Impact of COVID-19 Infection and Persistent Lingering Symptoms on Patient Reported Indicators of Nutritional Risk and Malnutrition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.1.1. Acceptable Macronutrient Distribution Ranges (AMDR)
2.1.2. Energy, Vegetable, and Fruit Needs
2.1.3. Protein
2.1.4. Healthy Eating Index
2.2. Meal Patterns
2.3. Statistical Analyses
3. Results
3.1. Group Nutrient Intakes vs. Recommendations
3.1.1. AMDR Average Macronutrient Distribution Range
3.1.2. Energy, Vegetable, and Fruit
3.1.3. Protein
3.1.4. Healthy Eating Index
3.2. Meal Patterns
3.2.1. Daily Energy Distribution
3.2.2. Daily Protein Distribution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, E.; Miller, M.; Yaxley, A.; Isenring, E. Malnutrition in the elderly: A narrative review. Maturitas 2013, 76, 296–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silverio, R.; Gonçalves, D.C.; Andrade, M.F.; Seelaender, M. Coronavirus Disease 2019 (COVID-19) and Nutritional Status: The Missing Link? Adv. Nutr. 2020, 12, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Rando, H.M.; Bennett, T.D.; Byrd, J.B.; Bramante, C.; Callahan, T.J.; Chute, C.G.; Davis, H.E.; Deer, R.; Gagnier, J.; Koraishy, F.M.; et al. Challenges in defining Long COVID: Striking differences across literature, Electronic Health Records, and patient-reported information. Medrxiv 2021. [Google Scholar] [CrossRef]
- Deer, R.R.; Rock, M.A.; Vasilevsky, N.; Carmody, L.; Rando, H.; Anzalone, A.J.; Basson, M.D.; Bennett, T.D.; Bergquist, T.; Boudreau, E.A.; et al. Characterizing Long COVID: Deep Phenotype of a Complex Condition. eBioMedicine 2021, 74, 103722. [Google Scholar] [CrossRef] [PubMed]
- Burslem, R.; Parker, A. Medical nutrition therapy for patients with malnutrition post–intensive care unit discharge: A case report of recovery from coronavirus disease 2019 (COVID-19). Nutr. Clin. Pr. 2021, 36, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Wischmeyer, P.E. Tailoring nutrition therapy to illness and recovery. Crit. Care 2017, 21, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Cardon-Thomas, D.K.; Riviere, T.; Tieges, Z.; Greig, C.A. Dietary Protein in Older Adults: Adequate Daily Intake but Potential for Improved Distribution. Nutrients 2017, 9, 184. [Google Scholar] [CrossRef] [PubMed]
- Symons, T.B.; Sheffield-Moore, M.; Wolfe, R.R.; Paddon-Jones, D. A Moderate Serving of High-Quality Protein Maximally Stimulates Skeletal Muscle Protein Synthesis in Young and Elderly Subjects. J. Am. Diet. Assoc. 2009, 109, 1582–1586. [Google Scholar] [CrossRef] [Green Version]
- Gwin, J.A.; Church, D.D.; Wolfe, R.R.; Ferrando, A.A.; Pasiakos, S.M. Muscle Protein Synthesis and Whole-Body Protein Turnover Responses to Ingesting Essential Amino Acids, Intact Protein, and Protein-Containing Mixed Meals with Considerations for Energy Deficit. Nutrients 2020, 12, 2457. [Google Scholar] [CrossRef]
- Paddon-Jones, D.; Rasmussen, B. Dietary protein recommendations and the prevention of sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 86–90. [Google Scholar] [CrossRef] [Green Version]
- Di Filippo, L.; De Lorenzo, R.; D’Amico, M.; Sofia, V.; Roveri, L.; Mele, R.; Saibene, A.; Rovere-Querini, P.; Conte, C. COVID-19 is associated with clinically significant weight loss and risk of malnutrition, independent of hospitalisation: A post-hoc analysis of a prospective cohort study. Clin. Nutr. 2021, 40, 2420–2426. [Google Scholar] [CrossRef] [PubMed]
- Jager-Wittenaar, H.; Ottery, F.D. Assessing nutritional status in cancer: Role of the Patient-Generated Subjective Global Assessment. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 322–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025. 9th Edition. Available online: https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf (accessed on 6 December 2021).
- Berner, L.A.; Becker, G.; Wise, M.; Doi, J. Characterization of Dietary Protein among Older Adults in the United States: Amount, Animal Sources, and Meal Patterns. J. Acad. Nutr. Diet. 2013, 113, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Winter, J.E.; MacInnis, R.; Wattanapenpaiboon, N.; Nowson, C. BMI and all-cause mortality in older adults: A meta-analysis. Am. J. Clin. Nutr. 2014, 99, 875–890. [Google Scholar] [CrossRef] [Green Version]
- Courtney-Martin, G.; Ball, R.O.; Pencharz, P.B.; Elango, R. Protein Requirements during Aging. Nutrients 2016, 8, 492. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper From the PROT-AGE Study Group. J. Am. Med Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- HEI Scores for Americans. Available online: https://www.fns.usda.gov/hei-scores-americans (accessed on 29 November 2021).
- Schoenfeld, B.J.; Aragon, A.A. How much protein can the body use in a single meal for muscle-building? Implications for daily protein distribution. J. Int. Soc. Sports Nutr. 2018, 15, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH Sarcopenia Project: Rationale, Study Description, Conference Recommendations, and Final Estimates. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef]
- Bedock, D.; Couffignal, J.; Lassen, P.B.; Soares, L.; Mathian, A.; Fadlallah, J.; Amoura, Z.; Oppert, J.-M.; Faucher, P. Evolution of Nutritional Status after Early Nutritional Management in COVID-19 Hospitalized Patients. Nutrients 2021, 13, 2276. [Google Scholar] [CrossRef]
- Quilliot, D.; Gérard, M.; Bonsack, O.; Malgras, A.; Vaillant, M.; di Patrizio, P.; Jaussaud, R.; Ziegler, O.; Nguyen-Thi, P. Impact of severe SARS-CoV-2 infection on nutritional status and subjective functional loss in a prospective cohort of COVID-19 survivors. BMJ Open 2021, 11, e048948. [Google Scholar] [CrossRef]
- Gérard, M.; Mahmutovic, M.; Malgras, A.; Michot, N.; Scheyer, N.; Jaussaud, R.; Nguyen-Thi, P.-L.; Quilliot, D. Long-Term Evolution of Malnutrition and Loss of Muscle Strength after COVID-19: A Major and Neglected Component of Long COVID-19. Nutrients 2021, 13, 3964. [Google Scholar] [CrossRef] [PubMed]
- Larrazabal, R.B.; Chiu, H.H.C.; Palileo-Villanueva, L.A.M. Outcomes of nutritionally at-risk Coronavirus Disease 2019 (COVID 19) patients admitted in a tertiary government hospital: A follow-up study of the MalnutriCoV study. Clin. Nutr. ESPEN 2021, 43, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Ye, J.; Chen, M.; Jiang, C.; Lin, W.; Lu, Y.; Ye, H.; Li, Y.; Wang, Y.; Liao, Q.; et al. Malnutrition Prolongs the Hospitalization of Patients with COVID-19 Infection: A Clinical Epidemiological Analysis. J. Nutr. Heal. Aging 2021, 25, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Allard, L.; Ouedraogo, E.; Molleville, J.; Bihan, H.; Giroux-Leprieur, B.; Sutton, A.; Baudry, C.; Josse, C.; Didier, M.; Deutsch, D.; et al. Malnutrition: Percentage and Association with Prognosis in Patients Hospitalized for Coronavirus Disease 2019. Nutrients 2020, 12, 3679. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.L.B.; Campbell, M.; Hopkins, C.; Smith, B.; Kelly, C.; Deary, V. Altered smell and taste: Anosmia, parosmia and the impact of long COVID-19. PLoS ONE 2021, 16, e0256998. [Google Scholar]
- Thompson, C.M.; Rhidenour, K.B.; Blackburn, K.G.; Barrett, A.K.; Babu, S. Using crowdsourced medicine to manage uncertainty on Reddit: The case of COVID-19 long-haulers. Patient Educ. Couns. 2021; in press. [Google Scholar] [CrossRef]
Variable | Total | Not at-Risk for Malnutrition (PG-SGA < 4) | At-Risk for Malnutrition (PG-SGA ≥ 4) | p-Value |
---|---|---|---|---|
N (%) | 92 | 48 (52.2%) | 44 (47.8%) | |
Age (years), mean ± SD | 53.7 ± 13.7 | 54.9 ± 11.9 | 52.5 ± 15.5 | 0.400 |
Female | 60 (65.2%) | 29 (60.4%) | 31 (70.5%) | 0.313 |
Race/Ethnicity | 0.377 | |||
White, non-Hispanic | 63 (69.2%) | 37 (77.1%) | 26 (60.5%) | |
White, Hispanic | 16 (17.6%) | 6 (12.5%) | 10 (23.3%) | |
Black, non-Hispanic | 9 (9.9%) | 4 (8.3%) | 5 (11.6%) | |
Other | 3 (3.3%) | 1 (2.1%) | 2 (4.7%) | |
BMI * | 0.369 | |||
Underweight | 2 (2.2%) | 0 | 2 (2.2%) | |
Healthy | 10 (10.9%) | 6 (12.5%) | 4 (9.1%) | |
Overweight | 26 (28.3%) | 13 (27.1%) | 13 (29.6%) | |
Obese | 26 (27.2%) | 11 (22.9%) | 14 (31.8%) | |
Morbidly Obese | 29 (31.5%) | 18 (37.5%) | 11 (25.0%) |
Symptom | Total N = 92 | Not at-Risk for Malnutrition (PG-SGA < 4; n = 48) | At-Risk for Malnutrition (PG-SGA ≥ 4; n = 44) | p-Value |
---|---|---|---|---|
Vomiting | 6 (6.5%) | 2 (4.2%) | 4 (9.1%) | 0.336 |
Diarrhea | 12 (13.0%) | 3 (6.3%) | 9 (20.5%) | 0.043 |
Sore Throat | 15 (16.3%) | 5 (10.4%) | 10 (22.7%) | 0.110 |
Abdominal pain | 15 (13.0%) | 3 (6.3%) | 12 (27.3%) | 0.006 |
Loss of smell | 19 (20.7%) | 5 (10.4%) | 14 (31.8%) | 0.011 |
Nausea | 20 (21.7%) | 7 (14.6%) | 13 (29.6%) | 0.082 |
Loss of taste | 21 (22.8%) | 6 (12.5%) | 15 (34.1%) | 0.014 |
Congestion | 30 (32.6%) | 11 (22.9%) | 19 (43.2%) | 0.038 |
Shortness of breath at rest | 35 (38.0%) | 19 (39.6%) | 16 (36.4%) | 0.751 |
Weakness | 62 (67.4%) | 31 (64.6%) | 31 (70.5%) | 0.549 |
Dyspnea | 73 (79.4%) | 34 (70.8%) | 39 (88.6%) | 0.035 |
Fatigue | 75 (81.5%) | 37 (77.1%) | 38 (86.4%) | 0.216 |
Energy (kcal/day) Recommendation | Average Consumption | Range | Met Recommendation | |
Females 31+ (n = 55) | 1600 | 1456 ± 574 | (179–2874) | 36% |
Females 19–30 (n = 5) | 1800 | 2006 ± 420 | (1447–2584) | 80% |
Males 60+ (n = 14) | 2000 | 2247 ± 814 | (633–4443) | 64% |
Males 31–59 (n = 16) | 2200 | 1917 ± 812 | (672–3070) | 31% |
Males 19–30 (n = 2) | 2400 | 2430 ± 699 | (1935–2924) | 50% |
Fruit (cup eq/day) Recommendation | Average Consumption | Range | Met Recommendation | |
Females 31+ (n = 55) | 1 ½ | 0.69 ± 0.91 | (0–3.48) | 20% |
Females 19–30 (n = 5) | 1 ½ | 0.89 ± 0.66 | (0–1.52) | 20% |
Males 60+ (n = 14) | 2 | 0.68 ± 0.64 | (0–1.99) | 0% |
Males 31–59 (n = 16) | 2 | 0.80 ± 1.09 | (0–3.95) | 19% |
Males 19–30 (n = 2) | 2 | 2.58 ± 2.79 | (0.61–4.55) | 50% |
Vegetable (cup eq/day) Recommendation | Average Consumption | Range | Met Recommendation | |
Females 31+ (n = 55) | 2 | 1.47 ± 1.31 | (0–6.39) | 24% |
Females 19–30 (n = 5) | 2 ½ | 1.10 ± 0.64 | (0.40–2.02) | 0% |
Males 60+ (n = 14) | 2 ½ | 1.74 ± 1.20 | (0.14–4.78) | 14% |
Males 31–59 (n = 16) | 3 | 1.37 ± 0.82 | (0–3.26) | 6% |
Males 19–30 (n = 2) | 3 | 1.86 ± 1.15 | (1.04–2.68) | 0% |
Recommendations (Protein g/kg IBW) | Average Consumption | Range | Met Recommendations, n (%) | p-Value |
---|---|---|---|---|
Current RDA (0.8 g/kg IBW) [13] | 0.98 ± 0.5 | 0.45–3.02 | 59 (64.1%) | 0.0003 |
Proposed standard (1.2 g/kg IBW) [17] | 0.98 ± 0.5 | 0.45–3.02 | 23 (39%) | <0.0001 |
Meal | Average Kcal Consumption ± SD | Range Kcal | Average Protein Consumption (g) ± SD | Range Protein (g) | Met Per Meal Recommendation ≥ 0.4g/kg IBW; n (%) |
---|---|---|---|---|---|
Breakfast | 321.1 ± 272.6 | 0–1563.8 | 12.1 ± 11.6 | 0–59.2 | 8 (8.7%) |
Lunch | 521.1 ± 374.9 | 0–2026.9 | 24.4 ± 23.6 | 0–145.9 | 29 (31.5%) |
Dinner | 815.7 ± 507.6 | 0–2933.7 | 34.8 ± 25.5 | 0–140.9 | 48 (52.2%) |
Other | 49.9 ± 174.6 | 0–993.5 | 1.8 ± 7.4 | 0–51.4 | 2 (2.2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deer, R.R.; Hosein, E.; Harvey, M.; Nguyen, T.; Givan, A.; Hamilton, M.; Turner, K.; Kretzmer, R.; Rock, M.; Swartz, M.C.; et al. Impact of COVID-19 Infection and Persistent Lingering Symptoms on Patient Reported Indicators of Nutritional Risk and Malnutrition. Nutrients 2022, 14, 642. https://doi.org/10.3390/nu14030642
Deer RR, Hosein E, Harvey M, Nguyen T, Givan A, Hamilton M, Turner K, Kretzmer R, Rock M, Swartz MC, et al. Impact of COVID-19 Infection and Persistent Lingering Symptoms on Patient Reported Indicators of Nutritional Risk and Malnutrition. Nutrients. 2022; 14(3):642. https://doi.org/10.3390/nu14030642
Chicago/Turabian StyleDeer, Rachel R., Erin Hosein, Madelyn Harvey, Trang Nguyen, Amy Givan, Megan Hamilton, Kayla Turner, Rae Kretzmer, Madeline Rock, Maria C. Swartz, and et al. 2022. "Impact of COVID-19 Infection and Persistent Lingering Symptoms on Patient Reported Indicators of Nutritional Risk and Malnutrition" Nutrients 14, no. 3: 642. https://doi.org/10.3390/nu14030642
APA StyleDeer, R. R., Hosein, E., Harvey, M., Nguyen, T., Givan, A., Hamilton, M., Turner, K., Kretzmer, R., Rock, M., Swartz, M. C., Seashore, J., Brown, B., & Messenger, C. (2022). Impact of COVID-19 Infection and Persistent Lingering Symptoms on Patient Reported Indicators of Nutritional Risk and Malnutrition. Nutrients, 14(3), 642. https://doi.org/10.3390/nu14030642