Paraxanthine Supplementation Increases Muscle Mass, Strength, and Endurance in Mice
Abstract
:1. Introduction
2. Methods
2.1. Animals and Experiment Design
2.2. Sample Collection
2.3. Forelimb Grip Strength Test
2.4. Exercise Training
2.5. Treadmill Endurance Test
2.6. Clinical Biochemical Profiles
2.7. Statistical Analysis
3. Results
3.1. Effect on Body Weight and Feed Consumption
3.2. Effect of Supplementation on Forelimb Grip Strength
3.3. Effect of Supplementation on Treadmill Performance
3.4. Effect of Supplementation on Liver Health, Renal Function, Lipid Profiles, and Nitric Oxide
3.5. Effect of Supplementation on Muscle Mass and Organ Weight
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stavric, B. Methylxanthines: Toxicity to humans. 3. Theobromine, paraxanthine and the combined effects of methylxanthines. Food Chem. Toxicol. 1988, 26, 725–733. [Google Scholar] [CrossRef]
- Guest, N.S.; vanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Spriet, L.L.; MacLean, D.A.; Dyck, D.J.; Hultman, E.; Cederblad, G.; Graham, T.E. Caffeine ingestion and muscle metabolism during prolonged exercise in humans. Am. J. Phys. 1992, 262, E891–E898. [Google Scholar] [CrossRef]
- Hetzler, R.K.; Knowlton, R.G.; Somani, S.M.; Brown, D.D.; Perkins, R.M., 3rd. Effect of paraxanthine on FFA mobilization after intravenous caffeine administration in humans. J. Appl. Physiol. 1990, 68, 44–47. [Google Scholar] [CrossRef]
- Chou, C.C.; Vickroy, T.W. Antagonism of adenosine receptors by caffeine and caffeine metabolites in equine forebrain tissues. Am. J. Vet. Res. 2003, 64, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Orrú, M.; Guitart, X.; Karcz-Kubicha, M.; Solinas, M.; Justinova, Z.; Barodia, S.K.; Zanoveli, J.; Cortes, A.; Lluis, C.; Casado, V.; et al. Psychostimulant pharmacological profile of paraxanthine, the main metabolite of caffeine in humans. Neuropharmacology 2013, 67, 476–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferre, S.; Orrú, M.; Guitart, X. Paraxanthine: Connecting caffeine to Nitric Oxide Neurotransmission. J. Caffeine Res. 2013, 3, 72–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef] [Green Version]
- Umemura, T.; Ueda, K.; Nishioka, K.; Hidaka, T.; Takemoto, H.; Nakamura, S.; Jitsuiki, D.; Soga, J.; Goto, C.; Chayama, K.; et al. Effects of acute administration of caffeine on vascular function. Am. J. Cardiol. 2006, 98, 1538–1541. [Google Scholar] [CrossRef] [PubMed]
- Echeverri, D.; Montes, F.R.; Cabrera, M.; Galan, A.; Prieto, A. Caffeine’s Vascular Mechanism of Action. Int. J. Vasc. Med. 2010, 2010, 834060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, P.B.; Peever, J.H. Dopamine triggers skeletal muscle tone by activating D1-like receptors on somatic motoneurons. J. Neurophysiol. 2011, 106, 1299–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jäger, R.; Purpura, M.; Kingsley, M. Phospholipids and sports performance. J. Int. Soc. Sports Nutr. 2007, 4, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellar, D.; LeBlanc, N.R.; Campbell, B. The effect of 6 days of alpha glycerylphosphorylcholine on isometic strength. J. Int. Soc. Sports Nutr. 2015, 12, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jäger, R.; Purpura, M.; Geiss, K.-R.; Barthel, T.; Schnittker, R.; Weiß, M. Improving mental regeneration after physical exercise. J. Int. Soc. Sports Nutr. 2008, 5, P3. [Google Scholar] [CrossRef] [Green Version]
- de Yebenes Prous, J.G.; Carlsson, A.; Gomez, M.A.M. The effect of taurine on motor behaviour, body temperature and monoamine metabolism in rat brain. Naunyn-Schmiedebergs Arch. Pharmac. 1978, 304, 95–99. [Google Scholar] [CrossRef]
- Waldron, M.; Patterson, S.D.; Tallent, J.; Jeffries, O. The effects of an oral taurine dose and supplementation period on endurance exercise performance in humans: A meta-analysis. Sports Med. 2018, 48, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Castro, B.; Shihuan, K. Evaluation of Muscle Performance in Mice by Treadmill Exhaustion Test and Whole-limb Grip Strength Assay. Bio. Protoc. 2017, 7, e2237. [Google Scholar] [CrossRef]
- Hawke, T.J.; Allen, D.G.; Lindinger, M.I. Paraxanthine, a caffeine metabolite, dose dependently increases [Ca2+]i in skeletal muscle. J. Appl. Physiol. 2000, 89, 2312–2317. [Google Scholar] [CrossRef]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef] [Green Version]
- Grgic, J.; Mikulic, P. Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. Eur. J. Sport Sci. 2017, 17, 1029–1036. [Google Scholar] [CrossRef]
- Beck, T.W.; Housh, T.J.; Schmidt, R.J.; Johnson, G.O.; Housh, D.J.; Coburn, J.W.; Malek, M.H. The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilities. J. Strength Cond. Res. 2006, 20, 506–510. [Google Scholar] [CrossRef] [Green Version]
- Eckerson, J.M.; Bull, A.J.; Baechle, T.R.; Fischer, C.A.; O’Brien, D.C.; Moore, G.A.; Yee, J.C.; Pulverenti, T.R. Acute ingestion of sugar-free red bull energy drink has no effect on upper body strength and muscular endurance in resistance trained men. J. Strength Cond. Res. 2013, 27, 2248–2254. [Google Scholar] [CrossRef]
- Wilk, M.; Krzysztofik, M.; Filip, A.; Zajac, A.; Del Coso, J. The effects of high doses of caffeine on maximal strength and muscular endurance in athletes habituated to caffeine. Nutrients 2019, 11, 1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davenport, A.D.; Jameson, T.S.O.; Kilroe, S.P.; Monteyne, A.J.; Pavis, G.F.; Wall, B.T.; Dirks, M.L.; Alamdari, N.; Mikus, C.R.; Stephens, F.B. A Randomised, Placebo-Controlled, Crossover Study Investigating the Optimal Timing of a Caffeine-Containing Supplement for Exercise Performance. Sports Med. Open 2020, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Barreto, G.; Grecco, B.; Merola, P.; Reis, C.E.G.; Gualano, B.; Saunders, B. Novel insights on caffeine supplementation, CYP1A2 genotype, physiological responses and exercise performance. Eur. J. Appl. Physiol. 2021, 121, 749–769. [Google Scholar] [CrossRef]
- Gharahdaghi, N.; Phillips, B.E.; Szewczyk, N.J.; Smith, K.; Wilkinson, D.J.; Atherton, P.J. Links Between Testosterone, Oestrogen, and the Growth Hormone/Insulin-Like Growth Factor Axis and Resistance Exercise Muscle Adaptations. Front. Physiol. 2021, 11, 621226. [Google Scholar] [CrossRef]
- Raj, K.; Gupta, G.D.; Singh, S. L-Theanine ameliorates motor deficit, mitochondrial dysfunction, and neurodegeneration against chronic tramadol induced rats model of Parkinson’s disease. Drug Chem. Toxicol. 2021, 1, 1–12. [Google Scholar] [CrossRef]
- Yang, C.C.; Chang, K.-C.; Wang, M.-H.; Tseng, H.-C.; Soung, H.-S.; Fang, C.-H.; Lin, Y.-W.; Tsai, C.-C. l-Theanine improves functional recovery after traumatic spinal cord injury in rats. J. Formos. Med. Assoc. 2020, 119, 1405–1414. [Google Scholar] [CrossRef]
- Williams, J.; McKune, A.J.; Georgousopoulou, E.N.; Kellett, J.; D’Cunha, N.M.; Sergi, D.; Mellor, D.; Naumovski, N. The Effect of L-Theanine Incorporated in a Functional Food Product (Mango Sorbet) on Physiological Responses in Healthy Males: A Pilot Randomised Controlled Trial. Foods 2020, 9, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juszkiewicz, A.; Glapa, A.; Basta, P.; Petriczko, E.; Zolnowski, K.; Machalinski, B.; Trzeciak, J.; Łuczkowska, K.; Skarpańska-Stejnborn, A. The effect of L-theanine supplementation on the immune system of athletes exposed to strenuous physical exercise. J. Int. Soc. Sports Nutr. 2019, 16, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcus, L.; Soileau, J.; Judge, L.W.; Bellar, D. Evaluation of the effects of two doses of alpha glycerylphosphorylcholine on physical and psychomotor performance. J. Int. Soc. Sports Nutr. 2017, 14, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komine, S.; Miyazaki, T.; Ishikura, K.; Matsui, T.; Miyoshi, T.; Ra, S.-G.; Honda, A.; Soya, H.; Miyakawa, S.; Ohmori, H. Taurine supplementation enhances endurance capacity by delaying blood glucose decline during prolonged exercise in rats. Amino Acids 2022. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.J.; Fulford, A.J.; Vanhatalo, P.G.; Winyard, J.R.; Blackwell, F.J.; DiMenna, D.P.; Wilkerson, N.B.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J. Appl. Physiol. 2010, 109, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Yoo, C.; Xing, D.; Gonzalez, D.; Jenkins, V.; Nottingham, K.; Dickerson, B.; Leonard, M.; Ko, J.; Faries, M.; Kephart, W.; et al. Acute Paraxanthine Ingestion Improves Cognition and Short-Term Memory and Helps Sustain Attention in a Double-Blind, Placebo-Controlled, Crossover Trial. Nutrients 2021, 13, 3980. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Yoo, C.; Gonzalez, D.; Jenkins, V.; Nottingham, K.; Dickerson, B.; Leonard, M.; Ko, J.; Faries, M.; Kephart, W.; et al. Dose-Response of Paraxanthine on Cognitive Function: A Double Blind, Placebo Controlled, Crossover Trial. Nutrients 2021, 13, 4478. [Google Scholar] [CrossRef] [PubMed]
- Purpura, M.; Jäger, R.; Falk, M. An assessment of mutagenicity, genotoxicity, acute-, subacute and subchronic oral toxicity of paraxanthine (1,7-dimethylxanthine). Food Chem. Toxicol. 2021, 158, 112579. [Google Scholar] [CrossRef]
- Hidese, S.; Ota, M.; Wakabayashi, C.; Noda, T.; Ozawa, H.; Okubo, T.; Kunugi, H. Effects of chronic l-theanine administration in patients with major depressive disorder: An open-label study. Acta Neuropsychiatr. 2017, 29, 72–79. [Google Scholar] [CrossRef]
- Paton, C.; Costa, V.; Guglielmo, L. Effects of caffeine chewing gum on race performance and physiology in male and female cyclists. J. Sports Sci. 2015, 33, 1076–1083. [Google Scholar] [CrossRef]
- Woolf, K.; Bidwell, W.K.; Carlson, A.G. The effect of caffeine as an ergogenic aid in anaerobic exercise. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 412–429. [Google Scholar] [CrossRef]
- Womack, C.J.; Saunders, M.J.; Bechtel, M.K.; Bolton, D.J.; Martin, M.; Luden, N.D.; Dunham, W.; Hancock. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. J. Int. Soc. Sports Nutr. 2012, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Guest, N.; Corey, P.; Vescovi, J.; El-Sohemy, A. Caffeine, CYP1A2 genotype, and endurance performance in athletes. Med. Sci. Sport Exerc. 2018, 50, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Pataky, M.W.; Womack, C.J.; Saunders, M.J.; Goffe, J.L.; D’Lugos, A.C.; El-Sohemy, A.; Luden, N.D. Caffeine and 3-km cycling performance: Effects of mouth rinsing, genotype, and time of day. Scand. J. Med. Sci. Sport. 2016, 26, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Algrain, H.A.; Thomas, R.M.; Carrillo, A.E.; Ryan, E.J.; Kim, C.-H.; Lettanil, R.B.; Ryan, E.J. The effects of a polymorphism in the cytochrome P450 CYP1A2 gene on performance enhancement with caffeine in recreational cyclists. J. Caffeine Res. 2015, 6, 34–39. [Google Scholar] [CrossRef]
- Gu, L.; Gonzalez, F.J.; Kalow, W.; Tang, B.K. Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1. Pharmacogenetics 1992, 2, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Sachse, C.; Brockmöller, J.; Bauer, S.; Roots, I. Functional significance of a C → A polymorphism in intron I of the cytochrome P450 CYP1A2 gene tested with caffeine. Br. J. Clin. Pharmacol. 1999, 47, 445–449. [Google Scholar] [CrossRef] [Green Version]
Procedure | Day 1 | Day 28 |
---|---|---|
Daily housing of constant temperature and humidity with 12:12 h light-dark cycle | X | X |
Daily food consumption assessed with standard laboratory diet | X | X |
Ad libitum water | X | X |
Oral treatment at same time per day of assigned dose | X | X |
Forelimb grip strength | X | X |
Treadmill endurance test | X | X |
Daily exericse treadmill training for 60 min/day, 5 days/week | X | X |
Final dose 1 h prior to testing | X | |
Euthanized following testing | X | |
Blood collection and analysis of AST, ALT, uric acid, creatinine, total cholesterol, HDL cholesterol, LDL cholesterol, and nitric oxide | X | |
Excision and weight of liver, heart, gastrocnemius, and sodium | X |
Treatment | Basal | Week 1 | Week 2 | Week 3 | Week 4 | Average |
---|---|---|---|---|---|---|
Control | 22.1 ± 0.7 | 23.9 ± 0.6 | 26.9 ± 0.6 | 29.6 ± 0.6 | 32.9 ± 0.3 | 27.1 ± 0.5 |
Paraxanthine | 22.0 ± 0.4 | 23.9 ± 0.6 | 27.0 ± 0.4 | 29.7 ± 0.5 | 32.8 ± 0.5 | 27.1 ± 0.3 |
L-Theanine | 22.4 ± 0.5 | 24.2 ± 0.6 | 26.8 ± 0.7 | 29.0 ± 0.6 | 31.6 ± 0.6 *** | 26.8 ± 0.5 |
Alpha-GPC | 22.5 ± 0.4 | 24.1 ± 0.4 | 27.1 ± 0.5 | 29.1 ± 0.5 | 31.7 ± 0.4 *** | 26.9 ± 0.4 |
Taurine | 22.5 ± 0.5 | 24.1 ± 0.7 | 27.0 ± 0.8 | 29.1 ± 0.7 | 32.3 ± 3.1 *** | 27.0 ± 0.3 |
Treatment | Week 1 | Week 2 | Week 3 | Week 4 | Average |
---|---|---|---|---|---|
Control | 41.6 ± 0.7 | 43.7 ± 0.6 | 45.7 ± 0.7 | 47.8 ± 0.6 | 44.2 ± 0.6 |
Paraxanthine | 41.7 ± 0.5 | 43.9 ± 0.7 | 46.0 ± 0.6 | 48.3 ± 0.7 | 44.4 ± 0.6 |
L-Theanine | 41.3 ± 0.9 | 43.5 ± 0.7 | 45.3 ± 0.5 | 47.6 ± 0.5 | 43.8 ± 0.5 |
Alpha-GPC | 40.9 ± 0.6 | 43.3 ± 0.4 | 45.5 ± 0.4 | 47.5 ± 0.4 | 43.8 ± 0.3 |
Taurine | 41.0 ± 0.6 | 43.2 ± 1.3 | 45.2 ± 1.2 | 47.4 ± 1.1 | 43.7 ± 0.7 |
Treatment | AST (U/L) | ALT (U/L) | ALP (U/L) | Urea (mg/dL) | Creatinine (mg/dL) |
---|---|---|---|---|---|
Control | 41.1 ± 2.5 | 25.1 ± 1.1 | 180.8 ± 3.5 | 30.1 ± 1.4 | 0.96 ± 0.13 |
Paraxanthine | 39.5 ± 1.6 | 23.9 ± 1.0 | 179.4 ± 2.6 | 29.1 ± 1.0 | 0.86 ± 0.11 |
L-Theanine | 40.3 ± 2.4 | 24.3 ± 1.3 | 177.1 ± 3.7 | 28.8 ± 1.3 | 0.89 ± 0.11 |
Alpha-GPC | 38.9 ± 2.1 | 23.6 ± 1.5 | 179.3 ± 4.0 | 29.4 ± 1.4 | 0.90 ± 0.16 |
Taurine | 40.1 ± 2.4 | 25.0 ± 1.1 | 180.4 ± 5.4 | 29.4 ± 1.6 | 0.93 ± 0.14 |
Treatment | TG (mg/dL) | TC (mg/dL) | HDL (mg/dL) | LDL (mg/dL) | Nitric Oxide (ng/mL) |
---|---|---|---|---|---|
Control | 90.0 ± 2.0 | 99.5 ± 1.5 | 28.0 ± 1.1 | 58.0 ± 1.2 | 6.5 ± 0.4 |
Paraxanthine | 82.5 ± 2.7 **$% | 87.8 ± 2.3 **$%# | 32.0 ± 0.8 **$&% | 52.8 ± 3.9 * | 13.1 ± 0.6 **$%# |
L-Theanine | 88.1 ± 3.7 | 90.6 ± 2.7 | 29.1 ± 2.5 | 55.3 ± 4.1 | 10.2 ± 1.3 |
Alpha-GPC | 88.4 ± 3.5 | 93.9 ± 4.5 | 28.4 ± 1.4 | 56.3 ± 2.3 | 9.2 ± 2.3 |
Taurine | 90.4 ± 2.5 | 96.0 ± 4.3 | 28.4 ± 1.1 | 56.8 ± 2.2 | 7.6 ± 0.3 |
Treatment | Liver (mg) | Heart (mg) |
---|---|---|
Control | 1874 ± 25 | 189 ± 1.9 |
Paraxanthine | 1870 ± 31 | 190 ± 1.4 |
L-Theanine | 1866 ± 43 | 189 ± 2.3 |
Alpha-GPC | 1869 ± 32 | 189 ± 1.0 |
Taurine | 1834 ± 52 | 190 ± 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jäger, R.; Purpura, M.; Wells, S.D.; Liao, K.; Godavarthi, A. Paraxanthine Supplementation Increases Muscle Mass, Strength, and Endurance in Mice. Nutrients 2022, 14, 893. https://doi.org/10.3390/nu14040893
Jäger R, Purpura M, Wells SD, Liao K, Godavarthi A. Paraxanthine Supplementation Increases Muscle Mass, Strength, and Endurance in Mice. Nutrients. 2022; 14(4):893. https://doi.org/10.3390/nu14040893
Chicago/Turabian StyleJäger, Ralf, Martin Purpura, Shawn D. Wells, Kylin Liao, and Ashok Godavarthi. 2022. "Paraxanthine Supplementation Increases Muscle Mass, Strength, and Endurance in Mice" Nutrients 14, no. 4: 893. https://doi.org/10.3390/nu14040893
APA StyleJäger, R., Purpura, M., Wells, S. D., Liao, K., & Godavarthi, A. (2022). Paraxanthine Supplementation Increases Muscle Mass, Strength, and Endurance in Mice. Nutrients, 14(4), 893. https://doi.org/10.3390/nu14040893