Ecklonia stolonifera Okamura Extract Suppresses Myocardial Infarction-Induced Left Ventricular Systolic Dysfunction by Inhibiting p300-HAT Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animal Experiments
2.3. Primary Cultured Neonatal Rat Cardiomyocytes
2.4. Immunofluorescence Staining
2.5. Quantitative Reverse Transcription PCR
2.6. Western Blotting
2.7. In Vitro p300-HAT Assay
2.8. MI Surgery
2.9. Treatment
2.10. Histological Analysis
2.11. Statistical Analysis
3. Results
3.1. ESE Suppressed PE-Induced Hypertrophic Responses in Cardiomyocytes
3.2. ESE Inhibited p300-HAT Activity In Vitro
3.3. ESE Improved MI-Induced Systolic Disfunction in Rats
3.4. ESE Suppressed MI-Induced Cardiac Hypertrophy in Rats
3.5. ESE Suppressed MI-Induced Cardiac Fibrosis in Rats
3.6. ESE Suppressed MI-Induced Acetylation of Histone H3K9 in Rats
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart fail-ure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016, 18, 891–975. [Google Scholar]
- Okumura, T.; Sawamura, A.; Murohara, T. Palliative and end-of-life care for heart failure patients in an aging society. Korean J. Intern. Med. 2018, 33, 1039–1049. [Google Scholar] [CrossRef]
- Post, S.R.; Hammond, H.K.; Insel, P.A. Beta-adrenergic receptors and receptor signaling in heart failure. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 343–360. [Google Scholar] [CrossRef]
- Curtiss, C.; Cohn, J.N.; Vrobel, T.; Franciosa, J.A. Role of the renin-angiotensin system in the systemic vasoconstriction of chronic congestive heart failure. Circulation 1978, 58, 763–770. [Google Scholar] [CrossRef] [Green Version]
- Ogryzko, V.; Schiltz, R.; Russanova, V.; Howard, B.H.; Nakatani, Y. The Transcriptional Coactivators p300 and CBP Are Histone Acetyltransferases. Cell 1996, 87, 953–959. [Google Scholar] [CrossRef] [Green Version]
- Yanazume, T.; Hasegawa, K.; Morimoto, T.; Kawamura, T.; Wada, H.; Matsumori, A.; Kawase, Y.; Hirai, M.; Kita, T. Cardiac p300 Is Involved in Myocyte Growth with Decompensated Heart Failure. Mol. Cell. Biol. 2003, 23, 3593–3606. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, S.; Kawamura, T.; Morimoto, T.; Ono, K.; Wada, H.; Kawase, Y. Histone acetyltransferase activity of p300 is re-quired for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo. Circulation 2006, 13, 679–690. [Google Scholar] [CrossRef]
- Waagstein, F.; Hjalmarson, A.; Varnauskas, E.; Wallentin, I. Effect of chronic beta-adrenergic receptor blockade in congestive cardiomyopathy. Heart 1975, 37, 1022–1036. [Google Scholar] [CrossRef] [Green Version]
- Packer, M.; Coats, A.S.; Fowler, M.B.; Katus, H.A.; Krum, H.; Mohacsi, P.; Rouleau, J.L.; Tendera, M.; Castaigne, A.; Roecker, E.B.; et al. Effect of Carvedilol on Survival in Severe Chronic Heart Failure. N. Engl. J. Med. 2001, 344, 1651–1658. [Google Scholar] [CrossRef] [Green Version]
- Young, J.B. Angiotensin-converting enzyme inhibitors in heart failure: New strategies justified by recent clinical trials. Int. J. Cardiol. 1994, 43, 151–163. [Google Scholar] [CrossRef]
- Pitt, B. Therapy of left ventricular dysfunction: Implications of recent therapeutic trials and future directions for therapy. Schweiz. Med. Wochenschr. 1993, 123, 342–348. [Google Scholar]
- Riehle, C.; Bauersachs, J. Small animal models of heart failure. Cardiovasc. Res. 2019, 115, 1838–1849. [Google Scholar] [CrossRef]
- Levy, D.; Kenchaiah, S.; Larson, M.G.; Benjamin, E.J.; Kupka, M.J.; Ho, K.K. Long-term trends in the incidence of and survival with heart failure. N. Engl. J. Med. 2002, 347, 1397–1402. [Google Scholar] [CrossRef]
- Iwai, K. Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-A(y) mice. Plant Foods Hum. Nutr. 2008, 63, 163–169. [Google Scholar] [CrossRef]
- Kang, H.S.; Chung, H.Y.; Jung, J.H.; Son, B.W.; Choi, J.S. A New Phlorotannin from the Brown Alga Ecklonia stolonifera. Chem. Pharm. Bull. 2003, 51, 1012–1014. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.A.; Ali, M.Y.; Choi, R.J.; Jeong, H.O.; Chung, H.Y.; Choi, J.S. Kinetics and molecular docking studies of fucosterol and fucoxanthin, BACE1 inhibitors from brown algae Undaria pinnatifida and Ecklonia stolonifera. Food Chem. Toxicol. 2016, 89, 104–111. [Google Scholar] [CrossRef]
- Odagiri, S.; Kato, Y. Seasonal Changes in Carbohydrate, Amino Acid and Polyphenol Contents of Tsuruarame (Ecklonia sto-lonifera). Nippon Shokuhin Kagaku Kogaku Kaishi 2014, 61, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Manandhar, B.; Wagle, A.; Seong, S.H.; Paudel, P.; Kim, H.-R.; Jung, H.A.; Choi, J.S. Phlorotannins with Potential Anti-tyrosinase and Antioxidant Activity Isolated from the Marine Seaweed Ecklonia stolonifera. Antioxidants 2019, 8, 240. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.-R.; Shin, T.-S.; Lee, M.-S.; Park, J.-Y.; Park, K.-E.; Yoon, N.-Y.; Kim, J.-S.; Choi, J.-S.; Jang, B.-C.; Byun, D.-S.; et al. Isolation and Identification of Phlorotannins from Ecklonia stolonifera with Antioxidant and Anti-inflammatory Properties. J. Agric. Food Chem. 2009, 57, 3483–3489. [Google Scholar] [CrossRef]
- Hara, T.; Yagi, Y.; Sensui, N. Effect of Seametaherbline on Blood Glucose Levels in Sucrose-loaded Rats. Food Funct. 2007, 3, 85–90. [Google Scholar]
- Lee, M.-S.; Shin, T.; Utsuki, T.; Choi, J.-S.; Byun, D.-S.; Kim, H.-R. Isolation and Identification of Phlorotannins from Ecklonia stolonifera with Antioxidant and Hepatoprotective Properties in Tacrine-Treated HepG2 Cells. J. Agric. Food Chem. 2012, 60, 5340–5349. [Google Scholar] [CrossRef]
- Jin, H.; Lee, K.; Chei, S.; Oh, H.J.; Lee, K.P.; Lee, B.Y. Ecklonia stolonifera Extract Suppresses Lipid Accumulation by Pro-moting Lipolysis and Adipose Browning in High-Fat Diet-Induced Obese Male Mice. Cells 2020, 9, 871. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, T.; Sunagawa, Y.; Kawamura, T.; Takaya, T.; Wada, H.; Nagasawa, A.; Komeda, M.; Fujita, M.; Shimatsu, A.; Kita, T.; et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J. Clin. Investig. 2008, 118, 868–878. [Google Scholar] [CrossRef]
- Suzuki, H.; Katanasaka, Y.; Sunagawa, Y.; Miyazaki, Y.; Funamoto, M.; Wada, H. Tyrosine phosphorylation of RACK1 trig-gers cardiomyocyte hypertrophy by regulating the interaction between p300 and GATA4. Biochim. Biophys. Acta 2016, 1862, 1544–1557. [Google Scholar] [CrossRef]
- Sunagawa, Y.; Shimizu, K.; Katayama, A.; Funamoto, M.; Shimizu, K.; Sari, N. Metformin suppresses phenylephrine-induced hypertrophic responses by inhibiting p300-HAT activity in cardiomyocytes. J. Pharmacol. Sci. 2021, 147, 169–175. [Google Scholar] [CrossRef]
- Sunagawa, Y.; Morimoto, T.; Takaya, T.; Kaichi, S.; Wada, H.; Kawamura, T. Cyclin-dependent kinase-9 is a component of the p300/GATA4 complex required for phenylephrine-induced hypertrophy in cardiomyocytes. J. Biol. Chem. 2010, 285, 9556–9568. [Google Scholar] [CrossRef] [Green Version]
- Sunagawa, Y.; Funamoto, M.; Sono, S.; Shimizu, K.; Shimizu, S.; Genpei, M.; Miyazaki, Y.; Katanasaka, Y.; Morimoto, E.; Ueno, M.; et al. Curcumin and its demethoxy derivatives possess p300 HAT inhibitory activity and suppress hypertrophic responses in cardiomyocytes. J. Pharmacol. Sci. 2018, 136, 212–217. [Google Scholar] [CrossRef]
- Tambara, K.; Sakakibara, Y.; Sakaguchi, G.; Lu, F.; Premaratne, G.U.; Lin, X. Transplanted skeletal myoblasts can fully re-place the infarcted myocardium when they survive in the host in large numbers. Circulation 2003, 108, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Takaya, T.; Wada, H.; Morimoto, T.; Sunagawa, Y.; Kawamura, T.; Takanabe-Mori, R. Left ventricular expression of lec-tin-like oxidized low-density lipoprotein receptor-1 in failing rat hearts. Circ. J. 2010, 74, 723–729. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, K.; Sunagawa, Y.; Funamoto, M.; Wakabayashi, H.; Genpei, M.; Miyazaki, Y.; Katanasaka, Y.; Sari, N.; Shimizu, S.; Katayama, A.; et al. The Synthetic Curcumin Analogue GO-Y030 Effectively Suppresses the Development of Pressure Overload-induced Heart Failure in Mice. Sci. Rep. 2020, 10, 7172. [Google Scholar] [CrossRef]
- Van Tassell, B.W.; Arena, R.A.; Toldo, S.; Mezzaroma, E.; Azam, T.; Seropian, I.M. Enhanced interleukisn-1 activity contrib-utes to exercise intolerance in patients with systolic heart failure. PLoS ONE 2012, 7, e33438. [Google Scholar] [CrossRef] [Green Version]
- Levine, B.; Kalman, J.; Mayer, L.; Fillit, H.M.; Packer, M. Elevated Circulating Levels of Tumor Necrosis Factor in Severe Chronic Heart Failure. N. Engl. J. Med. 1990, 323, 236–241. [Google Scholar] [CrossRef]
- Fontes, J.; Rose, N.R.; Čiháková, D. The varying faces of IL-6: From cardiac protection to cardiac failure. Cytokine 2015, 74, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Trofimov, E.S.; Poskrebysheva, A.S. Study on activity of inflammatory factors in patients with chronic heart failure depend-ing on the stage of the disease and NYHA class. Bull. Exp. Biol. Med. 2015, 158, 614–616. [Google Scholar] [CrossRef]
- Takimoto, E.; Kass, D.A. Role of Oxidative Stress in Cardiac Hypertrophy and Remodeling. Hypertension 2007, 49, 241–248. [Google Scholar] [CrossRef]
- Hill, M.F.; Singal, P.K. Right and left myocardial antioxidant responses during heart failure subsequent to myocardial infarc-tion. Circulation 1997, 96, 2414–2420. [Google Scholar] [CrossRef]
- Perrelli, M.G.; Pagliaro, P.; Penna, C. Ischemia/reperfusion injury and cardioprotective mechanisms: Role of mitochondria and reactive oxygen species. World J. Cardiol. 2011, 3, 186–200. [Google Scholar] [CrossRef]
- Kang, H.S.; Chung, H.Y.; Kim, J.Y.; Son, B.W.; Jung, H.A.; Choi, J.S. Inhibitory phlorotannins from the edible brown alga Ecklonia stolonifera on total reactive oxygen species (ROS) generation. Arch. Pharm. Res. 2004, 27, 194–198. [Google Scholar] [CrossRef]
- Heo, S.-J.; Yoon, W.-J.; Kim, K.-N.; Ahn, G.-N.; Kang, S.-M.; Kang, D.-H.; Affan, A.; Oh, C.; Jung, W.-K.; Jeon, Y.-J. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem. Toxicol. 2010, 48, 2045–2051. [Google Scholar] [CrossRef]
- Tan, C.-P.; Hou, Y.-H. First Evidence for the Anti-inflammatory Activity of Fucoxanthin in High-Fat-Diet-Induced Obesity in Mice and the Antioxidant Functions in PC12 Cells. Inflammation 2013, 37, 443–450. [Google Scholar] [CrossRef]
- Talman, V.; Ruskoaho, H. Cardiac fibrosis in myocardial infarction—from repair and remodeling to regeneration. Cell Tissue Res. 2016, 365, 563–581. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Luo, Z.; Liu, X.; Fu, L.; Xu, Y.; Wu, L.; Shen, X. Effect of Ginkgo biloba extract on experimental cardiac remodeling. BMC Complement. Altern. Med. 2015, 15, 277. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Zhang, J.; Chen, Z. Effects of Total Flavone fromRhododendron simsiiPlanch. Flower on Postischemic Cardiac Dysfunction and Cardiac Remodeling in Rats. Evid.-Based Complement. Altern. Med. 2017, 2017, 5389272. [Google Scholar] [CrossRef] [Green Version]
- Janicki, J.S.; Brower, G.L.; Gardner, J.D.; Forman, M.F.; Stewart, J.A., Jr.; Murray, D.B.; Chancey, A.L. Cardiac mast cell regulation of matrix metalloproteinase-related ventricular remodeling in chronic pressure or volume overload. Cardiovasc. Res. 2006, 69, 657–665. [Google Scholar] [CrossRef] [Green Version]
- Bowers, S.L.; Banerjee, I.; Baudino, T.A. The extracellular matrix: At the center of it all. J. Mol. Cell. Cardiol. 2010, 48, 474–482. [Google Scholar] [CrossRef] [Green Version]
- Prabhu, S.D.; Frangogiannis, N.G. The Biological Basis for Cardiac Repair after Myocardial infarction: From Inflammation to Fibrosis. Circ. Res. 2016, 119, 91–112. [Google Scholar] [CrossRef]
- Jung, H.; Lee, D.S.; Park, S.K.; Choi, J.S.; Jung, W.K.; Park, W.S.; Choi, I.W. Fucoxanthin Inhibits Myofibroblast Differentiation and Extracellular Matrix Production in Nasal Polyp-Derived Fibroblasts via Modulation of Smad-Dependent and Smad-Independent Signaling Pathways. Mar. Drugs 2018, 16, 323. [Google Scholar] [CrossRef] [Green Version]
Sham | MI | |||
---|---|---|---|---|
Vehicle | Vehicle | ESE 0.3 g/kg | ESE 1 g/kg | |
LIVIDd (mm) | 6.11 ± 0.21 | 8.26 ± 0.25 ** | 7.90 ± 0.24 ** | 7.75 ± 0.17 ** |
PWD (mm) | 2.80 ± 0.10 | 2.78 ± 0.06 | 2.75 ± 0.11 | 2.82 ± 0.09 |
LVFS (%) | 63.3 ± 3.9 | 25.3 ± 1.6 ** | 26.1 ± 1.1 ** | 25.9 ± 1.1 ** |
SBP (mmHg) | 96 ± 6 | 99 ± 3 | 97 ± 4 | 98 ± 3 |
DBP (mmHg) | 78 ± 2 | 74 ± 4 | 62 ± 6 | 72 ± 3 |
HR (bpm) | 458 ± 15 | 445 ± 14 | 451 ± 10 | 466 ± 12 |
BW (g) | 368 ± 11 | 372 ± 5 | 368 ± 8 | 347 ± 5 |
Sham | MI | |||
---|---|---|---|---|
Vehicle | Vehicle | ESE 0.3 g/kg | ESE 1 g/kg | |
LIVIDd (mm) | 6.62 ± 0.12 | 9.64 ± 0.40 ** | 8.96 ± 0.38 ** | 8.77 ± 0.24 ** |
PWD (mm) | 2.32 ± 0.13 | 3.18 ± 0.07 ** | 2.90 ± 0.11 * | 2.56 ± 0.09 ## |
LVFS (%) | 58.2 ± 1.8 | 16.6 ± 1.3 ** | 18.1 ± 1.8 ** | 23.3 ± 0.7 **## |
SBP (mmHg) | 102 ± 4 | 104 ± 3 | 107 ± 3 | 108 ± 3 |
DBP (mmHg) | 84 ± 16 | 75 ± 3 | 75 ± 5 | 87 ± 2 |
HR (bpm) | 449 ± 14 | 460 ± 10 | 442 ± 10 | 431 ± 13 |
BW (g) | 628 ± 15 | 614 ± 13 | 581 ± 11 | 562 ± 9 *## |
Infarct size (%) | - | 16.1 ± 1.3 | 15.5 ± 1.1 | 15.2 ± 3.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katagiri, T.; Sunagawa, Y.; Maekawa, T.; Funamoto, M.; Shimizu, S.; Shimizu, K.; Katanasaka, Y.; Komiyama, M.; Hawke, P.; Hara, H.; et al. Ecklonia stolonifera Okamura Extract Suppresses Myocardial Infarction-Induced Left Ventricular Systolic Dysfunction by Inhibiting p300-HAT Activity. Nutrients 2022, 14, 580. https://doi.org/10.3390/nu14030580
Katagiri T, Sunagawa Y, Maekawa T, Funamoto M, Shimizu S, Shimizu K, Katanasaka Y, Komiyama M, Hawke P, Hara H, et al. Ecklonia stolonifera Okamura Extract Suppresses Myocardial Infarction-Induced Left Ventricular Systolic Dysfunction by Inhibiting p300-HAT Activity. Nutrients. 2022; 14(3):580. https://doi.org/10.3390/nu14030580
Chicago/Turabian StyleKatagiri, Takahiro, Yoichi Sunagawa, Tatsuya Maekawa, Masafumi Funamoto, Satoshi Shimizu, Kana Shimizu, Yasufumi Katanasaka, Maki Komiyama, Philip Hawke, Hideo Hara, and et al. 2022. "Ecklonia stolonifera Okamura Extract Suppresses Myocardial Infarction-Induced Left Ventricular Systolic Dysfunction by Inhibiting p300-HAT Activity" Nutrients 14, no. 3: 580. https://doi.org/10.3390/nu14030580
APA StyleKatagiri, T., Sunagawa, Y., Maekawa, T., Funamoto, M., Shimizu, S., Shimizu, K., Katanasaka, Y., Komiyama, M., Hawke, P., Hara, H., Mori, K., Hasegawa, K., & Morimoto, T. (2022). Ecklonia stolonifera Okamura Extract Suppresses Myocardial Infarction-Induced Left Ventricular Systolic Dysfunction by Inhibiting p300-HAT Activity. Nutrients, 14(3), 580. https://doi.org/10.3390/nu14030580