Care Their Diet and Mind: Association between Eating Habits and Mental Health in Chinese Left-behind Children
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Measures
- Socio-demographic information: sex, age, grade (Grade 1, Grade 2, or Grade 3), residence (urban or rural), sibling status (the only child or not), parental status, parental education, family structure, and family income.
- Eating habits: eating habits were collected by five items from the nutritional subscale of the Chinese version of the Health Promoting Lifestyle Profile-II (HPLP-II) [16]. Specifically, these items asked about the frequency of eating cereals, fruit, vegetables, protein, and breakfast. All items were scored according to a 4-point Likert scale (1 = never, 2 = sometimes; 3 = often; 4 = always).
- Mental health problems: the severity of insomnia, depression, and anxiety were adopted as primary outcome variables in this study. The severity of insomnia was measured by the Chinese version of the Youth Self-Rating Insomnia Scale [17]. The YSIS consisted of 8 items with each item that is rated on a 5-point scale to form a possible total score ranging from 8 to 40. The recommended cutoffs for insomnia severity are below: <22 (normal), 22–25 (mild), 26–29 (moderate), ≤30 (severe) [17]. The severity of depression was measured by the Chinese version of the 9-item Patient Health Questionnaire-9 item (PHQ-9) [18]. Each item can earn 0 to 3 points (0 = not at all, 3 = nearly every day), and the total score of the PHQ-9 can range from 0 to 27. The recommended cutoffs for depression severity are below: <4 (normal), 5–9 (mild), 10–14 (moderate), 15–19 (moderately severe), 20–27 (severe) [19]. The severity of anxiety was measured by the Generalized Anxiety Disorder Scale-7 item (GAD-7) [20]. Each item can earn 0 to 3 points (0 = not at all, 3 = nearly every day), which gives the GAD-7 a possible range of 0 to 21. The recommended cutoffs for anxiety severity are below: <4 (normal), 5–9 (mild), 10–14 (moderate), 15–21 (severe) [21].
2.3. Statistical Analyses
3. Results
4. Discussion
Strengths, Limitations, and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, L.; Yan, F.; Duan, C.; Cheng, M. Changing patterns and development challenge of child population in China. Popul. Res. 2018, 42, 65–78. [Google Scholar]
- Cheng, J.; Sun, Y.H. Depression and anxiety among left-behind children in China: A systematic review. Child Care Health Dev. 2015, 41, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Qu, G.; Wang, L.; Tang, X.; Sun, Y. Meta-analysis of the mental health status of left-behind children in China. J. Paediatr. Child Health 2019, 55, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Yuen, L.; Buhs, E.S.; Newman, I.M. Depression among Chinese Left-Behind Children: A systematic review and meta-analysis. Child Care Health Dev. 2019, 45, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Wang, G.; Hu, T.; Dai, Q.; Xu, J.; Yang, Y.; Xu, J. Mental health and psychosocial problems among Chinese left-behind children: A cross-sectional comparative study. J. Affect. Disord. 2018, 241, 133–141. [Google Scholar] [CrossRef]
- Chopra, C.; Mandalika, S.; Kinger, N. Does diet play a role in the prevention and management of depression among adolescents? A narrative review. Nutr. Health 2021, 27, 243–263. [Google Scholar] [CrossRef] [PubMed]
- Pengpid, S.; Peltzer, K. High Carbonated Soft Drink Intake is Associated with Health Risk Behavior and Poor Mental Health among School-Going Adolescents in Six Southeast Asian Countries. Int. J. Environ. Res. Public Health 2020, 17, 132. [Google Scholar] [CrossRef] [Green Version]
- Mcmartin, S.E.; Jacka, F.N.; Colman, I. The association between fruit and vegetable consumption and mental health disorders: Evidence from five waves of a national survey of Canadians. Prev. Med. 2013, 56, 225–230. [Google Scholar] [CrossRef]
- Liu, M.; Chen, Q.; Towne, S.D.; Zhang, J.; Yu, H.; Tang, R.; Gasevic, D.; Wang, P.; He, Q. Fruit and vegetable intake in relation to depressive and anxiety symptoms among adolescents in 25 low- and middle-income countries. J. Affect. Disord. 2020, 261, 172–180. [Google Scholar] [CrossRef]
- Zahedi, H.; Djalalinia, S.; Sadeghi, O.; Zare, G.F.; Asayesh, H.; Payab, M.; Zarei, M.; Qorbani, M. Breakfast consumption and mental health: A systematic review and meta-analysis of observational studies. Nutr. Neurosci. 2020, 1–15. [Google Scholar] [CrossRef]
- Research Group of all China Women’s Federation. Research Report on the situation of rural left behind children and urban and rural migrant children in China. Chin. Women Mov. 2013, 30–34. [Google Scholar]
- The State Council Information Office of the People’s Republic of China. Fighting COVID-19: China in Action. Available online: http://www.scio.gov.cn/zfbps/32832/Document/1681809/1681809.htm (accessed on 20 December 2021).
- Hou, T.; Xie, Y.; Mao, X.; Liu, Y.; Zhang, J.; Wen, J.; Chen, Y.; Luo, Z.; Cai, W. The Mediating Role of Loneliness Between Social Support and Depressive Symptoms Among Chinese Rural Adolescents During COVID-19 Outbreak: A Comparative Study Between Left-Behind and Non-left-behind Students. Front. Psychiatry 2021, 12, 1475. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Coid, J.W.; Tang, W.; Lv, Q.; Zhang, Y.; Yu, H.; Wang, Q.; Deng, W.; Zhao, L.; Ma, X.; et al. Sustained effects of left-behind experience during childhood on mental health in Chinese university undergraduates. Eur. Child Adolesc. Psychiatry 2021, 30, 1949–1957. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Dai, Q.; Wang, G.; Hu, T.; Xu, W. Impact of parental absence on insomnia and nightmares in Chinese left-behind adolescents: A structural equation modeling analysis. Child. Youth Serv. Rev. 2020, 114, 105076. [Google Scholar] [CrossRef]
- Cao, W.; Guo, Y.; Ping, W.W.; Zheng, J. Development and psychometric tests of a Chinese version of the HPLP-II Scales. Chin. J. Dis. Control. Prev. 2016, 20, 286–289. [Google Scholar]
- Liu, X.; Yang, Y.; Liu, Z.; Luo, Y.; Fan, F.; Jia, C. Psychometric properties of Youth Self-Rating Insomnia Scale (YSIS) in Chinese adolescents. Sleep Biol. Rhythms 2019, 17, 339–348. [Google Scholar] [CrossRef]
- Bian, C.; He, X.; Qian, J.; Wu, W.; Li, C. The reliability and validity of a modified patient health questionnaire for screening depressive syndrome in general hospital outpatients. J. Tongji Univ. (Meidcal Sci.) 2009, 30, 136–140. [Google Scholar]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- He, X.; Li, C.; Qian, J.; Cui, H.; Wu, W. Reliability and validity of a generalized anxiety disorder scale in general hospital outpatients. Shanghai Arch. Psychiatry 2010, 22, 200–203. [Google Scholar]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Zhang, Y.; Liang, W.; Zhang, H.; Yang, S. Reliability and validity of the patient health questionnaire-9 in Chinese adolesents. Sichuan Ment. Health 2014, 27, 357–360. [Google Scholar]
- Sun, J.; Liang, K.; Chi, X.; Chen, S. Psychometric Properties of the Generalized Anxiety Disorder Scale-7 Item (GAD-7) in a Large Sample of Chinese Adolescents. Healthcare 2021, 9, 1709. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Liang, K.; Chen, S.; Huang, Q.; Huang, L.; Yu, Q.; Jiao, C.; Guo, T.; Stubbs, B.; Hossain, M.M.; et al. Mental health problems among Chinese adolescents during the COVID-19: The importance of nutrition and physical activity. Int. J. Clin. Health Psychol. 2021, 21, 100218. [Google Scholar] [CrossRef] [PubMed]
- Yannakoulia, M.; Lykou, A.; Kastorini, C.M.; Saranti Papasaranti, E.; Petralias, A.; Veloudaki, A.; Linos, A. Socio-economic and lifestyle parameters associated with diet quality of children and adolescents using classification and regression tree analysis: The DIATROFI study. Public Health Nutr. 2016, 19, 339–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desbouys, L.; Méjean, C.; De Henauw, S.; Castetbon, K. Socio-economic and cultural disparities in diet among adolescents and young adults: A systematic review. Public Health Nutr. 2020, 23, 843–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarychta, K.; Chan, C.K.Y.; Kruk, M.; Luszczynska, A. Body satisfaction and body weight in under- and healthy-weight adolescents: Mediating effects of restrictive dieting, healthy and unhealthy food intake. Eat. Weight. Disord. —Stud. Anorex. Bulim. Obes. 2020, 25, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Ferrer-Cascales, R.; Sánchez-Sansegundo, M.; Ruiz-Robledillo, N.; Albaladejo-Blázquez, N.; Laguna-Pérez, A.; Zaragoza-Martí, A. Eat or Skip Breakfast? The Important Role of Breakfast Quality for Health-Related Quality of Life, Stress and Depression in Spanish Adolescents. Int. J. Environ. Res. Public Health 2018, 15, 1781. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.A.; Peltzer, K. Dietary behaviour, psychological well-being and mental distress among adolescents in Korea. Child Adolesc Psychiatry Ment Health 2017, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Zipp, A.; Eissing, G. Studies on the influence of breakfast on the mental performance of school children and adolescents. J. Public Health-UK 2019, 27, 103–110. [Google Scholar] [CrossRef]
- Otsuka, Y.; Kaneita, Y.; Itani, O.; Osaki, Y.; Higuchi, S.; Kanda, H.; Nakagome, S.; Jike, M.; Ohida, T. Association between unhealthy dietary behaviors and sleep disturbances among Japanese adolescents: A nationwide representative survey. Sleep Biol. Rhythms 2019, 17, 93–102. [Google Scholar] [CrossRef]
- Falch-Madsen, J.; Wichstrøm, L.; Pallesen, S.; Jensen, M.R.; Bertheussen, L.; Solhaug, S.; Steinsbekk, S. Predictors of diagnostically defined insomnia in child and adolescent community samples: A literature review. Sleep Med. 2021, 87, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Sawa, S.; Sekine, M.; Yamada, M. Social and Family Factors as Determinants of Sleep Habits in Japanese Elementary School Children: A Cross-Sectional Study from the Super Shokuiku School Project. Children 2021, 8, 110. [Google Scholar] [CrossRef] [PubMed]
- Luppino, F.S.; de Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.; Zitman, F.G. Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies. Arch. Gen. Psychiatr. 2010, 67, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Milaneschi, Y.; Simmons, W.K.; van Rossum, E.F.C.; Penninx, B.W. Depression and obesity: Evidence of shared biological mechanisms. Mol. Psychiatr. 2019, 24, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Adan, R.A.H.; van der Beek, E.M.; Buitelaar, J.K.; Cryan, J.F.; Hebebrand, J.; Higgs, S.; Schellekens, H.; Dickson, S.L. Nutritional psychiatry: Towards improving mental health by what you eat. Eur. Neuropsychopharm. 2019, 29, 1321–1332. [Google Scholar] [CrossRef] [PubMed]
- Chawner, L.R.; Blundell-Birtill, P.; Hetherington, M.M. Predictors of vegetable consumption in children and adolescents: Analyses of the UK National Diet and Nutrition Survey (2008–2017). Brit. J. Nutr. 2021, 126, 295–306. [Google Scholar] [CrossRef]
- Haghighatdoost, F.; Azadbakht, L.; Keshteli, A.H.; Feinle-Bisset, C.; Daghaghzadeh, H.; Afshar, H.; Feizi, A.; Esmaillzadeh, A.; Adibi, P. Glycemic index, glycemic load, and common psychological disorders. Am. J. Clin. Nutr. 2016, 103, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Ju, L.H.; Yang, Z.Y.; Zhang, Q.; Gao, J.F.; Gong, D.P.; Guo, D.D.; Luo, S.Q.; Zhao, W.H. Food Frequency Questionnaire for Chinese Children Aged 12–17 Years: Validity and Reliability. Biomed. Environ. Sci. 2019, 32, 486–495. [Google Scholar] [CrossRef]
- Yuan, C.; Spiegelman, D.; Rimm, E.B.; Rosner, B.A.; Stampfer, M.J.; Barnett, J.B.; Chavarro, J.E.; Subar, A.F.; Sampson, L.K.; Willett, W.C. Validity of a Dietary Questionnaire Assessed by Comparison With Multiple Weighed Dietary Records or 24-Hour Recalls. Am. J. Epidemiol. 2017, 185, 570–584. [Google Scholar] [CrossRef] [Green Version]
Variables | Males (N = 1455) | Females (N = 1859) | ||
---|---|---|---|---|
n | % | n | % | |
Grade | ||||
Grade 1 | 623 | 42.8 | 741 | 39.9 |
Grade 2 | 469 | 32.2 | 617 | 33.2 |
Grade 3 | 363 | 24.9 | 501 | 26.9 |
Residence | ||||
Urban | 203 | 14.0 | 204 | 11.0 |
Rural | 1252 | 86.0 | 1655 | 89.0 |
Sibling status | ||||
Only child | 343 | 23.6 | 281 | 15.1 |
Non-only child | 1112 | 76.4 | 1578 | 84.9 |
Family structure | ||||
Full | 1136 | 78.1 | 1460 | 78.5 |
Divorced | 206 | 14.2 | 271 | 14.6 |
Other | 113 | 7.8 | 128 | 6.9 |
Paternal education | ||||
Junior middle school or below | 1145 | 78.7 | 1566 | 84.2 |
High school or equivalent | 228 | 15.7 | 234 | 12.6 |
Bachelor or equivalent | 52 | 3.6 | 42 | 2.3 |
Master or above | 30 | 2.1 | 17 | 0.9 |
Maternal education | ||||
Junior middle school or below | 1164 | 80.0 | 1603 | 86.2 |
High school or equivalent | 206 | 14.2 | 206 | 11.1 |
Bachelor or equivalent | 44 | 3.0 | 33 | 1.8 |
Master or above | 41 | 2.8 | 17 | 0.9 |
Family per capita monthly income (yuan) | ||||
Less than 1000 | 184 | 12.6 | 239 | 12.9 |
1000–1999 | 237 | 16.3 | 424 | 22.8 |
2000–2999 | 298 | 20.5 | 381 | 20.5 |
3000–3999 | 323 | 22.2 | 414 | 22.3 |
4000–4999 | 136 | 9.3 | 163 | 8.8 |
5000–5999 | 79 | 5.4 | 91 | 4.9 |
More than 6000 | 198 | 13.6 | 147 | 7.9 |
Variables | Males | Females | Variables | Males | Females | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | % | n | % | p | n | % | n | % | p | ||
Carbohydrates | Insomnia severity | ||||||||||
Never | 167 | 11.5 | 154 | 8.3 | 0.001 | Normal | 993 | 68.2 | 1011 | 54.4 | <0.001 |
Sometimes | 534 | 36.7 | 783 | 42.1 | Mild | 196 | 13.5 | 321 | 17.3 | ||
Often | 431 | 29.6 | 555 | 29.9 | Moderate | 135 | 9.3 | 258 | 13.9 | ||
Routinely | 323 | 22.2 | 367 | 19.7 | Severe | 131 | 9.0 | 269 | 14.5 | ||
Fruits | Depression severity | ||||||||||
Never | 201 | 13.8 | 203 | 10.9 | <0.001 | Normal | 798 | 54.8 | 797 | 42.9 | <0.001 |
Sometimes | 744 | 51.1 | 1106 | 59.5 | Mild | 407 | 28.0 | 539 | 29.0 | ||
Often | 333 | 22.9 | 388 | 20.9 | Moderate | 130 | 8.9 | 284 | 15.3 | ||
Routinely | 177 | 12.2 | 162 | 8.7 | Moderately severe | 85 | 5.8 | 160 | 8.6 | ||
Vegetables | Severe | 35 | 2.4 | 79 | 4.2 | ||||||
Never | 137 | 9.4 | 120 | 6.5 | 0.002 | Anxiety severity | |||||
Sometimes | 530 | 36.4 | 762 | 41.0 | Normal | 984 | 67.6 | 1044 | 56.2 | <0.001 | |
Often | 503 | 34.6 | 640 | 34.4 | Mild | 322 | 22.1 | 498 | 26.8 | ||
Routinely | 285 | 19.6 | 337 | 18.1 | Moderate | 93 | 6.4 | 204 | 11.0 | ||
Protein | Severe | 56 | 3.8 | 113 | 6.1 | ||||||
Never | 141 | 9.7 | 116 | 6.2 | <0.001 | ||||||
Sometimes | 588 | 40.4 | 1023 | 55.0 | |||||||
Often | 473 | 32.5 | 501 | 26.9 | |||||||
Routinely | 253 | 17.4 | 219 | 11.8 | |||||||
Breakfast | |||||||||||
Never | 156 | 10.7 | 128 | 6.9 | <0.001 | ||||||
Sometimes | 538 | 37.0 | 919 | 49.4 | |||||||
Often | 407 | 28.0 | 472 | 25.4 | |||||||
Routinely | 354 | 24.3 | 340 | 18.3 |
Variables | Insomnia Severity | Depression Severity | Anxiety Severity | |||
---|---|---|---|---|---|---|
Males | Females | Males | Females | Males | Females | |
Carbohydrates | 0.03 | −0.01 | −0.02 | −0.03 | 0.02 | −0.02 |
Fruits | −0.05 * | −0.14 *** | −0.04 | −0.15 *** | −0.03 | −0.10 *** |
Vegetables | −0.01 | −0.07 ** | −0.03 | −0.11 *** | −0.01 | −0.08 ** |
Protein | −0.01 | −0.07 ** | −0.03 | −0.08 ** | 0.00 | −0.06 * |
Breakfast | −0.09 ** | −0.19 *** | −0.07 ** | −0.19 *** | −0.03 | −0.15 *** |
Variables | Males | Females | ||||||
---|---|---|---|---|---|---|---|---|
RR | 95% CI | p | RR | 95% CI | p | |||
LL | UL | LL | UL | |||||
Carbohydrates 1 | ||||||||
Never | 0.87 | 0.68 | 1.10 | 0.234 | 0.85 | 0.72 | 1.00 | 0.054 |
Sometimes | 0.89 | 0.77 | 1.04 | 0.130 | 0.95 | 0.85 | 1.06 | 0.360 |
Often | 0.95 | 0.82 | 1.10 | 0.462 | 0.96 | 0.85 | 1.07 | 0.424 |
Fruits 1 | ||||||||
Never | 1.25 | 0.99 | 1.57 | 0.058 | 1.36 | 1.13 | 1.65 | 0.001 |
Sometimes | 1.08 | 0.90 | 1.29 | 0.402 | 1.17 | 1.00 | 1.36 | 0.046 |
Often | 1.01 | 0.83 | 1.22 | 0.934 | 1.00 | 0.84 | 1.18 | 0.959 |
Vegetables 1 | ||||||||
Never | 0.90 | 0.67 | 1.21 | 0.474 | 1.04 | 0.86 | 1.27 | 0.673 |
Sometimes | 1.02 | 0.86 | 1.20 | 0.852 | 0.98 | 0.86 | 1.11 | 0.733 |
Often | 0.90 | 0.76 | 1.06 | 0.203 | 0.97 | 0.86 | 1.10 | 0.641 |
Protein 1 | ||||||||
Never | 0.99 | 0.76 | 1.29 | 0.954 | 1.02 | 0.82 | 1.27 | 0.844 |
Sometimes | 1.09 | 0.93 | 1.28 | 0.312 | 1.10 | 0.95 | 1.27 | 0.200 |
Often | 1.09 | 0.93 | 1.28 | 0.302 | 1.06 | 0.91 | 1.23 | 0.456 |
Breakfast 2 | ||||||||
Never | 1.07 | 0.92 | 1.25 | 0.372 | 1.43 | 1.24 | 1.65 | <0.001 |
Sometimes | 1.20 | 1.08 | 1.34 | 0.001 | 1.30 | 1.18 | 1.43 | <0.001 |
Often | 1.04 | 0.92 | 1.17 | 0.514 | 1.05 | 0.94 | 1.18 | 0.354 |
Variables | Males | Females | ||||||
---|---|---|---|---|---|---|---|---|
RR | 95% CI | p | RR | 95% CI | p | |||
LL | UL | LL | UL | |||||
Carbohydrates 1 | ||||||||
Never | 1.02 | 0.81 | 1.27 | 0.886 | 0.92 | 0.79 | 1.08 | 0.314 |
Sometimes | 0.98 | 0.85 | 1.14 | 0.817 | 0.95 | 0.85 | 1.06 | 0.372 |
Often | 1.02 | 0.88 | 1.18 | 0.792 | 0.98 | 0.88 | 1.10 | 0.735 |
Fruits 1 | ||||||||
Never | 1.18 | 0.94 | 1.47 | 0.147 | 1.34 | 1.12 | 1.62 | 0.002 |
Sometimes | 1.00 | 0.84 | 1.19 | 0.984 | 1.18 | 1.01 | 1.37 | 0.033 |
Often | 1.00 | 0.83 | 1.20 | 0.974 | 1.07 | 0.91 | 1.26 | 0.426 |
Vegetables 1 | ||||||||
Never | 0.85 | 0.64 | 1.13 | 0.256 | 1.09 | 0.89 | 1.32 | 0.403 |
Sometimes | 1.01 | 0.86 | 1.18 | 0.954 | 1.11 | 0.98 | 1.26 | 0.101 |
Often | 0.89 | 0.76 | 1.05 | 0.156 | 1.03 | 0.92 | 1.16 | 0.598 |
Protein 1 | ||||||||
Never | 0.98 | 0.76 | 1.26 | 0.886 | 0.95 | 0.77 | 1.17 | 0.63 |
Sometimes | 1.13 | 0.96 | 1.32 | 0.133 | 1.00 | 0.87 | 1.15 | 0.957 |
Often | 1.09 | 0.93 | 1.28 | 0.274 | 0.95 | 0.83 | 1.10 | 0.497 |
Breakfast 2 | ||||||||
Never | 1.06 | 0.92 | 1.24 | 0.422 | 1.38 | 1.19 | 1.59 | <0.001 |
Sometimes | 1.17 | 1.06 | 1.30 | 0.003 | 1.29 | 1.18 | 1.42 | <0.001 |
Often | 1.07 | 0.96 | 1.20 | 0.226 | 1.08 | 0.97 | 1.20 | 0.160 |
Variables | Males | Females | ||||||
---|---|---|---|---|---|---|---|---|
RR | 95% CI | p | RR | 95% CI | p | |||
LL | UL | LL | UL | |||||
Carbohydrates 1 | ||||||||
Never | 0.85 | 0.66 | 1.10 | 0.223 | 0.94 | 0.79 | 1.11 | 0.456 |
Sometimes | 0.96 | 0.82 | 1.12 | 0.582 | 0.94 | 0.83 | 1.06 | 0.300 |
Often | 0.98 | 0.84 | 1.15 | 0.815 | 0.94 | 0.83 | 1.06 | 0.311 |
Fruits 1 | ||||||||
Never | 1.15 | 0.90 | 1.46 | 0.266 | 1.23 | 1.00 | 1.50 | 0.050 |
Sometimes | 1.07 | 0.89 | 1.29 | 0.479 | 1.11 | 0.95 | 1.31 | 0.194 |
Often | 1.03 | 0.84 | 1.26 | 0.798 | 1.06 | 0.89 | 1.26 | 0.549 |
Vegetables 1 | ||||||||
Never | 0.97 | 0.71 | 1.32 | 0.829 | 1.03 | 0.83 | 1.28 | 0.771 |
Sometimes | 1.00 | 0.84 | 1.18 | 0.964 | 1.07 | 0.94 | 1.23 | 0.314 |
Often | 0.91 | 0.77 | 1.08 | 0.297 | 0.99 | 0.87 | 1.13 | 0.875 |
Protein 1 | ||||||||
Never | 1.05 | 0.80 | 1.38 | 0.744 | 0.99 | 0.78 | 1.25 | 0.914 |
Sometimes | 1.05 | 0.89 | 1.25 | 0.557 | 1.03 | 0.88 | 1.20 | 0.695 |
Often | 1.12 | 0.95 | 1.33 | 0.183 | 1.02 | 0.87 | 1.19 | 0.806 |
Breakfast 2 | ||||||||
Never | 0.99 | 0.84 | 1.17 | 0.910 | 1.30 | 1.11 | 1.52 | 0.001 |
Sometimes | 1.10 | 0.98 | 1.23 | 0.115 | 1.21 | 1.09 | 1.33 | <0.001 |
Often | 1.05 | 0.93 | 1.18 | 0.430 | 1.06 | 0.95 | 1.19 | 0.287 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, K.; Chen, S.; Chi, X. Care Their Diet and Mind: Association between Eating Habits and Mental Health in Chinese Left-behind Children. Nutrients 2022, 14, 524. https://doi.org/10.3390/nu14030524
Liang K, Chen S, Chi X. Care Their Diet and Mind: Association between Eating Habits and Mental Health in Chinese Left-behind Children. Nutrients. 2022; 14(3):524. https://doi.org/10.3390/nu14030524
Chicago/Turabian StyleLiang, Kaixin, Sitong Chen, and Xinli Chi. 2022. "Care Their Diet and Mind: Association between Eating Habits and Mental Health in Chinese Left-behind Children" Nutrients 14, no. 3: 524. https://doi.org/10.3390/nu14030524
APA StyleLiang, K., Chen, S., & Chi, X. (2022). Care Their Diet and Mind: Association between Eating Habits and Mental Health in Chinese Left-behind Children. Nutrients, 14(3), 524. https://doi.org/10.3390/nu14030524