The Impact of Dietary Diversity, Lifestyle, and Blood Lipids on Carotid Atherosclerosis: A Cross-Sectional Study
Abstract
:1. Introduction
2. Method
2.1. Study Design and Participants
2.2. Measures
2.2.1. Individual Characteristics and Lifestyle
2.2.2. Dietary Habits and Dietary Diversity Assessment
2.2.3. Common Risk Factors
2.3. Statistical Analysis
3. Results
3.1. Demographic Characteristics and the Prevalence of CAS
3.2. Bivariate Analysis of Carotid Atherosclerosis
3.3. Multilevel Logistic Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef] [PubMed]
- Acosta, S.; Johansson, A.; Drake, I. Diet and Lifestyle Factors and Risk of Atherosclerotic Cardiovascular Disease-A Prospective Cohort Study. Nutrients 2021, 13, 3822. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Wang, M.S.; Liu, Q.; Shi, J.C.; Ren, H.M.; Xu, Z.M. Angiographically evident atherosclerotic stenosis associated with myocardial bridging and risk factors for the artery stenosis located proximally to myocardial bridging. Anadolu Kardiyol. Derg. 2014, 14, 40–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khera, A.V.; Emdin, C.A.; Drake, I.; Natarajan, P.; Bick, A.G.; Cook, N.R.; Chasman, D.I.; Baber, U.; Mehran, R.; Rader, D.J.; et al. Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease. N. Engl. J. Med. 2016, 375, 2349–2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimovski, K.; Orho-Melander, M.; Drake, I. A favorable lifestyle lowers the risk of coronary artery disease consistently across strata of non-modifiable risk factors in a population-based cohort. BMC Public Health 2019, 19, 1575. [Google Scholar] [CrossRef]
- Yoon, S.J.; Jung, J.G.; Lee, S.; Kim, J.S.; Ahn, S.K.; Shin, E.S.; Jang, J.E.; Lim, S.H. The protective effect of alcohol consumption on the incidence of cardiovascular diseases: Is it real? A systematic review and meta-analysis of studies conducted in community settings. BMC Public Health 2020, 20, 90. [Google Scholar] [CrossRef] [Green Version]
- Kulezic, A.; Bergwall, S.; Fatemi, S.; Sonestedt, E.; Zarrouk, M.; Gottsäter, A.; Acosta, S. Healthy diet and fiber intake are associated with decreased risk of incident symptomatic peripheral artery disease—A prospective cohort study. Vasc. Med. 2019, 24, 511–518. [Google Scholar] [CrossRef]
- Oldewage-Theron, W.; Kruger, R. Dietary diversity and adequacy of women caregivers in a peri-urban informal settlement in South Africa. Nutrition 2011, 27, 420–427. [Google Scholar] [CrossRef]
- Vandevijvere, S.; De Vriese, S.; Huybrechts, I.; Moreau, M.; Van Oyen, H. Overall and within-food group diversity are associated with dietary quality in Belgium. Public Health Nutr. 2010, 13, 1965–1973. [Google Scholar] [CrossRef] [Green Version]
- Korkalo, L.; Erkkola, M.; Heinonen, A.E.; Freese, R.; Selvester, K.; Mutanen, M. Associations of dietary diversity scores and micronutrient status in adolescent Mozambican girls. Eur. J. Nutr. 2017, 56, 1179–1189. [Google Scholar] [CrossRef] [Green Version]
- Larsson, S.C.; Akesson, A.; Wolk, A. Overall diet quality and risk of stroke: A prospective cohort study in women. Atherosclerosis 2014, 233, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Fanelli Kuczmarski, M.; Brewer, B.C.; Rawal, R.; Pohlig, R.T.; Zonderman, A.B.; Evans, M.K. Aspects of Dietary Diversity Differ in Their Association with Atherosclerotic Cardiovascular Risk in a Racially Diverse US Adult Population. Nutrients 2019, 11, 1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.X.; Ashline, D.; Liu, L.; Tassa, C.; Shaw, S.Y.; Ravid, K.; Layne, M.D.; Reinhold, V.; Robbins, P.W. The glycosylation-dependent interaction of perlecan core protein with LDL: Implications for atherosclerosis. J. Lipid Res. 2015, 56, 266–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannsverk, J.; Wilsgaard, T.; Mathiesen, E.B.; Løchen, M.L.; Rasmussen, K.; Thelle, D.S.; Njølstad, I.; Hopstock, L.A.; Bønaa, K.H. Trends in Modifiable Risk Factors Are Associated With Declining Incidence of Hospitalized and Nonhospitalized Acute Coronary Heart Disease in a Population. Circulation 2016, 133, 74–81. [Google Scholar] [CrossRef]
- Peicheng, W.; Huiping, Z.; Xiuying, L.; Shengxiu, Y.; Huiying, Z. Evaluation of Dietary Diversity during the Second Trimester of Pregnancy and Its Influencing Factors. Mod. Prev. Med. 2016, 2016, 43, 1409–1412. [Google Scholar]
- Kizer, J.R.; Madias, C.; Wilner, B.; Vaughan, C.J.; Mushlin, A.I.; Trushin, P.; Gotto, A.M., Jr.; Pasternak, R.C. Relation of different measures of low-density lipoprotein cholesterol to risk of coronary artery disease and death in a meta-regression analysis of large-scale trials of statin therapy. Am. J. Cardiol. 2010, 105, 1289–1296. [Google Scholar] [CrossRef] [Green Version]
- Chiuve, S.E.; McCullough, M.L.; Sacks, F.M.; Rimm, E.B. Healthy lifestyle factors in the primary prevention of coronary heart disease among men: Benefits among users and nonusers of lipid-lowering and antihypertensive medications. Circulation 2006, 114, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [CrossRef]
- Guan, T.; Ma, J.; Li, M.; Xue, T.; Lan, Z.; Guo, J.; Shen, Y.; Chao, B.; Tian, G.; Zhang, Q.; et al. Rapid transitions in the epidemiology of stroke and its risk factors in China from 2002 to 2013. Neurology 2017, 89, 53–61. [Google Scholar] [CrossRef]
- Lechner, K.; von Schacky, C.; McKenzie, A.L.; Worm, N.; Nixdorff, U.; Lechner, B.; Kränkel, N.; Halle, M.; Krauss, R.M.; Scherr, J. Lifestyle factors and high-risk atherosclerosis: Pathways and mechanisms beyond traditional risk factors. Eur. J. Prev. Cardiol. 2020, 27, 394–406. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.J.; Shin, D.H.; Kim, S.J.; Oh, H.J.; Yoo, D.E.; Kim, J.K.; Park, J.T.; Han, S.H.; Kang, S.W.; Choi, K.H.; et al. Visceral Fat Thickness Is Associated With Carotid Atherosclerosis in Peritoneal Dialysis Patients. Obesity 2012, 20, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Moshe, C.B.; Haratz, S.; Ravona-Springer, R.; Heymann, A.; Lin, H.M.; Beeri, M.S.; Tanne, D. Long-term trajectories of BMI predict carotid stiffness and plaque volume in type 2 diabetes older adults: A cohort study. Cardiovasc. Diabetol. 2020, 19. [Google Scholar] [CrossRef]
- Liang, L.R.; Wong, N.D.; Shi, P.; Zhao, L.C.; Wu, L.X.; Xie, G.Q.; Wu, Y.F. Cross-sectional and longitudinal association of cigarette smoking with carotid atherosclerosis in Chinese adults. Prev. Med. 2009, 49, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.H.; Smith, S.S.; Hansen, K.M.; Korcarz, C.E.; Piper, M.E.; Fiore, M.C.; Baker, T.B. Longitudinal effects of smoking cessation on carotid artery atherosclerosis in contemporary smokers: The Wisconsin Smokers Health Study. Atherosclerosis 2020, 315, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.Q.; Xu, L.; Lam, T.H.; Lin, J.M.; Cheng, K.K.; Thomas, G.N. Smoking cessation and carotid atherosclerosis: The Guangzhou Biobank Cohort Study--CVD. J. Epidemiol. Community Health 2010, 64, 1004–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kweon, S.S.; Lee, Y.H.; Shin, M.H.; Choi, J.S.; Rhee, J.A.; Choi, S.W.; Ryu, S.Y.; Kim, B.H.; Nam, H.S.; Jeong, S.K.; et al. Effects of Cumulative Smoking Exposure and Duration of Smoking Cessation on Carotid Artery Structure. Circ. J. 2012, 76, 2041–2047. [Google Scholar] [CrossRef] [Green Version]
- Aubin, H.J.; Farley, A.; Lycett, D.; Lahmek, P.; Aveyard, P. Weight gain in smokers after quitting cigarettes: Meta-analysis. BMJ 2012, 345, e4439. [Google Scholar] [CrossRef] [Green Version]
- Lietz, M.; Berges, A.; Lebrun, S.; Meurrens, K.; Steffen, Y.; Stolle, K.; Schueller, J.; Boue, S.; Vuillaume, G.; Vanscheeuwijck, P.; et al. Cigarette-smoke-induced atherogenic lipid profiles in plasma and vascular tissue of apolipoprotein E-deficient mice are attenuated by smoking cessation. Atherosclerosis 2013, 229, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Kelso-Chichetto, N.E.; Plankey, M.; Sheps, D.S.; Abraham, A.G.; Chen, X.; Shoptaw, S.; Kaplan, R.C.; Post, W.S.; Cook, R.L. The impact of long-term moderate and heavy alcohol consumption on incident atherosclerosis among persons living with HIV. Drug Alcohol. Depend. 2017, 181, 235–241. [Google Scholar] [CrossRef]
- Poli, A.; Marangoni, F.; Avogaro, A.; Barba, G.; Bellentani, S.; Bucci, M.; Cambieri, R.; Catapano, A.L.; Costanzo, S.; Cricelli, C.; et al. Moderate alcohol use and health: A consensus document. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 487–504. [Google Scholar] [CrossRef]
- Jesse, S.; Bråthen, G.; Ferrara, M.; Keindl, M.; Ben-Menachem, E.; Tanasescu, R.; Brodtkorb, E.; Hillbom, M.; Leone, M.A.; Ludolph, A.C. Alcohol withdrawal syndrome: Mechanisms, manifestations, and management. Acta Neurol. Scand. 2017, 135, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Johnston, A.L.; Thevos, A.K.; Randall, C.L.; Anton, R.F. Increased severity of alcohol withdrawal in in-patient alcoholics with a co-existing anxiety diagnosis. Br. J. Addict. 1991, 86, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Wiers, C.E.; Martins De Carvalho, L.; Hodgkinson, C.A.; Schwandt, M.; Kim, S.W.; Diazgranados, N.; Wang, G.J.; Goldman, D.; Volkow, N.D. TSPO polymorphism in individuals with alcohol use disorder: Association with cholesterol levels and withdrawal severity. Addict. Biol. 2021, 26, e12838. [Google Scholar] [CrossRef]
- Hoebeeck, L.I.; Rietzschel, E.R.; Langlois, M.; De Buyzere, M.; De Bacquer, D.; De Backer, G.; Maes, L.; Gillebert, T.; Huybrechts, I. The relationship between diet and subclinical atherosclerosis: Results from the Asklepios Study. Eur. J. Clin. Nutr. 2011, 65, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Azadbakht, L.; Esmaillzadeh, A. Dietary diversity score is related to obesity and abdominal adiposity among Iranian female youth. Public Health Nutr. 2011, 14, 62–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponce, X.; Ramirez, E.; Delisle, H. A more diversified diet among Mexican men may also be more atherogenic. J. Nutr. 2006, 136, 2921–2927. [Google Scholar] [CrossRef]
- Chun, S.; Choi, Y.; Chang, Y.; Cho, J.; Zhang, Y.; Rampal, S.; Zhao, D.; Ahn, J.; Suh, B.S.; Pastor-Barriuso, R.; et al. Sugar-sweetened carbonated beverage consumption and coronary artery calcification in asymptomatic men and women. Am. Heart J. 2016, 177, 17–24. [Google Scholar] [CrossRef]
- Kurniawan, A.L.; Hsu, C.Y.; Rau, H.H.; Lin, L.Y.; Chao, J.C.J. Inflammatory Dietary Pattern Predicts Dyslipidemia and Anemia in Middle-Aged and Older Taiwanese Adults with Declined Kidney Function: A Cross-Sectional Population Study from 2008 to 2010. Nutrients 2019, 11, 2052. [Google Scholar] [CrossRef] [Green Version]
- Papies, E.K. The Psychology of Desire and Implications for Healthy Hydration. Ann. Nutr. Metab. 2020, 76 (Suppl. S1), 31–36. [Google Scholar] [CrossRef]
- Mita, T.; Osonoi, Y.; Osonoi, T.; Saito, M.; Nakayama, S.; Someya, Y.; Ishida, H.; Gosho, M.; Watada, H. Breakfast skipping is associated with persistently increased arterial stiffness in patients with type 2 diabetes. BMJ Open Diabetes Res. Care 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Wu, L.X.; Shi, P.; Kang, S.; Shi, L.J.; Wu, Y.F. Hypertension and subclinical carotid atherosclerosis in a suburban general population in China. J. Hypertens. 2004, 22, 1699–1706. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Fang, Z.; Wang, H.; Cai, Y.; Rahimi, K.; Zhu, Y.; Fowkes, F.G.R.; Fowkes, F.J.I.; Rudan, I. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: A systematic review, meta-analysis, and modelling study. Lancet Glob. Health 2020, 8, e721–e729. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sang, H.; Zhang, X.; Fang, Y.L.; Niu, X.Y.; Liu, T.T.; Liu, W.D.; Li, J. Comparison of the Characteristics and Risk Factors of Carotid Atherosclerosis in High Stroke Risk Populations Between Urban and Rural Areas in North China. Front. Neurol. 2020, 11, 554778. [Google Scholar] [CrossRef] [PubMed]
- Amarenco, P.; Labreuche, J.; Touboul, P.J. High-density lipoprotein-cholesterol and risk of stroke and carotid atherosclerosis: A systematic review. Atherosclerosis 2008, 196, 489–496. [Google Scholar] [CrossRef] [PubMed]
Variables | All Participants | No Incident Carotid Atherosclerosis (n = 27,041) | Incident Carotid Atherosclerosis (n = 11,601) | p | |
---|---|---|---|---|---|
1. Individual characteristics | |||||
Age | 46.0 (37.0–54.0) | 42.0 (34.0–50.0) | 53.0 (48.0–58.0) | −85.41 | <0.001 |
Gender | 114.62 | <0.001 | |||
Male | 22,819 (59.1) | 15,494 (57.3) | 7325 (63.1) | ||
Female | 15,823 (40.9) | 11,547 (42.7) | 4276 (36.0) | ||
BMI (kg/m2) | 316.95 | <0.001 | |||
<18.5 | 946 (2.4) | 821 (3.0) | 125 (1.1) | ||
18.5–24.9 | 22,187 (57.4) | 16,024 (59.3) | 6163 (53.1) | ||
25–29.9 | 13,651 (35.3) | 8937 (33.0) | 4714 (40.6) | ||
≥30 | 1858 (4.8) | 1259 (4.7) | 599 (5.2) | ||
Smoking | 190.07 | <0.001 | |||
Non-smoker | 25,819 (66.8) | 18,392 (68.0) | 7427 (64.0) | ||
Ex-smoker | 1438 (3.7) | 6512 (24.1) | 3226 (27.8) | ||
Current | 9738 (25.2) | 854 (3.2) | 584 (5.0) | ||
Passive-smoker | 1647 (4.3) | 1283 (4.7) | 364 (3.1) | ||
Alcohol | 87.75 | <0.001 | |||
None | 25,344 (65.6) | 17,954 (66.4) | 7270 (62.7) | ||
Yes | 12,744 (33.0) | 8702 (32.2) | 4042 (34.8) | ||
Abstinent from alcohol | 674 (1.7) | 385 (1.4) | 289 (2.5) | ||
Exercise | 17.44 | <0.001 | |||
None | 8670 (22.4) | 6224 (23.0) | 2446 (21.1) | ||
Yes | 29,971 (77.6) | 20,816 (77.0) | 9155 (78.9) | ||
2. Dietary Habits | |||||
DDS Degree | 37.71 | <0.001 | |||
DDS-1 | 2482 (6.4) | 1603 (5.9) | 879 (7.6) | ||
DDS-2 | 14,517 (37.6) | 10,170 (37.6) | 4347 (37.5) | ||
DDS-3 | 21,643 (56.0) | 15,268 (56.5) | 6375 (55.0) | ||
Eating three meals on time | 254.15 | <0.001 | |||
No | 12,312 (31.9) | 9285 (34.3) | 3027 (26.1) | ||
Yes | 26,330 (68.1) | 17,756 (65.7) | 8574 (73.9) | ||
Midnight snacks | 1247.33 | <0.001 | |||
No | 26,699 (69.1) | 17,213 (63.7) | 9486 (81.8) | ||
Yes | 11,943 (30.9) | 9828 (36.3) | 2115 (18.2) | ||
Overeating | 16.86 | <0.001 | |||
No | 35,151 (91.0) | 24,492 (90.6) | 10,659 (91.9) | ||
Yes | 2491 (9.0) | 2549 (9.4) | 942 (8.1) | ||
Social engagement | 31.34 | <0.001 | |||
No | 30,382 (78.6) | 21,054 (77.9) | 9328 (80.4) | ||
Yes | 8260 (21.4) | 5987 (22.1) | 2273 (19.6) | ||
Sugar-sweetened beverages | 696.38 | <0.001 | |||
No | 21,548 (55.8) | 12,898 (51.4) | 7650 (65.9) | ||
Yes | 17,094 (44.2) | 13,143 (48.6) | 3951 (34.1) | ||
Coffee | 135.83 | <0.001 | |||
No | 28,664 (74.2) | 19,599 (72.5) | 9065 (78.1) | ||
Yes | 9978 (25.8) | 7442 (27.5) | 2536 (21.9) | ||
3. Common risk factors (mmol/L) | |||||
BP | 1452.96 | <0.001 | |||
Normal BP | 32,406 (83.9) | 23,940 (88.5) | 8465 (73.0) | ||
Hypertension | 6237 (16.1) | 3101 (11.5) | 3136 (27.0) | ||
LDL-C | 2.83 (2.31–3.37) | 2.76 (2.27–3.29) | 2.99 (2.42–3.54) | −21.74 | <0.001 |
HDL-C | 1.30 (1.13–1.52) | 1.31 (1.13–1.53) | 1.28 (1.12–1.49) | 5.620 | <0.001 |
Triglycerides | 1.39 (0.94–2.13) | 1.32 (0.89–2.06) | 1.54 (1.08–2.27) | −10.82 | <0.001 |
Total cholesterol | 4.97 (4.38–5.62) | 4.88 (4.31–5.52) | 5.19 (4.57–5.85) | −26.70 | <0.001 |
Variables | Odds Ratio [95% Confidence Interval] | ||
---|---|---|---|
Model 1 | Model 2 | Model 3 | |
1. Individual characteristics | |||
Age | 1.093 *** [1.090–1.095] | 1.089 *** [1.086–1.092] | 1.085 *** [1.082–1.088] |
Gender | |||
Male | 1.000 | 1.000 | 1.000 |
Female | 0.873 *** [0.825–0.923] | 0.867 *** [0.818–0.918] | 0.884 *** [0.833–0.938] |
BMI (kg/m2) | |||
<18.5 | 1.000 | 1.000 | 1.000 |
18.5–24.9 | 1.723 *** [1.383–2.146] | 1.708 *** [1.370–2.129] | 1.494 *** [1.195–1.866] |
25–29.9 | 2.073 *** [1.661–2.588] | 2.049 *** [1.640–2.560] | 1.614 *** [1.288–2.023] |
≥30 | 2.362 *** [1.852–3.011] | 2.358 *** [1.846–3.010] | 1.690 *** [1.318–2.166] |
Smoking | |||
Non-smoker | 1.000 | 1.000 | 1.000 |
Ex-smoker | 1.165 *** [1.096–1.239] | 1.200 *** [1.127–1.277] | 1.147 *** [1.076–1.223] |
Current | 1.361 *** [1.203–1.540] | 1.399 *** [1.235–1.584] | 1.348 *** [1.189–1.528] |
Passive-smoker | 0.852 * [0.748–0.971] | 0.885 [0.776–1.009] | 0.859 * [0.751–0.981] |
Alcohol consumption | |||
None | 1.000 | 1.000 | 1.000 |
Yes | 1.107 *** [1.047–1.172] | 1.090 ** [1.028–1.156] | 1.041 [0.981–1.105] |
Abstinent from alcohol | 1.294 ** [1.087–1.541] | 1.279 ** [1.074–1.524] | 1.225 * [1.027–1.461] |
Exercise | |||
None | 1.000 | 1.000 | 1.000 |
Yes | 0.914 ** [0.862–0.969] | 0.924 ** [0.870–0.981] | 0.949 [0.893–1.008] |
2. Dietary Habits | |||
DDS1 | 1.000 | 1.000 | |
DDS2 | 0.902 * [0.816–0.997] | 0.891 * [0.805–0.989] | |
DDS3 | 0.912 [0.827–1.007] | 0.904 * [0.818–0.999] | |
Eating three meals on time | |||
Yes | 1.000 | 1.000 | |
No | 1.063 * [1.005–1.124] | 1.061 * [1.003–1.123] | |
Midnight snacks | |||
Yes | 1.000 | 1.000 | |
No | 0.847 *** [0.794–0.903] | 0.846 *** [0.793–0.903] | |
Overeating | |||
No | 1.000 | 1.000 | |
Yes | 1.092 [0.999–1.193] | 1.066 [0.974–1.166] | |
Social engagement | |||
No | 1.000 | 1.000 | |
Yes | 1.134 *** [1.062–1.210] | 1.122 ** [1.050–1.198] | |
Sugar-sweetened beverages | |||
No | 1.000 | 1.000 | |
Yes | 0.070 *** [0.703–0.780] | 0.735 *** [0.697–0.774] | |
Coffee | |||
No | 1.000 | 1.000 | |
Yes | 0.915 ** [0.863–0.971] | 0.928 * [0.875–0.986] | |
3. Common risk factors (mmol/L) | |||
BP | |||
Normal BP | 1.000 | ||
Hypertension | 1.828 *** [1.718–1.945] | ||
LDL-C | 0.912 [0.821–1.014] | ||
HDL-C | 0.557 *** [0.486–0.638] | ||
Triglycerides | 0.923 *** [0.886–0.961] | ||
Total cholesterol | 1.441 *** [1.300–1.596] | ||
−2 log likelihood | 40,271.42 | 40,042.31 | 39,233.82 |
Nagelkerke R2 | 0.233 | 0.240 | 0.265 |
Omnibus χ2 | 6950.70 | 7179.82 | 7988.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, L.; Li, Y.; Liu, M.; Gan, G.; Zhou, Y.; Luo, X.; Zhang, C.; Xie, J.; Duan, Y.; et al. The Impact of Dietary Diversity, Lifestyle, and Blood Lipids on Carotid Atherosclerosis: A Cross-Sectional Study. Nutrients 2022, 14, 815. https://doi.org/10.3390/nu14040815
Wang Y, Li L, Li Y, Liu M, Gan G, Zhou Y, Luo X, Zhang C, Xie J, Duan Y, et al. The Impact of Dietary Diversity, Lifestyle, and Blood Lipids on Carotid Atherosclerosis: A Cross-Sectional Study. Nutrients. 2022; 14(4):815. https://doi.org/10.3390/nu14040815
Chicago/Turabian StyleWang, Yaqin, Lijun Li, Ying Li, Min Liu, Gang Gan, Yi Zhou, Xiaofei Luo, Chun Zhang, Jianfei Xie, Yinglong Duan, and et al. 2022. "The Impact of Dietary Diversity, Lifestyle, and Blood Lipids on Carotid Atherosclerosis: A Cross-Sectional Study" Nutrients 14, no. 4: 815. https://doi.org/10.3390/nu14040815
APA StyleWang, Y., Li, L., Li, Y., Liu, M., Gan, G., Zhou, Y., Luo, X., Zhang, C., Xie, J., Duan, Y., & Cheng, S. K. (2022). The Impact of Dietary Diversity, Lifestyle, and Blood Lipids on Carotid Atherosclerosis: A Cross-Sectional Study. Nutrients, 14(4), 815. https://doi.org/10.3390/nu14040815