A Food-Based Intervention in a Military Dining Facility Improves Blood Fatty Acid Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Study Foods
2.2.1. The Control Group
2.2.2. Intervention Group Foods
2.3. Measurements
2.3.1. Demographic/Background Survey
2.3.2. Anthropometric Measurements
2.3.3. Dietary Intake and Meals Tracking
2.3.4. Blood Sampling
2.3.5. Satisfaction Survey
2.4. Sample Size
2.5. Statistical Analyses
3. Results
3.1. Participant Demographic and Anthropometric Measures
3.2. Dietary Intake and Meal Tracking Outcomes
3.3. Biochemical Analysis
3.4. Satisfaction towards DFAC Meals
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blasbalg, T.L.; Hibbeln, J.R.; Ramsden, C.E.; Majchrzak, S.F.; Rawlings, R.R. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am. J. Clin. Nutr. 2011, 93, 950–962. [Google Scholar] [CrossRef] [Green Version]
- Gibson, R.A.; Muhlhausler, B.; Makrides, M. Conversion of linoleic acid and alpha-linolenic acid to long-chain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life. Matern. Child Nutr. 2011, 7, 17–26. [Google Scholar] [CrossRef] [PubMed]
- USDA, Agricultural Research Service. Usual Nutrient Intake from Food and Beverages, by Gender and Age, What We Eat in America, NHANES 2013–2016. 2019. Available online: http://www.ars.usda.gov/nea/bhnrc/fsrg (accessed on 16 December 2021).
- U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2010, 7th ed.; U.S. Government Printing Office: Washington, DC, USA, 2010. Available online: http://www.health.gov/dietaryguidelines/dga2010/DietaryGuidelines2010.pdf (accessed on 16 December 2021).
- Agostoni, C.; Bresson, J.L.; Fairweather-Tait, S. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion related to the Tolerable Upper Intake Level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA J. 2012, 10, 2815. [Google Scholar]
- Saini, R.K.; Keum, Y.-S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance—A review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
- Vannice, G.; Rasmussen, H. Position of the Academy of Nutrition and Dietetics: Dietary Fatty Acids for Healthy Adults. J. Acad. Nutr. Diet. 2014, 114, 136–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hibbeln, J.R.; Salem, N. Fish consumption may predict a lower prevalence of major depression: A cross-national analysis. Return Omega-3 Fat. Acids Food Supply 1998, 83, 226. [Google Scholar]
- Conklin, S.M.; Harris, J.I.; Manuck, S.B.; Yao, J.K.; Hibbeln, J.R.; Muldoon, M.F. Serum ω-3 fatty acids are associated with variation in mood, personality and behavior in hypercholesterolemic community volunteers. Psychiatry Res. 2007, 152, 1–10. [Google Scholar] [CrossRef]
- Lavie, C.J.; Milani, R.V.; Mehra, M.R.; Ventura, H.O. Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Diseases. J. Am. Coll. Cardiol. 2009, 54, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.S.; Miller, M.; Tighe, A.P.; Davidson, M.H.; Schaefer, E.J. Omega-3 fatty acids and coronary heart disease risk: Clinical and mechanistic perspectives. Atherosclerosis 2008, 197, 12–24. [Google Scholar] [CrossRef]
- Cornum, R.L. Summary comments from workshop day 1: Nutritional armor for the warfighter—Can omega-3 fatty acids enhance stress resilience, wellness, and military performance? Mil. Med. 2014, 179, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Coulter, I.D. The Response of an Expert Panel to Nutritional Armor for the Warfighter: Can Omega-3 Fatty Acids Enhance Stress Resilience, Wellness, and Military Performance? Mil. Med. 2014, 179, 192–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marriott, B.P.; Hibbeln, J.R.; Killeen, T.K.; Magruder, K.M.; Holes-Lewis, K.; Tolliver, B.K.; Turner, T.H. Design and methods for the Better Resiliency Among Veterans and non-Veterans with Omega-3’s (BRAVO) study: A double blind, placebo-controlled trial of omega-3 fatty acid supplementation among adult individuals at risk of suicide. Contemp. Clin. Trials 2016, 47, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Hibbeln, J.R.; Gow, R.V. The Potential for Military Diets to Reduce Depression, Suicide, and Impulsive Aggression: A Review of Current Evidence for Omega-3 and Omega-6 Fatty Acids. Mil. Med. 2014, 179, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.D.; Bailes, J. Neuroprotection for the warrior: Dietary supplementation with omega-3 fatty acids. Mil. Med. 2011, 176, 1120–1127. [Google Scholar] [CrossRef]
- Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients 2020, 12, 1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Angelo, S.; Motti, M.L.; Meccariello, R. ω-3 and ω-6 Polyunsaturated Fatty Acids, Obesity and Cancer. Nutrients 2020, 12, 2751. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.D.; Hibbeln, J.R.; Johnson, J.E.; Lin, Y.H.; Hyun, D.Y.; Loewke, J.D. Suicide deaths of active-duty US military and omega-3 fatty-acid status: A case-control comparison. J. Clin. Psychiatry 2011, 72, 1585–1590. [Google Scholar] [CrossRef] [Green Version]
- Russo, G.L. Dietary n−6 and n−3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention. Biochem. Pharmacol. 2009, 77, 937–946. [Google Scholar] [CrossRef]
- USDA. Food and Nutrition Services, Healthy Eating Index. Available online: https://www.fns.usda.gov/healthy-eating-index-hei (accessed on 16 December 2021).
- Lichtenstein, A.H.; Appel, L.J.; Brands, M.; Carnethon, M.; Daniels, S.; Franch, H.A.; Franklin, B.; Kris-Etherton, P.; Harris, W.S.; Howard, B.; et al. Diet and lifestyle recommendations revision 2006: A scientific statement from the American Heart Association Nutrition Committee. Circulation 2006, 114, 82–96. [Google Scholar] [CrossRef] [Green Version]
- Terry, A.L.; Herrick, K.A.; Afful, J.; Ahluwalia, N. Seafood Consumption in the United States, 2013–2016; National Center for Health Science Statistics: Hyattsville, MD, USA, 2018.
- Marangoni, F.; Poli, A. n-3 fatty acids: Functional differences between food intake, oral supplementation and drug treatments. Int. J. Cardiol. 2013, 170, S12–S15. [Google Scholar] [CrossRef]
- Marriott, B.P.; Turner, T.H.; Hibbeln, J.R.; Pregulman, M.; Newman, J.; Johnson, K.B.; Malek, A.M.; Malcolm, R.J.; Burbelo, G.A.; Wissman, J.W.; et al. Design and methods for the Ranger Resilience and Improved Performance on Phospholipid bound Omega-3’s (RRIPP-3 study). Contemp. Clin. Trials Commun. 2019, 15, 100359. [Google Scholar] [CrossRef]
- Marriott, B.; Turner, T.; Hibbeln, J.; Newman, J.; Pregulman, M.; Malek, A.; Malcolm, R.; Burbelo, G.; Wismann, J. Impact of Fatty Acid Supplementation on Cognitive Performance among United States (US) Military Officers: The Ranger Resilience and Improved Performance on Phospholipid-Bound Omega-3’s (RRIPP-3) Study. Nutrients 2021, 13, 1854. [Google Scholar] [CrossRef] [PubMed]
- Young, A.J.; Marriott, B.P.; Champagne, C.M.; Hawes, M.R.; Montain, S.J.; Johannsen, N.M.; Berry, K.; Hibbeln, J.R. Blood fatty acid changes in healthy young Americans in response to a 10-week diet that increased n-3 and reduced n-6 fatty acid consumption: A randomised controlled trial. Br. J. Nutr. 2017, 117, 1257–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovegrove, J.A.; Brooks, C.N.; Murphy, M.C.; Gould, B.J.; Williams, C.M. Use of manufactured foods enriched with fish oils as a means of increasing long-chain n-3 polyunsaturated fatty acid intake. Br. J. Nutr. 1997, 78, 223–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, R.F. The role of genomics and biotechnology in achieving global food security for high-oleic vegetable oil. J. Oleo Sci. 2012, 61, 357–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DuPont. Plenish™ High Oleic Soybeans. Site Inactive on 8 February 2022. Available online: http://www2.dupont.com/Biotechnology/en_US/products/plant_biotech_products/plenish.html (accessed on 6 March 2014).
- Candela, G.C.; Lopez, L.M.B.; Kohen, V.L. Importance of a balanced omega 6/omega 3 ratio for the maintenance of health. Nutritional recommendations. Nutr. Hosp. 2011, 26, 323–329. [Google Scholar]
- Calculate Your Body Mass Index. Available online: https://www.nhlbi.nih.gov/health/educational/lose_wt/BMI/bmicalc.htm (accessed on 6 January 2020).
- Block, G. NutritionQuest. Available online: http://www.nutritionquest.com/assessment/list-of-questionnaires-and-screeners/ (accessed on 6 March 2014).
- Guenther, P.M.; Casavale, K.O.; Reedy, J.; Kirkpatrick, S.I.; Hiza, H.A.B.; Kuczynski, K.J.; Kahle, L.L.; Krebs-Smith, S.M. Update of the Healthy Eating Index: HEI-2010. J. Acad. Nutr. Diet. 2013, 113, 569–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, W.S. The omega-3 index as a risk factor for coronary heart disease. Am. J. Clin. Nutr. 2008, 87, 1997S–2002S. [Google Scholar] [CrossRef] [PubMed]
- Cole, R.E.; Bukhari, A.S.; Champagne, C.M.; McGraw, S.M.; Hatch, A.M.; Montain, S.J. Performance Nutrition Dining Facility Intervention Improves Special Operations Soldiers’ Diet Quality and Meal Satisfaction. J. Nutr. Educ. Behav. 2018, 50, 993–1004. [Google Scholar] [CrossRef]
- IBM. SPSS Statistics for Windows (Version 25.0); IBM Corp.: Armonk, NY, USA, 2017. [Google Scholar]
- Abdelhamid, A.; Martin, N.; Bridges, C.; Brainard, J.S.; Wang, X.; Brown, T.J.; Hanson, S.; Jimoh, O.F.; Ajabnoor, S.M.; Deane, K.H.; et al. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018, 11, CD012345. [Google Scholar] [CrossRef]
- Schectman, G.; Patsches, M.; Sasse, E.A. Variability in cholesterol measurements: Comparison of calculated and direct LDL cholesterol determinations. Clin. Chem. 1996, 42, 732–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, D.T.; Deuster, P.; Harris, W.S.; Macrae, H.; Dretsch, M.N. Red blood cell omega-3 fatty acid levels and neurocognitive performance in deployed U.S. Servicemembers. Nutr. Neurosci. 2013, 16, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.A.; Devarshi, P.P.; Ekimura, S.; Marshall, K.; Mitmesser, S.H. Long-chain omega-3 fatty acid serum concentrations across life stages in the USA: An analysis of NHANES 2011–2012. BMJ Open 2021, 11, e043301. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Health. Dietary Assessment Primer, Food Frequency at a Glance. US Department of Health and Human Services. Available online: https://dietassessmentprimer.cancer.gov/profiles/questionnaire/ (accessed on 15 December 2021).
Variable | Total | Control (n = 39) | Intervention (n = 38) | p-Value b |
---|---|---|---|---|
Age (y) c | 25 ± 10 | 25 ± 10 | 24 ± 10 | 0.76 |
Height (cm) c | 175 ± 8 | 173 ± 6 | 177 ± 9 | 0.05 |
Weight (kg) c | 0.85 | |||
Baseline | 81.2 ± 21.5 | 81.5 ± 22.3 | 80.9 ± 20.8 | |
Week 8 | 82.6 ± 21.5 d | 82.2 ± 21.9 d | 82.9 ± 21.3 d | |
Body mass index (kg/m2) c | 0.84 | |||
Baseline | 26.4 ± 5.8 | 27.1 ± 6.2 | 25.8 ± 5.4 | |
Week 8 | 26.9 ± 5.8 d | 27.3 ± 6.0 d | 26.4 ± 5.5 d | |
Sex, n (%) | X2 (1) = 0.93, p = 0.38 | |||
Male | 64 (83) | 34 (87) | 30 (79) | |
Female | 13 (17) | 5 (13) | 8 (21) | |
Race, n (%) | X2 (2) = 2.72, p = 0.26 | |||
White/Caucasian | 40 (52) | 22 (56) | 18 (47) | |
Black/African American | 20 (26) | 7 (18) | 13 (34) | |
Other e | 17 (22) | 10 (26) | 7 (18) | |
Ethnicity, n (%) f | X2 (1) = 0.24, p = 0.81 | |||
Non-Hispanic/Latino | 52 (68) | 25 (64) | 27 (71) | |
Hispanic | 24 (31) | 13 (33) | 11 (29) |
Food, Serving Size | Control Group b (n = 39) | Intervention Group b (n = 38) | p-Value c |
---|---|---|---|
Eggs, 1 whole | 58 ± 22 | 55 ± 26 | 0.61 |
Frequency offered | Daily (B); 31% of the days (L or D) | Daily (B); 34% of the days (L or D) | |
Chicken, 3 ounces | 46 ± 18 | 34 ± 14 | 0.001 |
Frequency offered | 3.3 options daily | 2.9 options daily | |
Sausage, 1 link | 16 ± 17 | 12 ± 13 | 0.22 |
Frequency offered | Daily (B) | Daily (B) | |
Salad Dressing, 1.5 oz | 13 ± 15 | 13 ± 15 | 0.93 |
Frequency offered | Daily (L and D) | Daily (L and D) | |
Pasta Sauce, 3 oz | 9 ± 9 | 10 ± 9 | 0.71 |
Frequency offered | Daily (L and D) | Daily (L and D) | |
Mayonnaise, 1 Tbsp | 4 ± 8; 1 (0–33) | 6 ± 8; 3 (0–40) | 0.42 |
Frequency offered | Daily (L and D) | Daily (L and D) | |
Peanut Butter, 0.75 oz | 3 ± 8 | 3 ± 10 | 0.98 |
Frequency offered | Daily (L and D) | Daily (L and D) |
Nutrient | Control Group b (n = 39) | Intervention Group b (n = 38) | p-Value c Group x Time Interaction |
---|---|---|---|
Total calories, kcal | 0.236 | ||
Baseline | 2220 ± 899 | 2248 ± 829 | |
Week 8 | 2009 ± 842 | 1726 ± 714 * | |
Total fat, g | 0.325 | ||
Baseline | 93.7 ± 39.5 | 91.2 ± 35.0 | |
Week 8 | 84.9 ± 41.2 | 72.5 ± 32.3 * | |
Saturated fat, g | 0.302 | ||
Baseline | 30.5 ± 12.8 | 29.7 ± 11.7 | |
Week 8 | 28.4 ± 14.7 | 23.8 ± 11.5 * | |
Monounsaturated fat, g | 0.367 | ||
Baseline | 36.9 ± 16.1 | 35.7 ± 13.4 | |
Week 8 | 33.1 ± 16.4 | 28.5 ± 13.0 * | |
Polyunsaturated fat, g | 0.237 | ||
Baseline | 18.0 ± 8.3 | 17.9 ± 7.9 | |
Week 8 | 15.8 ± 7.5 | 13.4 ± 5.6 * | |
Trans fat, g | 0.325 | ||
Baseline | 3.3 ± 1.7 | 3.3 ± 1.8 | |
Week 8 | 2.9 ± 1.8 | 2.5 ± 1.2 * | |
Linoleic acid (18:2; n-6), g | 0.0760 | ||
Baseline | 15.3 ± 7.1 | 15.0 ± 6.6 | |
Week 8 | 13.2 ± 6.4 | 10.2 ± 4.6 *† | |
α-linolenic acid (18:3; n-3), g | 0.605 | ||
Baseline | 1.47 ± 0.74 | 1.56 ± 0.97 | |
Week 8 | 1.30 ± 0.67 | 1.47 ± 0.78 | |
Stearidonic acid (18:4; n-3), g | 0.0.911 | ||
Baseline | 0.0032 ± 0.0025 | 0.0040 ± 0.0045 | |
Week 8 | 0.0038 ± 0.0038 | 0.0044 ± 0.0064 | |
Arachidonic acid (20:4; n-6), g | 0.163 | ||
Baseline | 0.20 ± 0.08 | 0.19 ± 0.09 | |
Week 8 | 0.23 ± 0.10 | 0.18 ± 0.09 † | |
EPA d (20:5; n-3), g | <0.001 | ||
Baseline | 0.024 ± 0.018 | 0.028 ± 0.034 | |
Week 8 | 0.028 ± 0.027 | 0.115 ± 0.068 *† | |
DPA e (22:5; n-3), g | <0.001 | ||
Baseline | 0.011 ± 0.008 | 0.012 ± 0.015 | |
Week 8 | 0.014 ± 0.012 | 0.042 ± 0.027 *† | |
DHA f (22:6; n-3), g | <0.001 | ||
Baseline | 0.057 ± 0.032 | 0.060 ± 0.044 | |
Week 8 | 0.069 ± 0.043 | 0.246 ± 0.129 *† | |
Total n-6, g | 0.049 | ||
Baseline | 15.5 ± 7.1 | 15.3 ± 6.7 | |
Week 8 | 13.4 ± 6.5 | 10.1 ± 4.6 *† | |
Total n-3, g | 0.0.072 | ||
Baseline | 1.6 ± 0.8 | 1.7 ± 1.0 | |
Week 8 | 1.4 ± 0.7 | 1.9 ± 0.9 * | |
HEI-2010 g | 0.827 | ||
Baseline | 57.9 ± 10.1 | 55.9 ± 12.9 | |
Week 8 | 55.7 ± 9.9 | 52.9 ± 11.4 | |
n-6:n-3 ratio | <0.001 | ||
Baseline | 10.2 ± 2.1 | 9.7 ± 1.9 | |
Week 8 | 10.1 ± 2.2 | 6.3 ± 3.8 *† |
Analyte | Control Group b (n = 39) | Intervention Group b (n = 38) | p-Value c Group × Time Interaction |
---|---|---|---|
Total Cholesterol (mg/dL) | 0.252 | ||
Baseline | 164.8 ± 35.8 | 168.1 ± 32.4 | |
Week 8 | 161.5 ± 33.0 | 176.8 ± 34.6 † | |
High density lipoprotein (mg/dL) | 0.928 | ||
Baseline | 52.5 ± 11.2 | 50.6 ± 11.6 | |
Week 8 | 52.5 ± 11.8 | 50.5 ± 10.7 | |
Low density lipoprotein (mg/dL) | 0.352 | ||
Baseline | 90.0 ± 32.6 | 96.1 ± 31.7 | |
Week 8 | 92.8 ± 29.0 | 107.7 ± 31.0 † | |
Triglycerides (mg/dL) | 0.212 | ||
Baseline | 102.6 ± 96.1 | 98.1 ± 93.8 | |
Week 8 | 81.3 ± 49.2 | 92.8 ± 58.5 | |
hsCRP d (mg/L) | 0.786 | ||
Baseline | 2.75 ± 5.39 | 1.13 ± 1.75 | |
Week 8 | 2.67 ± 5.80 | 1.21 ± 2.00 | |
Homocysteine (µmol/L) | 0.859 | ||
Baseline | 7.13 ± 1.67 | 8.12 ± 1.50 † | |
Week 8 | 7.27 ± 1.95 | 8.40 ± 1.64 † | |
C18:3 n-3 ALA e (µg/mL) | 0.873 | ||
Baseline | 1.66 ± 0.80 | 1.58 ± 0.39 | |
Week 8 | 1.62 ± 0.69 | 1.50 ± 0.41 | |
C20:3 n-3 ETE f (µg/mL) | 0.299 | ||
Baseline | 1.04 ± 0.51 | 1.42 ± 0.35 † | |
Week 8 | 1.17 ± 0.49 | 1.44 ± 0.32 † | |
C20:5 n-3 EPA g (µg/mL) | 0.003 | ||
Baseline | 3.95 ± 2.43 | 3.26 ± 0.96 | |
Week 8 | 4.05 ± 1.56 | 5.00 ± 1.31 *† | |
C18:3 n-6 GLA h (µg/mL) | 0.873 | ||
Baseline | 0.60 ± 0.33 | 0.45 ± 0.19 † | |
Week 8 | 0.70 ± 0.42 | 0.48 ± 0.16 † | |
C22:6 DHA i (µg/mL) | 0.247 | ||
Baseline | 40.56 ± 24.52 | 36.37 ± 9.8 | |
Week 8 | 41.81 ± 16.3 | 45.34 ± 9.1 † | |
C20:3 n-6 DHGLA j (µg/mL) | 0.489 | ||
Baseline | 22.73 ± 9.89 | 20.55 ± 4.60 | |
Week 8 | 23.58 ± 10.31 | 20.59 ± 5.02 | |
C18:2 Linoleic (µg/mL) | 0.210 | ||
Baseline | 167.21 ± 68.47 | 156.72 ± 25.90 | |
Week 8 | 170.73 ± 66.49 | 143.44 ± 23.26 | |
C20:4 AA k (µg/mL) | 0.208 | ||
Baseline | 250.50 ± 105.35 | 215.96 ± 38.78 | |
Week 8 | 264.23 ± 101.56 | 205.60 ± 28.1 † | |
Omega-3 index (EPA + DHA) | 0.008 | ||
Baseline | 2.78 ± 0.80 | 2.83 ± 0.74 | |
Week 8 | 2.95 ± 0.77 | 3.66 ± 0.71 *† |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukhari, A.S.; Lutz, L.J.; Smith, T.J.; Hatch-McChesney, A.; O’Connor, K.L.; Carrigan, C.T.; Hawes, M.R.; McGraw, S.M.; Taylor, K.M.; Champagne, C.M.; et al. A Food-Based Intervention in a Military Dining Facility Improves Blood Fatty Acid Profile. Nutrients 2022, 14, 743. https://doi.org/10.3390/nu14040743
Bukhari AS, Lutz LJ, Smith TJ, Hatch-McChesney A, O’Connor KL, Carrigan CT, Hawes MR, McGraw SM, Taylor KM, Champagne CM, et al. A Food-Based Intervention in a Military Dining Facility Improves Blood Fatty Acid Profile. Nutrients. 2022; 14(4):743. https://doi.org/10.3390/nu14040743
Chicago/Turabian StyleBukhari, Asma S., Laura J. Lutz, Tracey J. Smith, Adrienne Hatch-McChesney, Kristie L. O’Connor, Christopher T. Carrigan, Michael R. Hawes, Susan M. McGraw, Kathryn M. Taylor, Catherine M. Champagne, and et al. 2022. "A Food-Based Intervention in a Military Dining Facility Improves Blood Fatty Acid Profile" Nutrients 14, no. 4: 743. https://doi.org/10.3390/nu14040743
APA StyleBukhari, A. S., Lutz, L. J., Smith, T. J., Hatch-McChesney, A., O’Connor, K. L., Carrigan, C. T., Hawes, M. R., McGraw, S. M., Taylor, K. M., Champagne, C. M., & Montain, S. J. (2022). A Food-Based Intervention in a Military Dining Facility Improves Blood Fatty Acid Profile. Nutrients, 14(4), 743. https://doi.org/10.3390/nu14040743