Anti-Fatigue and Exercise Performance Improvement Effect of Glossogyne tenuifolia Extract in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. GT Extract Preparation and HPLC Analysis
2.2. Animal Experiments
2.3. Forelimb Grip Strength Test
2.4. Weight-Loaded Swimming Test
2.5. Biochemical Parameters Associated with Fatigue
2.6. Serum Marker Analysis
2.7. Tissue Glycogen Analysis
2.8. Histological Analysis
2.9. Statistical Analysis
3. Results
3.1. Effect of GT Extract on Body Weight and Organ Weight
3.2. GT Extract Increases Forelimb Grip Strength and Endurance-Swimming Time in a Dose-Dependent Manner
3.3. Effect of GT Extract on Biochemical Markers Associated with Fatigue
3.4. Effect of GT Extract on Liver and Muscle Glycogen
3.5. Effect of GT Extract on Biochemical Parameters at the End of the Treatment Period
3.6. Effect of GT Extract on Histology in Various Organs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yamamoto, T.; Azechi, H.; Board, M. Essential role of excessive tryptophan and its neurometabolites in fatigue. Can. J. Neurol. Sci. 2012, 39, 40–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ament, W.; Verkerke, G.J. Exercise and fatigue. Sports Med. 2009, 39, 389–422. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.C.H.; Newham, D.J. Fatigue and functional performance of human biceps muscle following concentric or eccentric contractions. J. Appl. Physiol. 2007, 102, 207–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales-Alamo, D.; Losa-Reyna, J.; Torres-Peralta, R.; Martin-Rincon, M.; Perez-Valera, M.; Curtelin, D.; Ponce-González, J.G.; Santana, A.; Calbet, J.A. What limits performance during whole-body incremental exercise to exhaustion in humans? J. Physiol. 2015, 593, 4631–4648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calik-Kutukcu, E.; Savci, S.; Saglam, M.; Vardar-Yagli, N.; Inal-Ince, D.; Arikan, H.; Aribas, Z.; Ozer, O.; Bosnak-Guclu, M.; Coplu, L. A comparison of muscle strength and endurance, exercise capacity, fatigue perception and quality of life in patients with chronic obstructive pulmonary disease and healthy subjects: A cross-sectional study. BMC Pulm. Med. 2014, 14, 6. [Google Scholar] [CrossRef] [Green Version]
- Westerblad, H.; Allen, D.G.; Lannergren, J. Muscle fatigue: Lactic acid or inorganic phosphate the major cause? Physiology 2002, 17, 17–21. [Google Scholar] [CrossRef]
- Finsterer, J. Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskelet. Disord. 2012, 13, 218. [Google Scholar] [CrossRef] [Green Version]
- Azzolino, D.; Arosio, B.; Marzetti, E.; Calvani, R.; Cesari, M. Nutritional status as a mediator of fatigue and its underlying mechanisms in older people. Nutrients 2020, 12, 444. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, A.L. Fatigue mediates the effects of exercise on quality of life. Qual. Life Res. 1999, 8, 529–538. [Google Scholar] [CrossRef]
- Azzolino, D.; Marzetti, E.; Proietti, M.; Calvani, R.; de Souto Barreto, P.; Rolland, Y.; Cesari, M. Lack of energy is associated with malnutrition in nursing home residents: Results from the INCUR study. J. Am. Geriatr. Soc. 2021, 69, 3242–3248. [Google Scholar] [CrossRef]
- Ballard, S.L.; Wellborn-Kim, J.J.; Clauson, K.A. Effects of commercial energy drink consumption on athletic performance and body composition. Physician Sportsmed. 2010, 38, 107–117. [Google Scholar] [CrossRef] [PubMed]
- López-Lázaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem. 2009, 9, 31–59. [Google Scholar] [CrossRef]
- Lee, Y.-N.; Hsu, G.-S.W.; Lin, W.-T.; Lu, Y.-F. Hypolipidemic and Antioxidative effects of Glossogyne tenuifolia in hamsters fed an Atherogenic diet. J. Med. Food 2016, 19, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Tien, Y.-H.; Chen, B.-H.; Hsu, G.-S.W.; Lin, W.-T.; Huang, J.-H.; Lu, Y.-F. Hepatoprotective and anti-oxidant activities of Glossogyne tenuifolia against acetaminophen-induced hepatotoxicity in mice. Am. J. Chin. Med. 2014, 42, 1385–1398. [Google Scholar] [CrossRef] [PubMed]
- Li, T.S. Taiwanese Native Medicinal Plants: Phytopharmacology and Therapeutic Values; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Boye, A.; Yang, Y.; Asenso, J.; Wei, W. Anti-fibro-hepatocarcinogenic Chinese herbal medicines: A mechanistic overview. J. Intercult. Ethnopharmacol. 2016, 5, 278. [Google Scholar] [CrossRef] [PubMed]
- Ha, C.-L.; Weng, C.-Y.; Wang, L.; Lian, T.-W.; Wu, M.-J. Immunomodulatory effect of Glossogyne tenuifolia in murine peritoneal macrophages and splenocytes. J. Ethnopharmacol. 2006, 107, 116–125. [Google Scholar] [CrossRef]
- Asokan, S.M.; Wang, R.-Y.; Hung, T.-H.; Lin, W.-T. Hepato-protective effects of Glossogyne tenuifolia in Streptozotocin-nicotinamide-induced diabetic rats on high fat diet. BMC Complementary Altern. Med. 2019, 19, 117. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.-Y.; Huang, J.-H.; Hsu, G.-S.W.; Lin, W.-T.; Lu, Y.-F. Hypoglycemic and antioxidative effects of Glossogyne tenuifolia on streptozotocin-nicotinamide-induced diabetic rats. Am. J. Plant Sci. 2017, 8, 1170. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.-J.; Huang, C.-L.; Lian, T.-W.; Kou, M.-C.; Wang, L. Antioxidant activity of Glossogyne tenuifolia. J. Agric. Food Chem. 2005, 53, 6305–6312. [Google Scholar] [CrossRef]
- Chen, W.-C.; Huang, W.-C.; Chiu, C.-C.; Chang, Y.-K.; Huang, C.-C. Whey protein improves exercise performance and biochemical profiles in trained mice. Med. Sci. Sports Exerc. 2014, 46, 1517. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.-C.; Chiu, W.-C.; Chuang, H.-L.; Tang, D.-W.; Lee, Z.-M.; Wei, L.; Chen, F.-A.; Huang, C.-C. Effect of curcumin supplementation on physiological fatigue and physical performance in mice. Nutrients 2015, 7, 905–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.-Y.; Huang, W.-C.; Liu, C.-C.; Wang, M.-F.; Ho, C.-S.; Huang, W.-P.; Hou, C.-C.; Chuang, H.-L.; Huang, C.-C. Pumpkin (Cucurbita moschata) fruit extract improves physical fatigue and exercise performance in mice. Molecules 2012, 17, 11864–11876. [Google Scholar] [CrossRef] [PubMed]
- Lin-Na, S.; Yong-Xiu, S. Effects of polysaccharides from Gynostemma pentaphyllum (Thunb.), Makino on physical fatigue. Afr. J. Tradit. Complementary Altern. Med. 2014, 11, 112–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, T.-S.; Chuang, H.-L.; Huang, W.-C.; Chen, Y.-M.; Huang, C.-C.; Hsu, M.-C. Astragalus membranaceus improves exercise performance and ameliorates exercise-induced fatigue in trained mice. Molecules 2014, 19, 2793–2807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, N.O.; de Brito, I.M.; Araújo, S.S.O.; Negri, G.; de Araújo Carlini, E.; Mendes, F.R. Antioxidant, anticholinesterase and antifatigue effects of Trichilia catigua (catuaba). BMC Complementary Altern. Med. 2018, 18, 172. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, C. Antifatigue and increasing exercise performance of Actinidia arguta crude alkaloids in mice. J. Food Drug Anal. 2016, 24, 738–745. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.-E.; Huang, W.-C.; Liao, C.-C.; Chang, Y.-K.; Kan, N.-W.; Huang, C.-C. Resveratrol protects against physical fatigue and improves exercise performance in mice. Molecules 2013, 18, 4689–4702. [Google Scholar] [CrossRef]
- Hsu, Y.-J.; Huang, W.-C.; Chiu, C.-C.; Liu, Y.-L.; Chiu, W.-C.; Chiu, C.-H.; Chiu, Y.-S.; Huang, C.-C. Capsaicin supplementation reduces physical fatigue and improves exercise performance in mice. Nutrients 2016, 8, 648. [Google Scholar] [CrossRef]
- Huang, C.-C.; Chen, Y.-M.; Kan, N.-W.; Chao, H.-L.; Ho, C.-S.; Hsu, M.-C. Cornu cervi pantotrichum supplementation improves exercise performance and protects against physical fatigue in mice. Molecules 2014, 19, 4669–4680. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Du, C.; Wang, Y.; Yu, Z. Anti-fatigue activities of polysaccharides extracted from Hericium erinaceus. Exp. Ther. Med. 2015, 9, 483–487. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhou, Y.; Nirasawa, S.; Tatsumi, E.; Cheng, Y.; Li, L. In vivo anti-fatigue activity of sufu with fortification of isoflavones. Pharmacogn. Mag. 2014, 10, 367. [Google Scholar] [CrossRef] [Green Version]
- Coco, M.; Buscemi, A.; Guerrera, C.S.; Di Corrado, D.; Cavallari, P.; Zappalà, A.; Di Nuovo, S.; Parenti, R.; Maci, T.; Razza, G. Effects of a bout of intense exercise on some executive functions. Int. J. Environ. Res. Public Health 2020, 17, 898. [Google Scholar] [CrossRef] [Green Version]
- Westerblad, H.; Bruton, J.D.; Katz, A. Skeletal muscle: Energy metabolism, fiber types, fatigue and adaptability. Exp. Cell Res. 2010, 316, 3093–3099. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Xu, H. Analysis of chemical components of shiitake polysaccharides and its anti-fatigue effect under vibration. Int. J. Biol. Macromol. 2009, 45, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Lamou, B.; Taiwe, G.S.; Hamadou, A.; Abene; Houlray, J.; Atour, M.M.; Tan, P.V. Antioxidant and Antifatigue Properties of the Aqueous Extract of Moringa oleifera in Rats Subjected to Forced Swimming Endurance Test. Oxidative Med. Cell. Longev. 2016, 2016, 3517824. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, M.; Spriet, L.L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020, 2, 817–828. [Google Scholar] [CrossRef]
- Huang, C.-C.; Hsu, M.-C.; Huang, W.-C.; Yang, H.-R.; Hou, C.-C. Triterpenoid-rich extract from Antrodia camphorata improves physical fatigue and exercise performance in mice. Evid.-Based Complementary Altern. Med. 2012, 2012, 364741. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Xu, X.; Wei, X.; Feng, W.; Huang, H.; Liu, H.; Xu, R.; Lin, J.; Han, L.; Zhang, D. Natural medicines for the treatment of fatigue: Bioactive components, pharmacology, and mechanisms. Pharmacol. Res. 2019, 148, 104409. [Google Scholar] [CrossRef]
- Phillips, S.; Green, H.; Tarnopolsky, M.; Heigenhauser, G.; Hill, R.; Grant, S. Effects of training duration on substrate turnover and oxidation during exercise. J. Appl. Physiol. 1996, 81, 2182–2191. [Google Scholar] [CrossRef]
- Zhao, X.N.; Wang, X.F.; Liao, J.B.; Guo, H.Z.; Yu, X.D.; Liang, J.L.; Zhang, X.; Su, Z.R.; Zhang, X.J.; Zeng, H.F. Antifatigue Effect of Millettiae speciosae champ (Leguminosae) extract in mice. Trop. J. Pharm. Res. 2015, 14, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Zhang, W.C.; Wu, Z.Y.; Fu, C.X.; Hui, A.L.; Gao, H.; Chen, P.P.; Du, B.; Zhang, H.W. Two macamide extracts relieve physical fatigue by attenuating muscle damage in mice. J. Sci. Food Agric. 2019, 99, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
Parameters | Control | LGT 1X | MGT 2X | HGT 5X | HGT 10X |
---|---|---|---|---|---|
Final BW (g) | 40.92 ± 0.68 | 41.88 ± 0.63 | 41.86 ± 0.63 | 42.22 ± 0.39 | 39.87 ± 0.23 |
Muscle (g) | 0.419 ± 0.010 b | 0.402 ± 0.013 b | 0.420 ± 0.016 b | 0.400 ± 0.009 ab | 0.368 ± 0.009 a |
Liver (g) | 1.585 ± 0.050 ab | 1.558 ± 0.100 ab | 1.575 ± 0.056 ab | 1.845 ± 0.298 b | 1.358 ± 0.037 a |
Heart (g) | 0.187 ± 0.006 a | 0.207 ± 0.012 ab | 0.219 ± 0.014 b | 0.208 ± 0.008 ab | 0.180 ± 0.008 a |
Pancreas (g) | 0.226 ± 0.007 c | 0.189 ± 0.013 b | 0.186 ± 0.009 b | 0.152 ± 0.015 a | 0.175 ± 0.007 ab |
Lung (g) | 0.220 ± 0.005 a | 0.211 ± 0.003 a | 0.212 ± 0.005 a | 0.208 ± 0.004 a | 0.216 ± 0.003 a |
Kidney (g) | 0.580 ± 0.013 bc | 0.533 ± 0.016 ab | 0.592 ± 0.033 c | 0.527 ± 0.017 a | 0.484 ± 0.014 a |
Spleen (g) | 0.1081 ± 0.0035 b | 0.1093 ± 0.0048 b | 0.0974 ± 0.0049 ab | 0.0898 ± 0.0050 a | 0.0902 ± 0.0029 a |
Testis (g) | 0.262 ± 0.016 a | 0.269 ± 0.008 a | 0.245 ± 0.010 a | 0.237 ± 0.010 a | 0.246 ± 0.009 a |
Epididymis (g) | 0.116 ± 0.020 | 0.087 ± 0.009 | 0.094 ± 0.015 | 0.068 ± 0.010 | 0.059 ± 0.002 |
Epididymis fat (g) | 0.97 ± 0.1 b | 0.77 ± 0.0 a | 0.74 ± 0.1 a | 0.76 ± 0.0 a | 0.82 ± 0.1 ab |
Parameters | Control | LGT 1X | MGT 2X | HGT 5X | HGT 10X |
---|---|---|---|---|---|
GOT (U/L) | 117.9 ± 18.8 a | 101.5 ± 6.8 a | 116.2 ± 15.1 a | 140.8 ± 24.5 ab | 176.3 ± 29.5 b |
GST (U/L) | 27.8 ± 2.8 a | 23.0 ± 1.0 a | 26.6 ± 3.6 a | 44.9 ± 16.6 a | 28.0 ± 2.1 a |
Triglyceride (mg/dL) | 66.8 ± 6.1 a | 90.1 ± 15.5 a | 84.8 ± 7.9 a | 75.2 ± 6.8 a | 80.1 ± 7.2 a |
Total cholesterol (mg/dL) | 153.7 ± 6.4 a | 154.6 ± 5.9 a | 142.7 ± 6.5 a | 151.6 ± 5.4 a | 153.7 ± 8.0 a |
HDL (mg/dL) | 117.7 ± 4.29 a | 120.8 ± 5.63 a | 114.0 ± 5.58 a | 122.5 ± 4.09 a | 123.9 ± 7.24 a |
LDL (mg/dL) | 25.0 ± 2.09 b | 22.1 ± 1.72 ab | 19.8 ± 1.28 a | 20.9 ± 0.98 ab | 19.5 ± 1.42 a |
BUN (mg/dL) | 24.9 ± 0.70 a | 27.3 ± 1.32 ab | 28.6 ± 1.74 bc | 31.0 ± 0.77 c | 25.9 ± 1.55 ab |
Creatinine (mg/dL) | 0.228 ± 0.014 a | 0.225 ± 0.017 a | 0.235 ± 0.022 ab | 0.214 ± 0.014 a | 0.277 ± 0.014 b |
Uric acid (mg/dL) | 2.44 ± 0.20 ab | 3.01 ± 0.22 b | 2.13 ± 0.18 a | 2.00 ± 0.24 a | 2.35 ± 0.24 a |
Glucose (mg/dL) | 131.7 ± 10.8 a | 160.5 ± 5.3 bc | 152.3 ± 6.7 ab | 166.9 ± 11.1 c | 138.9 ± 6.6 ab |
CPK (U/L) | 5789 ± 1495 ab | 3420 ± 490 a | 4762 ± 921 a | 6019 ± 1632 ab | 9168 ± 1841 b |
LDH (U/L) | 1214 ± 193 a | 721 ± 134 a | 810 ± 190 a | 924 ± 259 a | 1012 ± 111 a |
Ammonia (μM/L) | 414 ± 87 a | 485 ± 106 a | 632 ± 132 a | 528 ± 124 a | 645 ± 103 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-J.; Baskaran, R.; Shibu, M.A.; Lin, W.-T. Anti-Fatigue and Exercise Performance Improvement Effect of Glossogyne tenuifolia Extract in Mice. Nutrients 2022, 14, 1011. https://doi.org/10.3390/nu14051011
Chen Y-J, Baskaran R, Shibu MA, Lin W-T. Anti-Fatigue and Exercise Performance Improvement Effect of Glossogyne tenuifolia Extract in Mice. Nutrients. 2022; 14(5):1011. https://doi.org/10.3390/nu14051011
Chicago/Turabian StyleChen, Yi-Ju, Rathinasamy Baskaran, Marthandam Asokan Shibu, and Wan-Teng Lin. 2022. "Anti-Fatigue and Exercise Performance Improvement Effect of Glossogyne tenuifolia Extract in Mice" Nutrients 14, no. 5: 1011. https://doi.org/10.3390/nu14051011
APA StyleChen, Y. -J., Baskaran, R., Shibu, M. A., & Lin, W. -T. (2022). Anti-Fatigue and Exercise Performance Improvement Effect of Glossogyne tenuifolia Extract in Mice. Nutrients, 14(5), 1011. https://doi.org/10.3390/nu14051011