Substitution of Carbohydrates for Fats and Risk of Type 2 Diabetes among Korean Middle-Aged Adults: Findings from the Korean Genome and Epidemiology Study
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. Diabetes Ascertainment
2.3. Macronutrient Intake
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, X.; Xu, Y.; Pan, X.; Xu, J.; Ding, Y.; Sun, X.; Song, X.; Ren, Y.; Shan, P.F. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025. Sci. Rep. 2020, 10, 14790. [Google Scholar] [CrossRef]
- Jung, C.H.; Son, J.W.; Kang, S.; Kim, W.J.; Kim, H.S.; Kim, H.S.; Seo, M.; Shin, H.J.; Lee, S.S.; Jeong, S.J.; et al. Diabetes Fact Sheets in Korea, 2020: An Appraisal of Current Status. Diabetes Metab. J. 2021, 45, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Seo, H.; Oh, I.H.; Yoon, S.J. The Non-Communicable Disease Burden in Korea: Findings from the 2012 Korean Burden of Disease Study. J. Korean Med. Sci. 2016, 31 (Suppl. 2), S158–S167. [Google Scholar] [CrossRef] [PubMed]
- Brand-Miller, J.C. Postprandial glycemia, glycemic index, and the prevention of type 2 diabetes. Am. J. Clin. Nutr. 2004, 80, 243–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.A.; An, H. The Effect of High Carbohydrate-to-fat Intake Ratios on Hypo-HDL-cholesterolemia Risk and HDL-cholesterol Levels over a 12-year Follow-up. Sci. Rep. 2020, 10, 913. [Google Scholar] [CrossRef]
- Seidelmann, S.B.; Claggett, B.; Cheng, S.; Henglin, M.; Shah, A.; Steffen, L.M.; Folsom, A.R.; Rimm, E.B.; Willett, W.C.; Solomon, S.D. Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. Lancet Public Health 2018, 3, e419–e428. [Google Scholar] [CrossRef] [Green Version]
- Villegas, R.; Liu, S.; Gao, Y.T.; Yang, G.; Li, H.; Zheng, W.; Shu, X.O. Prospective study of dietary carbohydrates, glycemic index, glycemic load, and incidence of type 2 diabetes mellitus in middle-aged Chinese women. Arch. Intern. Med. 2007, 167, 2310–2316. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Zhang, Z.; Liu, M.; Zhang, Y.; Li, H.; He, P.; Li, Q.; Liu, C.; Qin, X. Dietary carbohydrate intake and new-onset diabetes: A nationwide cohort study in China. Metabolism 2021, 123, 154865. [Google Scholar] [CrossRef]
- Ajala, O.; English, P.; Pinkney, J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am. J. Clin. Nutr. 2013, 97, 505–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Similä, M.E.; Kontto, J.P.; Valsta, L.M.; Männistö, S.; Albanes, D.; Virtamo, J. Carbohydrate substitution for fat or protein and risk of type 2 diabetes in male smokers. Eur. J. Clin. Nutr. 2012, 66, 716–721. [Google Scholar] [CrossRef] [Green Version]
- Churuangsuk, C.; Lean, M.E.J.; Combet, E. Lower carbohydrate and higher fat intakes are associated with higher hemoglobin A1c: Findings from the UK National Diet and Nutrition Survey 2008–2016. Eur. J. Nutr. 2020, 59, 2771–2782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze, M.B.; Schulz, M.; Heidemann, C.; Schienkiewitz, A.; Hoffmann, K.; Boeing, H. Carbohydrate intake and incidence of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Br. J. Nutr. 2008, 99, 1107–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi-Abhari, S.; Luben, R.N.; Powell, N.; Bhaniani, A.; Chowdhury, R.; Wareham, N.J.; Forouhi, N.G.; Khaw, K.T. Dietary intake of carbohydrates and risk of type 2 diabetes: The European Prospective Investigation into Cancer-Norfolk study. Br. J. Nutr. 2014, 111, 342–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.X.; Imamura, F.; Ye, Z.; Schulze, M.B.; Zheng, J.; Ardanaz, E.; Arriola, L.; Boeing, H.; Dow, C.; Fagherazzi, G.; et al. Interaction between genes and macronutrient intake on the risk of developing type 2 diabetes: Systematic review and findings from European Prospective Investigation into Cancer (EPIC)-InterAct. Am. J. Clin. Nutr. 2017, 106, 263–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietrich, S.; Jacobs, S.; Zheng, J.S.; Meidtner, K.; Schwingshackl, L.; Schulze, M.B. Gene-lifestyle interaction on risk of type 2 diabetes: A systematic review. Obes. Rev. 2019, 20, 1557–1571. [Google Scholar] [CrossRef]
- Shin, D.; Lee, K.W. Dietary carbohydrates interacts with AMY1 polymorphisms to influence the incidence of type 2 diabetes in Korean adults. Sci. Rep. 2021, 11, 16788. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Park, J.E.; Choi, Y.J.; Huh, K.B.; Chang, N.; Kim, W.Y. Carbohydrate intake interacts with SNP276G>T polymorphism in the adiponectin gene to affect fasting blood glucose, HbA1C, and HDL cholesterol in Korean patients with type 2 diabetes. J. Am. Coll. Nutr. 2013, 32, 143–150. [Google Scholar] [CrossRef]
- Cho, S.B.; Jang, J.H.; Chung, M.G.; Kim, S.C. Exome Chip Analysis of 14,026 Koreans Reveals Known and Newly Discovered Genetic Loci Associated with Type 2 Diabetes Mellitus. Diabetes Metab. J. 2021, 45, 231–240. [Google Scholar] [CrossRef]
- Kim, Y.; Han, B.G.; KoGES Group. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef]
- Costanzo, S.; Di Castelnuovo, A.; Donati, M.B.; Iacoviello, L.; De Gaetano, G. Alcohol consumption and mortality in patients with cardiovascular disease: A meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1339–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, J.Y. Development of the Korean Version of Global Physical Activity Questionnaire and Assessment of Reliability and Validity; Korea Centers for Disease Control and Prevention: Cheongju, Korea, 2013. Available online: http://www.cdc.go.kr (accessed on 16 July 2018).
- Ministry of Health and Welfare (KR). The Korean Nutrition Society. Dietary Reference Intakes for Koreans 2015; Ministry of Health and Welfare: Sejong, Korea, 2016.
- Campmans-Kuijpers, M.J.; Sluijs, I.; Nöthlings, U.; Freisling, H.; Overvad, K.; Boeing, H.; Masala, G.; Panico, S.; Tumino, R.; Sieri, S.; et al. The association of substituting carbohydrates with total fat and different types of fatty acids with mortality and weight change among diabetes patients. Clin Nutr. 2016, 35, 1096–1102. [Google Scholar] [CrossRef]
- Sluijs, I.; Van Der Schouw, Y.T.; Van Der A, D.L.; Spijkerman, A.M.; Hu, F.B.; Grobbee, D.E.; Beulens, J.W. Carbohydrate quantity and quality and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) study. Am. J. Clin. Nutr. 2010, 92, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, D.C.; Threapleton, D.E.; Evans, C.E.; Cleghorn, C.L.; Nykjaer, C.; Woodhead, C.; Burley, V.J. Glycemic index, glycemic load, carbohydrates, and type 2 diabetes: Systematic review and dose-response meta-analysis of prospective studies. Diabetes Care 2013, 36, 4166–4171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, F.B. Globalization of diabetes: The role of diet, lifestyle, and genes. Diabetes Care 2011, 34, 1249–1257. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Shim, J.E. Evaluation of Total Fat and Fatty Acids Intakes in the Korean Adult Population using Data from the 2016–2017 Korea National Health and Nutrition Examination Surveys. Korean J. Community Nutr. 2019, 24, 223–231. [Google Scholar] [CrossRef]
- National Center for Health Statistics. Health, United States, 2019; National Center for Health Statistics: Hyattsville, MD, USA, 2021. [CrossRef]
- Eilander, A.; Harika, R.K.; Zock, P.L. Intake and sources of dietary fatty acids in Europe: Are current population intakes of fats aligned with dietary recommendations? Eur. J. Lipid Sci. Technol. 2015, 117, 1370–1377. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Giovannucci, E.; Pischon, T.; Hankinson, S.E.; Ma, J.; Rifai, N.; Rimm, E.B. Fructose, glycemic load, and quantity and quality of carbohydrate in relation to plasma C-peptide concentrations in US women. Am. J. Clin. Nutr. 2004, 80, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Wikarek, T.; Kocełak, P.; Owczarek, A.J.; Chudek, J.; Olszanecka-Glinianowicz, M. Effect of Dietary Macronutrients on Postprandial Glucagon and Insulin Release in Obese and Normal-Weight Women. Int. J. Endocrinol. 2020, 2020, 4603682. [Google Scholar] [CrossRef] [PubMed]
Total | E% Quintiles of Carbohydrates | p-Value a | |||
---|---|---|---|---|---|
Q1 | Q3 | Q5 | |||
N | 7413 | 1483 | 1482 | 1482 | |
Sex | |||||
Male | 3507 (47.31%) | 840 (56.64%) | 738 (49.8%) | 466 (31.44%) | <0.001 |
Female | 3906 (52.69%) | 643 (43.36%) | 744 (50.2%) | 1016 (68.56%) | |
Age, years | 51.53 (±8.72) | 48.46 (±7.6) | 50.85 (±8.28) | 56.46 (±8.68) | <0.001 |
Rural region | |||||
Yes | 3621 (48.85%) | 509 (34.32%) | 617 (41.63%) | 1189 (80.23%) | <0.001 |
No | 3792 (51.15%) | 974 (65.68%) | 865 (58.37%) | 293 (19.77%) | |
Educational level | |||||
Less than middle-school graduate | 4025 (54.61%) | 544 (36.83%) | 782 (52.91%) | 1181 (80.67%) | <0.001 |
Graduated high school | 2334 (31.66%) | 623 (42.18%) | 493 (33.36%) | 220 (15.03%) | |
Some college or higher | 1012 (13.73%) | 310 (20.99%) | 203 (13.73%) | 63 (4.3%) | |
Body mass index, kg/m2 | 24.42 (±3.09) | 24.39 (±3.02) | 24.37 (±3.03) | 24.4 (±3.39) | 0.774 |
≥25.0 kg/m2 | 3015 (40.67%) | 593 (39.99%) | 611 (41.23%) | 600 (40.49%) | 0.920 |
Waist circumference, cm | 81.98 (±8.68) | 81.4 (±8.6) | 81.53 (±8.48) | 83.16 (±9.15) | <0.001 |
≥90 cm for male and ≥85 cm for female | 1966 (26.55%) | 329 (22.23%) | 359 (24.22%) | 533 (35.96%) | <0.001 |
Current smoking status | 1854 (25.21%) | 452 (30.75%) | 381 (25.81%) | 264 (18.08%) | <0.001 |
Alcohol intake | |||||
Nondrinker | 3790 (52.36%) | 562 (39.03%) | 733 (50.21%) | 1000 (69.83%) | <0.001 |
<15 g/day | 2073 (28.64%) | 456 (31.67%) | 469 (32.12%) | 306 (21.37%) | |
15–24 g/day | 500 (6.91%) | 136 (9.44%) | 93 (6.37%) | 49 (3.42%) | |
≥25 g/day | 875 (12.09%) | 286 (19.86%) | 165 (11.3%) | 77 (5.38%) | |
Physical activity | |||||
Q1 | 1648 (22.23%) | 309 (20.84%) | 320 (21.59%) | 351 (23.68%) | <0.001 |
Q2 | 2013 (27.16%) | 470 (31.69%) | 428 (28.88%) | 265 (17.88%) | |
Q3 | 1906 (25.71%) | 445 (30.01%) | 409 (27.6%) | 308 (20.78%) | |
Q4 | 1846 (24.9%) | 259 (17.46%) | 325 (21.93%) | 558 (37.65%) | |
Total energy, kcal | 1939.15 (±618.76) | 2191.69 (±673.1) | 1921.79 (±554.75) | 1745.87 (±653.1) | <0.001 |
Carbohydrate, E% | 71.08 (±6.96) | 60.87 (±4.66) | 71.57 (±1.03) | 80.06 (±2.24) | <0.001 |
Protein, E% | 13.43 (±2.33) | 16.29 (±2.06) | 13.28 (±1.2) | 10.82 (±1.13) | <0.001 |
Fat, E% | 14.41 (±5.4) | 22.07 (±3.77) | 14.07 (±1.59) | 7.69 (±1.97) | <0.001 |
Carbohydrate, g b | 341.84 (±36.16) | 291.95 (±29.91) | 346.6 (±10.57) | 380.51 (±26.64) | <0.001 |
Protein, g b | 65.72 (±11.92) | 79.71 (±12.01) | 64.28 (±6.5) | 54.57 (±7.98) | <0.001 |
Fat, g b | 32.17 (±12.19) | 48.4 (±10.26) | 30.7 (±4.45) | 19.55 (±9.26) | <0.001 |
Fiber, g/1000 kcal | 3.61 (±1.23) | 3.35 (±1.06) | 3.62 (±1.18) | 3.74 (±1.43) | <0.001 |
Crude Model | Adjusted Model | |||||||
---|---|---|---|---|---|---|---|---|
Quintiles of Carbohydrates (E%) | PY | N | Cases (%) | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Total | Q1 | 18160.19 | 1483 | 210 (14.16%) | 1.00 | 1.00 | ||
Q2 | 18245.71 | 1483 | 242 (16.32%) | 1.14 (0.95–1.37) | 0.169 | 1.13 (0.94–1.36) | 0.203 | |
Q3 | 18034.28 | 1482 | 240 (16.19%) | 1.14 (0.95–1.37) | 0.169 | 1.08 (0.89–1.31) | 0.419 | |
Q4 | 18534.79 | 1483 | 245 (16.52%) | 1.13 (0.94–1.35) | 0.208 | 0.99 (0.81–1.20) | 0.886 | |
Q5 | 18070.32 | 1482 | 256 (17.27%) | 1.21 (1.01–1.45) | 0.041 | 0.96 (0.78–1.19) | 0.721 | |
trend | 1.04 (1.00–1.08) | 0.079 | 0.98 (0.93–1.03) | 0.381 | ||||
Male | Q1 | 10166.38 | 840 | 128 (15.24%) | 1.00 | 1.00 | ||
Q2 | 9779.19 | 811 | 135 (16.65%) | 1.09 (0.85–1.38) | 0.511 | 1.09 (0.85–1.39) | 0.512 | |
Q3 | 8770.00 | 738 | 128 (17.34%) | 1.14 (0.89–1.46) | 0.296 | 1.17 (0.91–1.50) | 0.232 | |
Q4 | 7862.07 | 652 | 118 (18.10%) | 1.17 (0.91–1.50) | 0.217 | 1.17 (0.89–1.53) | 0.255 | |
Q5 | 5553.52 | 466 | 82 (17.6%) | 1.14 (0.86–1.50) | 0.368 | 1.04 (0.76–1.43) | 0.798 | |
trend | 1.04 (0.98–1.10) | 0.228 | 1.02 (0.96–1.10) | 0.485 | ||||
Female | Q1 | 7993.81 | 643 | 82 (12.75%) | 1.00 | 1.00 | ||
Q2 | 8466.52 | 672 | 107 (15.92%) | 1.23 (0.92–1.64) | 0.156 | 1.22 (0.91–1.65) | 0.181 | |
Q3 | 9264.28 | 744 | 112 (15.05%) | 1.18 (0.89–1.57) | 0.249 | 1.02 (0.76–1.37) | 0.903 | |
Q4 | 10672.72 | 831 | 127 (15.28%) | 1.15 (0.87–1.52) | 0.312 | 0.86 (0.64–1.16) | 0.325 | |
Q5 | 12516.80 | 1016 | 174 (17.13%) | 1.37 (1.06–1.79) | 0.018 | 0.90 (0.67–1.22) | 0.502 | |
trend | 1.06 (1.00–1.12) | 0.049 | 0.94 (0.88–1.01) | 0.090 |
Multivariate Nutrient Density Model (with Energy in the Model) a | Nutrient Residual Model (with Energy in the Model) b | |||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Total fat | 1.11 (1.01–1.21) | 0.023 | 1.03 (1–1.07) | 0.047 |
Sex | ||||
Male | 1.13 (1–1.28) | 0.055 | 1.05 (1–1.09) | 0.050 |
Female | 1.09 (0.96–1.23) | 0.165 | 1.03 (0.98–1.08) | 0.247 |
Age | ||||
< 50 years | 1.05 (0.92–1.19) | 0.480 | 1.01 (0.97–1.06) | 0.598 |
≥ 50 years | 1.16 (1.03–1.31) | 0.014 | 1.06 (1.01–1.11) | 0.017 |
Rural region | ||||
Yes | 1.09 (0.97–1.22) | 0.146 | 1.02 (0.98–1.07) | 0.242 |
No | 1.11 (0.97–1.27) | 0.128 | 1.04 (0.98–1.09) | 0.171 |
Educational level | ||||
Less than middle-school graduate | 1.13 (1–1.26) | 0.044 | 1.03 (0.99–1.08) | 0.145 |
Graduated high school | 0.99 (0.85–1.16) | 0.927 | 1 (0.94–1.06) | 0.970 |
Some college or higher | 1.32 (1.03–1.68) | 0.028 | 1.11 (1.02–1.21) | 0.012 |
Body mass index, kg/m2 | ||||
<25.0 kg/m2 | 1.11 (0.97–1.26) | 0.138 | 1.04 (0.99–1.1) | 0.096 |
≥25.0 kg/m2 | 1.11 (0.99–1.25) | 0.082 | 1.02 (0.98–1.07) | 0.243 |
Abdominal obesity | ||||
No | 1.15 (1.03–1.29) | 0.016 | 1.05 (1.01–1.1) | 0.014 |
Yes | 1.06 (0.92–1.21) | 0.429 | 1.01 (0.96–1.06) | 0.671 |
Current smoking status | ||||
Yes | 1.13 (0.96–1.32) | 0.135 | 1.05 (0.99–1.11) | 0.133 |
No | 1.1 (0.99–1.23) | 0.069 | 1.03 (0.99–1.07) | 0.143 |
Physical activity | ||||
<median | 1.12 (0.98–1.28) | 0.084 | 1.04 (0.99–1.1) | 0.084 |
≥median | 1.09 (0.97–1.23) | 0.139 | 1.02 (0.98–1.07) | 0.272 |
Fiber (g/1000 kcal) | ||||
<median | 1.07 (0.94–1.23) | 0.307 | 1.03 (0.98–1.08) | 0.236 |
≥median | 1.05 (0.91–1.21) | 0.514 | 1.00 (0.95–1.05) | 0.951 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-A.; Park, H. Substitution of Carbohydrates for Fats and Risk of Type 2 Diabetes among Korean Middle-Aged Adults: Findings from the Korean Genome and Epidemiology Study. Nutrients 2022, 14, 654. https://doi.org/10.3390/nu14030654
Lee H-A, Park H. Substitution of Carbohydrates for Fats and Risk of Type 2 Diabetes among Korean Middle-Aged Adults: Findings from the Korean Genome and Epidemiology Study. Nutrients. 2022; 14(3):654. https://doi.org/10.3390/nu14030654
Chicago/Turabian StyleLee, Hye-Ah, and Hyesook Park. 2022. "Substitution of Carbohydrates for Fats and Risk of Type 2 Diabetes among Korean Middle-Aged Adults: Findings from the Korean Genome and Epidemiology Study" Nutrients 14, no. 3: 654. https://doi.org/10.3390/nu14030654
APA StyleLee, H. -A., & Park, H. (2022). Substitution of Carbohydrates for Fats and Risk of Type 2 Diabetes among Korean Middle-Aged Adults: Findings from the Korean Genome and Epidemiology Study. Nutrients, 14(3), 654. https://doi.org/10.3390/nu14030654