes: The role of zinc ions. Biometals 2007, 20, 579. [Google Scholar] [CrossRef]
- Shankar, A.H.; Prasad, A.S. Zinc and immune function: The biological basis of altered resistance to infection. Am. J. Clin. Nutr. 1998, 68, 447S–463S. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.S. Effects of Zinc Deficiency on Th1 and Th2 Cytokine Shifts. J. Infect. Dis. 2000, 182, S62–S68. [Google Scholar] [CrossRef]
- Kitamura, H.; Morikawa, H.; Kamon, H.; Iguchi, M.; Hojyo, S.; Fukada, T.; Yamashita, S.; Kaisho, T.; Akira, S.; Murakami, M.; et al. Toll-like receptor–mediated regulation of zinc homeostasis influences dendritic cell function. Nat. Immunol. 2006, 7, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Karki, R.; Williams, E.P.; Yang, D.; Fitzpatrick, E.; Vogel, P.; Jonsson, C.B.; Kanneganti, T.D. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat. Immunol. 2021, 22, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Kayesh, M.; Kohara, M.; Tsukiyama-Kohara, K. An Overview of Recent Insights into the Response of TLR to SARS-CoV-2 Infection and the Potential of TLR Agonists as SARS-CoV-2 Vaccine Adjuvants. Viruses 2021, 13, 2302. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, A.E.; Ghoneim, A.I. Potential value of pharmacological agents acting on toll-like receptor (TLR) 7 and/or TLR8 in COVID-19. Curr. Res. Pharmacol. Drug Discov. 2021, 2, 100068. [Google Scholar] [CrossRef] [PubMed]
- Shirato, K.; Kizaki, T. SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory responses via toll-like receptor 4 signaling in murine and human macrophages. Heliyon 2021, 7, e06187. [Google Scholar] [CrossRef] [PubMed]
- Bhutta, Z.; Bird, S.; Black, R.E.; Brown, K.H.; Gardner, J.M.; Hidayat, A.; Khatun, F.; Martorell, R.; Ninh, N.; Penny, M.; et al. Therapeutic effects of oral zinc in acute and persistent diarrhea in children in developing countries: Pooled analysis of randomized controlled trials. Am. J. Clin. Nutr. 2000, 72, 1516–1522. [Google Scholar] [PubMed] [Green Version]
- Lassi, Z.S.; Haider, B.A.; Bhutta, Z.A. Zinc supplementation for the prevention of pneumonia in children aged 2 months to 59 months. Cochrane Database Syst. Rev. 2010, 12, CD005978. [Google Scholar]
- Bhatnagar, S.; Wadhwa, N.; Aneja, S.; Lodha, R.; Kabra, S.K.; Natchu, U.; Sommerfelt, H.; Dutta, A.; Chandra, J.; Rath, B.; et al. Zinc as adjunct treatment in infants aged between 7 and 120 days with probable serious bacterial infection: A randomised, double-blind, placebo-controlled trial. Lancet 2012, 379, 2072–2078. [Google Scholar] [CrossRef]
- Campo, C.A.; Wellinghausen, N.; Faber, C.; Fischer, A.; Rink, L. Zinc inhibits the mixed lymphocyte culture. Biol. Trace Elem. Res. 2001, 79, 15–22. [Google Scholar]
- King, J.C.; Shames, D.M.; Woodhouse, L.R. Zinc homeostasis in humans. J. Nutr. 2000, 130, 1360S–1366S. [Google Scholar] [CrossRef] [Green Version]
- Lowe, N.M.; Fekete, K.; Decsi, T. Methods of assessment of zinc status in humans: A systematic review. Am. J. Clin. Nutr. 2009, 89, 2040S–2051S. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Age 1 y (n = 227) | Age 2 y (n = 241) | Age 3 y (n = 259) | Age 5 y (n = 234) |
---|---|---|---|---|
Male | 147 (64.8) | 145 (60.1) | 158 (61.0) | 149 (63.7) |
BF > 12 mo | 44 (19.3) | 34 (14.1) | 34 (13.1) | 45 (19.2) |
Body weight (Kg) | 9.7 ± 1 | 12.8 ± 2 | 14.9 ± 2 | 19.4 ± 3 |
Body height (cm) | 76 ± 3 | 90 ± 4 | 97 ± 5 | 111 ± 5 |
Failure to thrive n (%) | 2 (1.6) | 4 (1.7) | 5 (1.9) | 6 (2.6) |
Stunted growth n (%) | 6 (2.6) | 6 (2.5) | 11 (4.2) | 3 (1.3) |
Infectious diseases | ||||
Pneumonia n (%) | 7 (3.1) | 17 (7.1) | 28 (10.8) | 37 (15.9) |
Croup n (%) | 4 (1.8) | 7 (2.9) | 14 (5.4) | 17 (7.2) |
AOM n (%) | 6 (2.6) | 16 (6.6) | 26 (10.0) | 52 (22.2) |
Enterocolitis n (%) | 13 (5.7) | 25 (10.4) | 39 (15.1) | 53 (22.6) |
UTI n (%) | 16 (7.0) | 24 (9.6) | 29 (11.2) | 33 (14.1) |
Age, y | Samples n | Median (Range) | Zinc < 65 μg/dL n (%) | Zinc > 120 μg/dL n (%) |
---|---|---|---|---|
1 | 227 | 79.3 (55.7–158) | 18 (7.9) | 1 (0.4) |
2 | 241 | 80.3 (50.3–112) | 16 (6.6) | 0 |
3 | 259 | 80.3 (48.5–121) | 25 (9.6) | 1 (0.4) |
5 | 234 | 95.3 (40.2–128) | 3 (1.4) | 6 (2.8) |
Total | 961 | 84.0 (40.2–158) | 62 (6.5) | 8 (0.8) |
Univariate Analysis | Multivariate Analysis | |||||||
---|---|---|---|---|---|---|---|---|
3 y (95% CI) | p | 5 y (95% CI) | p | 3 y (95% CI) | p | 5 y (95% CI) | p | |
TLR1–2 | ||||||||
TNF-α | 0.002 (−0.01, 0.02) | 0.82 | −0.02 (−0.04, −0.01) | <0.01 | 0.01 (−0.01, 0.03) | 0.23 | −0.02 (−0.04, −0.01) | 0.01 |
IL-6 | −0.01 (−0.02, −0.004) | <0.01 | −0.001 (−0.01, 0.01) | 0.82 | −0.02 (−0.03, −0.01) | <0.01 | −0.002 (−0.01, 0.01) | 0.68 |
IL-10 | −0.02 (−0.03, 0.00) | 0.05 | −0.003 (−0.01, 0.01) | 0.53 | −0.03 (−0.05, −0.01) | 0.01 | −0.001 (−0.01, 0.01) | 0.91 |
TLR3 | ||||||||
TNF-α | 0.02 (−0.01, 0.05) | 0.18 | −0.002 (−0.03, 0.03) | 0.89 | 0.02 (−0.02, 0.06) | 0.37 | −0.003 (−0.04, 0.03) | 0.84 |
IL-6 | −0.01 (−0.03, 0.02) | 0.61 | 0.01 (−0.01, 0.02) | 0.52 | −0.01 (−0.05, 0.02) | 0.49 | 0.01 (−0.01, 0.03) | 0.49 |
IL-10 | 0.01 (−0.01, 0.03) | 0.47 | −0.01 (−0.02, 0.01) | 0.51 | −0.01 (−0.03, 0.02) | 0.68 | −0.01 (−0.03, 0.01) | 0.42 |
TLR4 | ||||||||
TNF-α | 0.002 (−0.01, 0.01) | 0.65 | −0.01 (−0.01, −0.002) | 0.01 | 0.002 (−0.01, 0.01) | 0.65 | −0.01 (−0.02, −0.004) | <0.01 |
IL-6 | −0.01 (−0.02, −0.01) | <0.01 | 0.00 (−0.002, 0.002) | 0.74 | −0.01 (−0.02, −0.01) | <0.01 | −0.001 (−0.003, 0.002) | 0.52 |
IL-10 | −0.01 (−0.02, 0.006) | 0.29 | −0.01 (−0.02, 0.003) | 0.17 | −0.01 (−0.03, 0.006) | 0.18 | −0.005 (−0.02, 0.01) | 0.38 |
TLR7–8 | ||||||||
TNF-α | 0.01 (−0.01, 0.004) | 0.30 | −0.01 (−0.02, −0.001) | 0.03 | 0.007 (−0.02, 0.01) | 0.27 | −0.01 (−0.02, −0.003) | 0.01 |
IL-6 | −0.01 (−0.01, −0.004) | <0.01 | −0.001 (−0.01, 0.003) | 0.71 | −0.01 (−0.02, −0.006) | <0.01 | −0.002 (−0.01, 0.003) | 0.46 |
IL-10 | −0.02 (−0.03, −0.001) | 0.04 | −0.004 (−0.02, 0.01) | 0.48 | −0.03 (−0.05, −0.01) | 0.01 | −0.004 (−0.02, 0.01) | 0.58 |
Crude OR (95% CI) | p | Adjusted OR (95% CI) | p | |
---|---|---|---|---|
1 y | ||||
Pneumonia | 1.02 (0.96–1.07) | 0.60 | 1.09 (0.95–1.2) | 0.24 |
Croup | 1.05 (0.99–1.10) | 0.08 | 1.10 (0.97–1.24) | 0.12 |
AOM | 1.01 (0.94–1.08) | 0.84 | 1.06 (0.96–1.18) | 0.26 |
Enterocolitis | 0.96 (0.91–1.02) | 0.22 | 0.97 (0.91–1.03) | 0.33 |
UTI | 0.95 (0.90–1.00) | 0.07 | 0.94 (0.88–1.00) | 0.05 |
3 y | ||||
Pneumonia | 0.94 (0.90–0.98) | 0.001 | 0.94 (0.90–0.99) | 0.01 |
Croup | 0.97 (0.93–1.01) | 0.17 | 0.97 (0.91–1.03) | 0.29 |
AOM | 0.99 (0.96–1.03) | 0.66 | 0.99 (0.96–1.03) | 0.73 |
Enterocolitis | 1.00 (0.98–1.03) | 0.99 | 1.00 (0.95–1.04) | 0.83 |
UTI | 0.96 (0.92–0.99) | 0.01 | 0.97 (0.93–1.01) | 0.09 |
5 y | ||||
Pneumonia | 0.99 (0.96–1.02) | 0.53 | 1.00 (0.95–1.03) | 0.59 |
Croup | 0.96 (0.93–1.00) | 0.07 | 0.98 (0.92–1.03) | 0.38 |
AOM | 1.01 (0.98–1.04) | 0.60 | 1.01 (0.98–1.04) | 0.68 |
Enterocolitis | 0.96 (0.94–0.99) | 0.01 | 0.96 (0.93–0.99) | 0.02 |
UTI | 1.03 (1.00–1.07) | 0.06 | 1.04 (1.00–1.09) | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, S.-L.; Hua, M.-C.; Tsai, M.-H.; Su, K.-W.; Lin, C.; Yao, T.-C.; Chen, L.-C.; Yeh, K.-W.; Huang, J.-L.; Lai, S.-H. Association between Serum Zinc and Toll-like-Receptor- Related Innate Immunity and Infectious Diseases in Well-Nourished Children with a Low Prevalence of Zinc Deficiency: A Prospective Cohort Study. Nutrients 2022, 14, 5395. https://doi.org/10.3390/nu14245395
Liao S-L, Hua M-C, Tsai M-H, Su K-W, Lin C, Yao T-C, Chen L-C, Yeh K-W, Huang J-L, Lai S-H. Association between Serum Zinc and Toll-like-Receptor- Related Innate Immunity and Infectious Diseases in Well-Nourished Children with a Low Prevalence of Zinc Deficiency: A Prospective Cohort Study. Nutrients. 2022; 14(24):5395. https://doi.org/10.3390/nu14245395
Chicago/Turabian StyleLiao, Sui-Ling, Man-Chin Hua, Ming-Han Tsai, Kuan-Wen Su, Chi Lin, Tsung-Chieh Yao, Li-Chen Chen, Kuo-Wei Yeh, Jing-Long Huang, and Shen-Hao Lai. 2022. "Association between Serum Zinc and Toll-like-Receptor- Related Innate Immunity and Infectious Diseases in Well-Nourished Children with a Low Prevalence of Zinc Deficiency: A Prospective Cohort Study" Nutrients 14, no. 24: 5395. https://doi.org/10.3390/nu14245395
APA StyleLiao, S. -L., Hua, M. -C., Tsai, M. -H., Su, K. -W., Lin, C., Yao, T. -C., Chen, L. -C., Yeh, K. -W., Huang, J. -L., & Lai, S. -H. (2022). Association between Serum Zinc and Toll-like-Receptor- Related Innate Immunity and Infectious Diseases in Well-Nourished Children with a Low Prevalence of Zinc Deficiency: A Prospective Cohort Study. Nutrients, 14(24), 5395. https://doi.org/10.3390/nu14245395