Ergo-Nutritional Intervention in Basketball: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Selection
2.2. Inclusion and Exclusion Criteria
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Variable Outcomes
2.4. Data Extraction
2.5. Quality Assessment of the Experiments: Risk of Bias
3. Results
3.1. Main Search
3.2. Ergo-Nutritional Aids to Enhance Recovery in Basketball
3.2.1. Carbohydrates and Proteins
3.2.2. Vitamins
3.2.3. Others
3.3. Ergo-Nutritional Aids to Enhance on-Court Performance in Basketball
3.3.1. Carbohydrates or Proteins
3.3.2. Caffeine
3.3.3. Others
4. Discussion
4.1. Ergo-Nutritional Aids to Enhance Recovery in Basketball
4.1.1. Carbohydrates or Proteins
4.1.2. Vitamins
4.1.3. Others
4.2. Ergo-Nutritional Aids to Enhance on-Court Performance in Basketball
4.2.1. Carbohydrate or Protein
4.2.2. Caffeine
4.2.3. Others
4.3. Limitations, Strengths, and Future Research Lines
5. Conclusions
- The effective dose of CAF to enhance anaerobic performance and the feeling of vigorousness and energy, ranges from 3 to 6 mg·kg−1, showing more positive effects when is supplemented 60–75 min before exercise in the morning and in test-based task.
- To improve recovery, the management of PRO is a key factor, when following a ~0.5 g/kg strategy or 25 g PRO supplementation immediately prior to exercise and before bed time and, additionally, in combination with CHO (1 g PRO/kg with 1 g CHO/kg or 20 g of CHO with 20 g CRE for 7 days).
- To improve recovery and wellness, some nutritional supplements may have promising benefits for basketball. This is the case of Vitamin E (ranging from 200 to 268 mg), vitamin D (10,000 IU/day) and EPA (2 g). However, future studies are necessary.
- The form of use (capsules, liquid, pill, powder) and other organoleptic characteristics (such as flavor or texture) should be considered to achieve better adherence to the intervention.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ziv, G.; Lidor, R. Physical attributes, physiological characteristics, on-court performances and nutritional strategies of female and male basketball. Sports Med. 2009, 39, 547–568. [Google Scholar] [CrossRef] [PubMed]
- Scanlan, A.T.; Tucker, P.S.; Dascombe, B.J.; Berkelmans, D.M.; Hiskens, M.I.; Dalbo, V.J. Fluctuations in activity demands across game quarters in professional and semiprofessional male basketball. J. Strength Cond. Res. 2015, 29, 3006–3015. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, E.; Stojiljković, N.; Scanlan, A.T.; Dalbo, V.J.; Berkelmans, D.M.; Milanović, Z. The Activity Demands and Physiological Responses Encountered During Basketball Match-Play: A Systematic Review. Sport. Med. 2018, 48, 111–135. [Google Scholar] [CrossRef] [PubMed]
- Svilar, L.; Jukić, I. Load monitoring system in top-level basketball team. Kinesiology 2018, 50, 25–33. [Google Scholar] [CrossRef]
- Calleja-González, J.; Terrados, N.; Mielgo-Ayuso, J.; Delextrat, A.; Jukic, I.; Vaquera, A.; Torres, L.; Schelling, X.; Stojanovic, M.; Ostojic, S.M. Evidence-based post-exercise recovery strategies in basketball. Phys. Sportsmed. 2016, 44, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wu, C.; Zhou, C.; Zhang, S.; Leicht, A.S.; Gomez, M.Á. Influence of Match Congestion on Performances in the National Basketball Association. Front. Psychol. 2021, 12, 206. [Google Scholar] [CrossRef] [PubMed]
- Huyghe, T.; Scanlan, A.; Dalbo, V.; Calleja-González, J. The Negative Influence of Air Travel on Health and Performance in the National Basketball Association: A Narrative Review. Sports 2018, 6, 89. [Google Scholar] [CrossRef] [Green Version]
- Escribano-Ott, I.; Ibañez-Santos, J. Papel de la nutrición en la recuperación del jugador de baloncesto. Nutr. Hosp. 2020, 37, 160–168. [Google Scholar]
- Arribalzaga, S.; Viribay, A.; Calleja-González, J.; Fernández-Lázaro, D.; Castañeda-Babarro, A.; Mielgo-Ayuso, J. Relationship of carbohydrate intake during a single-stage one-day ultra-trail race with fatigue outcomes and gastrointestinal problems: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 5737. [Google Scholar] [CrossRef]
- Nielsen, L.L.K.; Lambert, M.N.T.; Jeppesen, P.B. The effect of ingesting carbohydrate and proteins on athletic performance: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2020, 12, 1483. [Google Scholar] [CrossRef]
- Sygo, J.; Killer, S.C.; Glass, A.K.; Stellingwerff, T. Fueling for the field: Nutrition for jumps, throws, and combined events. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Lima-Silva, A.E.; De-Oliveira, F.R.; Nakamura, F.Y.; Gevaerd, M.S. Effect of carbohydrate availability on time to exhaustion in exercise performed at two different intensities. Braz. J. Med. Biol. Res. 2009, 42, 404–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meeusen, R.; Roelands, B. Central fatigue and neurotransmitters, can thermoregulation be manipulated? Scand. J. Med. Sci. Sport. 2010, 20 (Suppl. S3), 19–28. [Google Scholar] [CrossRef] [PubMed]
- Close, G.L.; Kasper, A.M.; Morton, J.P. From Paper to Podium: Quantifying the Translational Potential of Performance Nutrition Research. Sport. Med. 2019, 49 (Suppl. S1), 25–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, K.; Thomson, J.S.; Swift, R.J.; von Hurst, P.R. Role of nutrition in performance enhancement and postexercise recovery. Open Access J. Sport. Med. 2015, 6, 259–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terrados, N.; Mielgo-Ayuso, J.; Delextrat, A.; Ostojic, S.M.; Calleja-Gonzalez, J. Dietetic-nutritional, physical and physiological recovery methods post-competition in team sports. J. Sports Med. Phys. Fit. 2019, 59, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Torres-Ronda, L.; Ric, A.; Llabres-Torres, I.; de Las Heras, B.; i del Schelling, A.X. Position-Dependent Cardiovascular Response and Time-Motion Analysis During Training Drills and Friendly Matches in Elite Male Basketball. J. Strength Cond. Res. 2016, 30, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Impey, S.G.; Hearris, M.A.; Hammond, K.M.; Bartlett, J.D.; Louis, J.; Close, G.L.; Morton, J.P. Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis. Sport. Med. 2018, 48, 1031–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halson, S.; Burke, L.M.; Pearce, J. Nutrition for Travel: From Jet lag To Catering. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 228–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkahtani, S.; Aldayel, A.; Hopkins, M. Effects of Acute Eccentric Exercise on Appetite-Related Hormones and Food Preferences in Men. Am. J. Mens. Health 2019, 13, 1557988319861587. [Google Scholar] [CrossRef]
- Gryko, K.; Stastny, P.; Kopiczko, A.; Mikołajec, K.; Pecha, O.; Perkowski, K. Can anthropometric variables and maturation predict the playing position in youth basketball? J. Hum. Kinet. 2019, 69, 109–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calleja-González, J.C.; Ayuso, J.M.; Lekue, J.A.; Leibar, X.; Erauzkin, J.; Jukic, I.; Ostojic, S.M.; González, J.G.P.; Azpiroz, M.F.; Terrados, N. Características antropométricas y de rendimiento de jugadores internacionales junior de baloncesto de la academia española de baloncesto Siglo XXI. Nutr. Hosp. 2018, 35, 1331. [Google Scholar] [PubMed] [Green Version]
- Garcia-Gil, M.; Torres-Unda, J.; Esain, I.; Duñabeitia, I.; Gil, S.M.; Gil, J.; Irazusta, J. Anthropometric Parameters, Age, And Agility as Performance Predictors in Elite Female Basketball. J. Strength Cond. Res. 2018, 32, 1723–1730. [Google Scholar] [CrossRef] [PubMed]
- Gentle, H.L.; Love, T.D.; Howe, A.S.; Black, K.E. A randomised trial of pre-exercise meal composition on performance and muscle damage in well-trained basketball. J. Int. Soc. Sports Nutr. 2014, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Schroder, H.; Navarro, E.; Mora, J.; Seco, J.; Torregrosa, J.M.; Tramullas, A. The type, amount, frequency and timing of dietary supplement use by elite in the First Spanish Basketball League. J. Sports Sci. 2002, 20, 353–358. [Google Scholar] [CrossRef]
- Escribano-Ott, I.; Mielgo-Ayuso, J.; Calleja-González, J. A Glimpse of the Sports Nutrition Awareness in Spanish Basketball. Nutrients 2022, 14, 27. [Google Scholar] [CrossRef]
- Calleja-González, J.; Altarriba-Bartes, A.; Mielgo-Ayuso, J.; Casals, M.; Terrados, N.; Peña, J. Recovery strategies for sports performance in the spanish professional basketball league (ACB). Cult. Cienc. Deporte 2021, 16, 411–424. [Google Scholar]
- Burke, L.M. Practical Issues in Evidence-Based Use of Performance Supplements: Supplement Interactions, Repeated Use and Individual Responses. Sport. Med. 2017, 47, 79–100. [Google Scholar] [CrossRef] [Green Version]
- Burke, L.M.; Peeling, P. Methodologies for investigating performance changes with supplement use. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef]
- Fernández-Landa, J.; Calleja-González, J.; León-Guereño, P.; Caballero-García, A.; Córdova, A.; Mielgo-Ayuso, J. Effect of the combination of creatine monohydrate plus hmb supplementation on sports performance, body composition, markers of muscle damage and hormone status: A systematic review. Nutrients 2019, 11, 2528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mielgo-Ayuso, J.; Calleja-Gonzalez, J.; Del Coso, J.; Urdampilleta, A.; León-Guereño, P.; Fernández-Lázaro, D. Caffeine supplementation and physical performance, muscle damage and perception of fatigue in soccer: A systematic review. Nutrients 2019, 11, 440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mielgo-Ayuso, J.; Calleja-Gonzalez, J.; Marqués-Jiménez, D.; Caballero-García, A.; Córdova, A.; Fernández-Lázaro, D. Effects of creatine supplementation on athletic performance in soccer: A systematic review and meta-analysis. Nutrients 2019, 11, 757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordrey, K. Adolescent consumption of sports drinks. Arch. Argent. Pediatr. 2018, 116, E795–E796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, P.; Oliveira, B.; Barros, R.; Padrão, P.; Moreira, P.; Teixeira, V.H. Impact of fluid restriction and ad libitum water intake or an 8% carbohydrate-electrolyte beverage on skill performance of elite adolescent basketball. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 214–221. [Google Scholar] [CrossRef]
- Baker, L.B.; Dougherty, K.A.; Chow, M.; Kenney, W.L. Progressive dehydration causes a progressive decline in basketball skill performance. Med. Sci. Sports Exerc. 2007, 39, 1114–1123. [Google Scholar] [CrossRef] [Green Version]
- Baker, L.B.; Rollo, I.; Stein, K.W.; Jeukendrup, A.E. Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance. Nutrients 2015, 7, 5733–5763. [Google Scholar] [CrossRef] [Green Version]
- Eck, K.M.; Byrd-Bredbenner, C. Food choice decisions of collegiate division I athletes: A qualitative exploratory study. Nutrients 2021, 13, 2322. [Google Scholar] [CrossRef]
- Wardenaar, F.C.; Ceelen, I.J.M.; Van Dijk, J.W.; Hangelbroek, R.W.J.; Van Roy, L.; Van Der Pouw, B.; De Vries, J.H.M.; Mensink, M.; Witkamp, R.F. Nutritional supplement use by Dutch elite and sub-elite athletes: Does receiving dietary counseling make a difference? Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 32–42. [Google Scholar] [CrossRef]
- Knez, W.L.; Peake, J.M. The prevalence of vitamin supplementation in ultraendurance triathletes. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 507–514. [Google Scholar] [CrossRef]
- Sekel, N.M.; Gallo, S.; Fields, J.; Jagim, A.R.; Wagner, T.; Jones, M.T. The effects of cholecalciferol supplementation on vitamin d status among a diverse population of collegiate basketball athletes: A quasi-experimental trial. Nutrients 2020, 12, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scanlan, A.T.; Dalbo, V.J.; Conte, D.; Stojanović, E.; Stojiljković, N.; Stanković, R.; Antić, V.; Milanović, Z. No effect of caffeine supplementation on dribbling speed in elite basketball. Int. J. Sports Physiol. Perform. 2019, 14, 997–1000. [Google Scholar] [CrossRef]
- Abian-Vicen, J.; Puente, C.; Salinero, J.J.; González-Millán, C.; Areces, F.; Muñoz, G.; Muñoz-Guerra, J.; Del Coso, J. A caffeinated energy drink improves jump performance in adolescent basketball. Amino Acids 2014, 46, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Raya-González, J.; Scanlan, A.T.; Soto-Célix, M.; Rodríguez-Fernández, A.; Castillo, D. Caffeine ingestion improves performance during fitness tests but does not alter activity during simulated games in professional basketball. Int. J. Sports Physiol. Perform. 2021, 16, 387–394. [Google Scholar] [CrossRef]
- Cheng, C.F.; Hsu, W.C.; Kuo, Y.H.; Shih, M.T.; Lee, C.L. Caffeine ingestion improves power output decrement during 3-min all-out exercise. Eur. J. Appl. Physiol. 2016, 116, 1693–1702. [Google Scholar] [CrossRef]
- Tan, Z.S.; Burns, S.F.; Pan, J.W.; Kong, P.W. Effect of caffeine ingestion on free-throw performance in college basketball players. J. Exerc. Sci. Fit. 2020, 18, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Wilborn, C.D.; Taylor, L.W.; Outlaw, J.; Williams, L.; Campbell, B.; Foster, C.A.; Smith-Ryan, A.; Urbina, S.; Hayward, S. The effects of pre- and post-exercise whey vs. Casein protein consumption on body composition and performance measures in collegiate female athletes. J. Sport. Sci. Med. 2013, 12, 74–79. [Google Scholar]
- Taylor, L.W.; Wilborn, C.; Roberts, M.D.; White, A.; Dugan, K. Eight weeks of pre-and postexercise whey protein supplementation increases lean body mass and improves performance in division III collegiate female basketball. Appl. Physiol. Nutr. Metab. 2015, 41, 249–254. [Google Scholar] [CrossRef]
- Skarpanska-Stejnborn, A.; Cieśslicka, M.; Dziewiecka, H.; Kujawski, S.; Marcinkiewicz, A.; Trzeciak, J.; Basta, P.; Maciejewski, D.; Latour, E. Effects of Long-Term Supplementation of Bovine Colostrum on the Immune System in Young Female Basketball Players. Randomized Trial. Nutr. 2021, 13, 118. [Google Scholar] [CrossRef]
- Chang, W.H.; Chen, C.M.; Hu, S.P.; Kan, N.W.; Chiu, C.C.; Liu, J.F. Effect of purple sweet potato leaf consumption on the modulation of the antioxidative status in basketball during training. Asia Pac. J. Clin. Nutr. 2007, 16, 455–461. [Google Scholar] [CrossRef]
- López-Samanes, Á.; Parra, A.G.; Moreno-Pérez, V.; Courel-Ibáñez, J. Does acute beetroot juice supplementation improve neuromuscular performance and match activity in young basketball? A randomized, placebo- controlled study. Nutrients 2020, 12, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Saaiq, M.; Ashraf, B. Modifying «Pico» Question into «Picos» Model for More Robust and Reproducible Presentation of the Methodology Employed in A Scientific Study. World J. Plast. Surg. 2017, 6, 390–392. [Google Scholar] [PubMed]
- Higgins, J.P.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 1–649. [Google Scholar] [CrossRef]
- Palinkas, L.A.; Horwitz, S.M.; Green, C.A.; Wisdom, J.P.; Duan, N.; Hoagwood, K.; Angeles, L.; Northwest, K.P. Purposeful sampling for qualitative data collection and analysis in mixed method implementation research. Adm. Policy Ment. Health 2016, 42, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghiasvand, R.; Djalali, M.; Djazayery, S.A.; Keshavarz, S.A.; Hosseini, M.; Askari, G.; Jani, N.; Fatehi, F. Effect of eicosapentaenoic acid (EPA) and vitamin E on the blood levels of inflammatory markers, antioxidant enzymes, and lipid peroxidation in Iranian basketball. Iran. J. Public Health 2010, 39, 15–21. [Google Scholar] [PubMed]
- Naziroǧlu, M.; Kilinç, F.; Uguz, A.C.; Çelik, Ö.; Bal, R.; Butterworth, P.J.; Baydar, M.L. Oral vitamin C and E combination modulates blood lipid peroxidation and antioxidant vitamin levels in maximal exercising basketball. Cell Biochem. Funct. 2010, 28, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Schulpis, K.H.; Parthimos, T.; Tsakiris, T.; Parthimos, N.; Tsakiris, S. An in vivo and in vitro study of erythrocyte membrane acetylcholinesterase, (Na+, K+)-ATPase and Mg2+-ATPase activities in basketball on α-tocopherol supplementation. The role of l-carnitine. Clin. Nutr. 2007, 26, 63–69. [Google Scholar] [CrossRef]
- Schulpis, K.H.; Moukas, M.; Parthimos, T.; Tsakiris, T.; Parthimos, N.; Tsakiris, S. The effect of α-Tocopherol supplementation on training-induced elevation of S100B protein in sera of basketball. Clin. Biochem. 2007, 40, 900–906. [Google Scholar] [CrossRef]
- Tsakiris, S.; Karikas, G.A.; Parthimos, T.; Tsakiris, T.; Bakogiannis, C.; Schulpis, K.H. Alpha-tocopherol supplementation prevents the exercise-induced reduction of serum paraoxonase 1/arylesterase activities in healthy individuals. Eur. J. Clin. Nutr. 2009, 63, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Tsakiris, S.; Reclos, G.J.; Parthimos, T.; Tsakiris, T.; Parthimos, N.; Schulpis, K.H. α-Tocopherol supplementation restores the reduction of erythrocyte glucose-6-phosphate dehydrogenase activity induced by forced training. Pharmacol. Res. 2006, 54, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Barnes, F.E. Vitamin supplements and the incidence of colds in high school basketball. A preliminary report. North Carol. Med. J. 1961, 22, 22–26. [Google Scholar]
- Stojanović, E.; Scanlan, A.T.; Milanović, Z.; Fox, J.L.; Stanković, R.; Dalbo, V.J. Acute caffeine supplementation improves jumping, sprinting, and change-of-direction performance in basketball players when ingested in the morning but not evening. Eur. J. Sport Sci. 2021, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, E.; Stojiljković, N.; Scanlan, A.T.; Dalbo, V.J.; Stanković, R.; Antić, V.; Milanović, Z. Acute caffeine supplementation promotes small to moderate improvements in performance tests indicative of in-game success in professional female basketball. Appl. Physiol. Nutr. Metab. 2019, 44, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Puente, C.; Abián-Vicén, J.; Salinero, J.J.; Lara, B.; Areces, F.; Del Coso, J. Caffeine improves basketball performance in experienced basketball. Nutrients 2017, 9, 1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, M.A.; Hargreaves, J.M.; Clarke, J.C.; Dale, D.L.; Blackwell, G.J. The Effect of Caffeine on Maximal Oxygen Uptake And Vertical Jump Performance In Male Basketball. J. Strength Cond. Res. 2013, 27, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.-F.; Jiao, Y.; Wei, B.; Yang, Z.; Wang, H.-Y.; Wu, Y.-Y.; Yang, C.; Tseng, K.-W.; Huang, C.-Y.; Chen, C.-Y.; et al. Protein supplementation enhances cerebral oxygenation during exercise in elite basketball players. Nutrition 2018, 53, 34–37. [Google Scholar] [CrossRef]
- Ronghui, S. The Reasearch on the Anti-Fatigue Effect of Whey Protein Powder in Basketball Training. Open Biomed. Eng. J. 2016, 9, 330–334. [Google Scholar] [CrossRef] [Green Version]
- Dougherty, K.A.; Baker, L.B.; Chow, M.; Kenney, W.L. Two percent dehydration impairs and six percent carbohydrate drink improves boy’s basketball skills. Med. Sci. Sports Exerc. 2006, 38, 1650–1658. [Google Scholar] [CrossRef] [PubMed]
- Shi, D. Oligosaccharide and creatine supplementation on glucose and urea nitrogen in blood and serum creatine kinase in basketball athletes. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2005, 25, 587–589. [Google Scholar] [CrossRef]
- Ansdell, P.; Dekerle, J. Sodium Bicarbonate Supplementation Delays Neuromuscular Fatigue Without Changes in Performance Outcomes During a Basketball Match Simulation Protocol. J. Strength Cond. Res. 2020, 34, 1369–1375. [Google Scholar] [CrossRef] [PubMed]
- Afman, G.; Garside, R.M.; Dinan, N.; Gant, N.; Betts, J.A.; Williams, C. Effect of carbohydrate or sodium bicarbonate ingestion on performance during a validated basketball simulation test. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 632–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milioni, F.; Redkva, P.E.; Barbieri, F.A.; Zagatto, A.M. Six weeks of β-alanine supplementation did not enhance repeated-sprint ability or technical performances in young elite basketball. Nutr. Health 2017, 23, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Tsakiris, S.; Parthimos, T.; Parthimos, N.; Tsakiris, T.; Schulpis, K.H. The beneficial effect of l-cysteine supplementation on DNA oxidation induced by forced training. Pharmacol. Res. 2006, 53, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Córdova-Martínez, A.; Caballero-García, A.; Bello, H.J.; Pérez-Valdecantos, D.; Roche, E. Effect of glutamine supplementation on muscular damage biomarkers in professional basketball. Nutrients 2021, 13, 2073. [Google Scholar] [CrossRef] [PubMed]
- Córdova-Martínez, A.; Fernández-Lázaro, D.; Mielgo-Ayuso, J.; Calvo, J.S.; García, A.C. Effect of magnesium supplementation on muscular damage markers in basketball during a full season. Magnes. Res. 2017, 30, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Schröder, H.; Navarro, E.; Mora, J.; Galiano, D.; Tramullas, A. Effects of α-tocopherol, β-carotene and ascorbic acid on oxidative, hormonal and enzymatic exercise stress markers in habitual training activity of professional basketball. Eur. J. Nutr. 2001, 40, 178–184. [Google Scholar] [CrossRef]
- Williams, C.; Rollo, I. Carbohydrate Nutrition and Team Sport Performance. Sport. Med. 2015, 45, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 1–57. [Google Scholar] [CrossRef] [Green Version]
- Jeukendrup, A.E. Periodized Nutrition for Athletes. Sport. Med. 2017, 47 (Suppl. S1), 51–63. [Google Scholar] [CrossRef] [Green Version]
- Kerksick, C.M.; Arent, S.; Schoenfeld, B.J.; Stout, J.R.; Campbell, B.; Wilborn, C.D.; Taylor, L.; Kalman, D.; Smith-Ryan, A.E.; Kreider, R.B.; et al. International Society of Sports Nutrition Position Stand: Nutrient Timing. J. Int. Soc. Sports Nutr. 2017, 14, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Roberts, P.A.; Fox, J.; Peirce, N.; Jones, S.W.; Casey, A.; Greenhaff, P.L. Creatine ingestion augments dietary carbohydrate mediated muscle glycogen supercompensation during the initial 24 h of recovery following prolonged exhaustive exercise in humans. Amino Acids 2016, 48, 1831–1842. [Google Scholar] [CrossRef] [PubMed]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017, 14, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tipton, K.D. Nutritional Support for Exercise-Induced Injuries. Sport. Med. 2015, 45, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tipton, K.D.; Hamilton, D.L.; Gallagher, I.J. Assessing the Role of Muscle Protein Breakdown in Response to Nutrition and Exercise in Humans. Sport. Med. 2018, 48 (Supple. S1), 53–64. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.; Eggersdorfer, M.; Trilok-Kumar, G. Vitamin e status in healthy population in Asia: A review of current literature. Int. J. Vitam. Nutr. Res. 2021, 91, 356–369. [Google Scholar] [CrossRef]
- Tomlinson, P.B.; Joseph, C.; Angioi, M. Effects of vitamin D supplementation on upper and lower body muscle strength levels in healthy individuals. A systematic review with meta-analysis. J. Sci. Med. Sport 2015, 18, 575–580. [Google Scholar] [CrossRef]
- Yagüe, M.D.L.P.; Yurrita, L.C.; Cabañas, M.C.; Cenzual, M.C. Role of vitamin d in athletes and their performance: Current concepts and new trends. Nutrients 2020, 12, 597. [Google Scholar] [CrossRef] [Green Version]
- Valtueña, J.; Aparicio-ugarriza, R.; Medina, D.; Lizarraga, A.; Rodas, G.; González-gross, M.; Drobnic, F. Vitamin d status in spanish elite team sport. Nutrients 2021, 13, 1311. [Google Scholar] [CrossRef]
- Stojanović, E.; Radovanović, D.; Hew-Butler, T.; Hamar, D.; Jakovljević, V. Vitamin D in Basketball: Current Evidence and Future Directions. Sports Health 2021, 20, 19417381211019343. [Google Scholar] [CrossRef]
- Chatzinikolaou, A.; Draganidis, D.; Avloniti, A.; Karipidis, A.; Jamurtas, A.Z.; Skevaki, C.L.; Tsoukas, D.; Sovatzidis, A.; Theodorou, A.; Kambas, A.; et al. The microcycle of inflammation and performance changes after a basketball match. J. Sports Sci. 2014, 32, 870–882. [Google Scholar] [CrossRef] [PubMed]
- Spanidis, Y.; Goutzourelas, N.; Stagos, D.; Mpesios, A.; Priftis, A.; Bar-Or, D.; Spandidos, D.A.; Tsatsakis, A.M.; Leon, G.; Kouretas, D. Variations in oxidative stress markers in elite basketball at the beginning and end of a season. Exp. Ther. Med. 2016, 11, 147–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodes, K.; Braakhuis, A. Performance and Side Effects of Supplementation with N-Acetylcysteine: A Systematic Review and Meta-Analysis. Sport. Med. 2017, 47, 1619–1636. [Google Scholar] [CrossRef] [PubMed]
- Fister, I.; Fister, D. Glutamine as an Anti-Fatigue Amino Acid in Sports Nutrition Audrey. Nutrients 2019, 22, 247–277. [Google Scholar] [CrossRef]
- Lawler, T.P.; Cialdella-Kam, L. Non-carbohydrate Dietary Factors and Their Influence on Post-Exercise Glycogen Storage: A Review. Curr. Nutr. Rep. 2020, 9, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Close, G.L.; Hamilton, D.L.; Philp, A.; Burke, L.M.; Morton, J.P. New strategies in sport nutrition to increase exercise performance. Free Radic. Biol. Med. 2016, 98, 144–158. [Google Scholar] [CrossRef] [Green Version]
- Meeusen, R. Exercise, nutrition and the brain. Sport. Med. 2014, 44 (Suppl. S1), 47–56. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.D.; Lockwood, C.; Dalbo, V.J.; Volek, J.; Kerksick, C.M. Ingestion of a high-molecular-weight hydrothermally modified waxy maize starch alters metabolic responses to prolonged exercise in trained cyclists. Nutrition 2011, 27, 659–665. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1–37. [Google Scholar] [CrossRef]
- Peeling, P.; Binnie, M.J.; Goods, P.S.R.; Sim, M.; Burke, L.M. Evidence-based supplements for the enhancement of athletic performance. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.S.; Sim, A.; Kawabata, M.; Burns, S.F. A Systematic Review of the Effects of Caffeine on Basketball Performance Outcomes. Biology 2022, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Pickering, C.; Del Coso, J.; Schoenfeld, B.J.; Mikulic, P. CYP1A2 genotype and acute ergogenic effects of caffeine intake on exercise performance: A systematic review. Eur. J. Nutr. 2021, 60, 1181–1195. [Google Scholar] [CrossRef] [PubMed]
- Ehlert, A.M.; Twiddy, H.M.; Wilson, P.B. The effects of caffeine mouth rinsing on exercise performance: A systematic review. Int. J. Sport Nutr. Exerc. Metab. 2020, 30, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Hlinský, T.; Kumstát, M.; Vajda, P. Effects of dietary nitrates on time trial performance in athletes with different training status: Systematic review. Nutrients 2020, 12, 2734. [Google Scholar] [CrossRef] [PubMed]
- Roschel, H.; Gualano, B.; Ostojic, S.M.; Rawson, E.S. Creatine supplementation and brain health. Nutrients 2021, 13, 586. [Google Scholar] [CrossRef] [PubMed]
Authors | Population (Level and n-Size) | Study Design | Intervention (Form) |
Vitamins | |||
Sekel et al. (2020) [41] | College female and male (n = 20) | Quasi experimental | 5000 IU/day VIT D (capsule) |
Sekel et al. (2020) [41] | College female and male (n = 20) | Quasi experimental | 10,000 IU/day VIT D (capsule) |
Ghiasvand et al. 2010 [56] | Highly trained male (n = 9) | Double blind placebo control randomized | 400 IU VIT E (soft gel) |
Ghiasvand et al. (2010) [56] | Highly trained male (n = 8) | Double blind placebo control randomized | 2 g EPA + 400 IU VIT E (soft gel) |
Naziroǧlu et al. (2010) [57] | Elite male (n = 14) | Intervention control no placebo | VIT E 150 mg +VIT C 500 mg (gelatin capsule) |
Schulpis et al. (2007) [58] | College male (n = 10) | Intervention | 200 mg VIT E * |
Schulpis et al. (2007) [59] | Adolescent male (n = 10) | Intervention control no placebo | 200 mg VIT E * |
Tsakiris et al. (2006) [60] | Adolescent male (n = 10) | Intervention control no placebo | 200 mg VIT E * |
Tsakiris et al. (2006) [61] | Adolescent male (n = 10) | Intervention control no placebo | 200 mg VIT E * |
Schröder et al. (2000) [25] | Elite male (n = 24) | Placebo no control | 250 mg VIT C + 8 Mg VIT E + 150 mg VIT A (4/day/35/days) (capsule) |
Barnes et al. (1961) [62] | Adolescent male and female (n = 26) | Intervention control no placebo | Not determined * |
Caffeine | |||
Raya-González et al. (2021) [44] | Elite male (n = 14) | Double blind placebo control randomized | 6 mg·kg−1(60 min before) (liquid form) |
Stojanovic et al. (2021) [63] | Adolescent male (n = 11) | Double blind placebo control | 3 mg·kg−1 (60 min before) (capsule) |
Tan et al. (2020) [46] | Elite male (n = 12) | Randomized controlled trial | 6 mg·kg−1 (60 min before) (CAF powder dissolved in water) |
Stojanovic et al. (2019) [64] | Elite female (n = 10) | Double blind placebo control | 3 mg·kg−1 (60 min before) (capsule) |
Scanlan et al. (2019) [42] | Elite male (n = 11) | Double blind placebo control randomized | 3 mg·kg−1 (60 min before) (capsule) |
Puente et al. (2017) [65] | Elite male (n = 10) | Double blind placebo control randomized | 3 mg·kg−1 (75 min before) (capsule) |
Cheng-Feng (2016) [45] | College male (n = 15) | Double blind no control randomized | 6 mg·kg−1 (60 min before) (capsule) |
Abian-Vicen et al. (2014) [43] | College male (n = 16) | Double blind placebo control | 3 mg·kg−1 (60 min before) (energy drink powder) |
Tucker et al. (2013) [66] | Elite male (n = 5) | Placebo no control | 3 mg·kg−1 (60 min before) (Tablet) |
Protein | |||
Skarpa et al. (2020) [49] | Elite female (n = 20) | Intervention control no placebo | 3.2 g BC twice a day for 24 weeks (capsules) |
Feng-Ho et al. (2018) [67] | Elite male (n = 16) | Randomized counterbalanced | 600 mL drink (6.25 kcal/kg; 36% PRO; 58% CHO; 6% FAT) (beverage) |
Taylor et al. (2015) [48] | College female (n = 8) | Placebo no control | 24 g (Whey PRO)/8 weeks/pre and post training (Powder) |
Ronghui et al. (2015) [68] | College male (n = 5) | Intervention control no placebo | 20 g (whey PRO) + OLI 40 g every two days (Powder) |
Wilborn et al. (2013) [47] | College female and male (n = 20) | Double blind no control randomized | 24 g (whey PRO)/8 weeks/pre and post training (Powder) |
Wilborn et al. (2013) [47] | College female and male (n = 20) | Double blind no control randomized | 24 g (casein PRO)/8 weeks/pre and post training (Powder) |
Carbohydrate | |||
Carvalho-Bruno et al. (2011) [35] | Adolescent male (n = 20) | Crossover design placebo control | 8% CHO (beverage) |
Baker et al. (2007) [36] | Highly trained male (n = 17) | Intervention control placebo | 6% CHO (beverage) |
Dougherty et al. (2006) [69] | Adolescent (n = 15) | Double blind control placebo | 6% CHO and 18.0 mmol·L−1 Na(beverage) |
Shi et al. (2005) [70] | Highly trained male (n = 20) | Intervention control no placebo | Commercial drink (100 g/L) 500 mL/day(beverage) |
Shi et al. (2005) [70] | Highly trained male (n = 20) | Intervention control no placebo | 20 g CHO (beverage) + 20 CR (powder) for 7 days |
Nitrates | |||
López-Samanes et al. (2020) [51] | Adolescent male (n = 12) | Double blind placebo control | 140 mL beetroot juice (12.8 mmol NO3) (beverage) |
Chang et al. (2007) [50] | Elite male (n = 6) | Intervention control no placebo | 200 g/day sweet potato leaf (solid meal) |
Sodium Bicarbonate | |||
Ansdell et al. (2020) [71] | Highly trained male (n = 10) | Placebo no control | 0.2 g/kg (90 min before) + 0.2 g/kg (60 min before) (powder) |
Gregg Afman et al. (2014) [72] | College male (n = 7) | Randomized counterbalanced | 0.2 g/kg (90 min before) + 0.2 g/kg (20 min before) (powder) |
EPA | |||
Ghiasvand et al. (2010) [56] | Highly trained male (n = 8) | Double blind placebo control randomized | 2 g EPA (soft gel) |
Beta Alanine | |||
Milioni et al. (2017) [73] | College male (n = 27) | Placebo no control | 6.4 g/day (capsule) |
Cysteine | |||
Tsakiris et al. (2006) [74] | College male (n = 10) | Intervention control no placebo | 0.5 g 24 h−1 for 30 days (powder) |
Glutamine | |||
Córdova-Martínez et al. (2021) [75] | Elite male (n = 12) | Double-blind, placebo-controlled trial | 6 g/day (20 days) (capsule) |
Magnesium | |||
Córdova Martínez et al. (2017) [76] | Elite male (n = 12) | Longitudinal no control no placebo | 400 mg/day (complete season) * |
(1) | |||
Ergo-Nutritional Aid | Intervention Dose (Administration) | Outcome | Results |
CAF | 3 mg·kg−1 (60–75 min before) |
|
|
3–6 mg·kg−1 (60–75 min before) |
|
| |
6 mg·kg−1 (60–75 min before) |
|
| |
β-ALA | 6.4 g/day (6 weeks) |
|
|
CHO | Beverage (6–8% CHO) |
|
|
SB | 0.2 g/kg (90 min before) + 0.2 g/kg (20 min before) |
|
|
0.2 g/kg (90 min before) + 0.2 g/kg (60 min before) |
|
| |
PRO | Whey PRO 24 g/day (8 weeks) |
|
|
Casein PRO 24 g/day (8 weeks) |
|
| |
600 mL beverage (6.25 kcal/kg; PRO: 36%; CHO: 58%; fat: 6% in total calorie) |
|
| |
250 mL whole milk + 20 g whey PRO + 40 g oligosaccharides |
|
| |
(2) | |||
Ergo-Nutritional Aid | Intervention Dose (Administration) | Outcome | Results |
PRO | Whey PRO 24 g/day/8 weeks |
|
|
Casein PRO 24 g/day/8 weeks |
|
|
Ergo-Nutritional Aid | Intervention Dose (Administration) | Outcome | Results |
---|---|---|---|
CRE | 20 g/day (7 days) + 2 g/d |
|
|
CRE+CHO (OLI) | 20 g/day CRE (7 days) + 20 CHO/day |
|
|
|
| ||
EPA | 2 g/day (6 weeks) |
|
|
GLUT | 6 g/day (20 days) |
|
|
MG | 400 mg/day (complete season) |
|
|
|
| ||
|
| ||
NIT | 200 g/day sweet potato leaf |
|
|
CHO (OLI) | 500 mL beverage (100 g/mL) |
|
|
|
| ||
CYS | 0.5 g/day (one month) |
|
|
|
| ||
|
| ||
|
| ||
PRO + CHO | 250 mL whole milk + 20 g whey PRO + 40 g oligosaccharides (once every two days) |
|
|
VIT D | 10,000 IU/day (5 months) |
|
|
5000 IU/day (5 months) |
|
| |
VIT E + EPA | 400 IU VIT E+ 2 g EPA (6 weeks) |
|
|
|
| ||
|
| ||
VIT C + E | 500 mg VIT C + 150 mg VIT E/Day (One Month) |
|
|
|
| ||
VIT C + E + A | 250 mg VIT C + 8 mg VIT E + 150 mg VIT A (4 Times Day/35 Days) |
|
|
|
| ||
VIT E | 200 mg/Day (One Month) |
|
|
|
| ||
|
| ||
|
| ||
400 IU (6 Weeks) |
|
| |
BC | Define As “Ilegal” (WADA) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escribano-Ott, I.; Calleja-González, J.; Mielgo-Ayuso, J. Ergo-Nutritional Intervention in Basketball: A Systematic Review. Nutrients 2022, 14, 638. https://doi.org/10.3390/nu14030638
Escribano-Ott I, Calleja-González J, Mielgo-Ayuso J. Ergo-Nutritional Intervention in Basketball: A Systematic Review. Nutrients. 2022; 14(3):638. https://doi.org/10.3390/nu14030638
Chicago/Turabian StyleEscribano-Ott, Ignacio, Julio Calleja-González, and Juan Mielgo-Ayuso. 2022. "Ergo-Nutritional Intervention in Basketball: A Systematic Review" Nutrients 14, no. 3: 638. https://doi.org/10.3390/nu14030638
APA StyleEscribano-Ott, I., Calleja-González, J., & Mielgo-Ayuso, J. (2022). Ergo-Nutritional Intervention in Basketball: A Systematic Review. Nutrients, 14(3), 638. https://doi.org/10.3390/nu14030638